Skip to content
2000
image of PPA1, TRIM68 and FBXO46: Potential Therapeutic Targets for Triple Negative Breast Cancer

Abstract

Background

Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer with a high recurrence rate. A new therapeutic intervention is urgently needed to combat this lethal subtype. The identification of biomarkers is also crucial for improving outcomes in TNBC.

Method

The cell cytotoxicity of ML364 (2-(4-Methylphenylsulfonamido)-N-(4-phenylthiazol-2-yl)-4-(trifluoromethyl)benzamide) was measured at different concentrations of ML364 in TNBC-treated and untreated cells. The 2DE and LC-MS/MS analysis were used for protein identification of differentially expressed proteins. Furthermore, the quantitation of gene expression was demonstrated using RT-qPCR. TIMER, HPA, and UALCAN databases were utilized for further analysis.

Results

Differentially expressed proteins and genes after ML364 treatment in TNBC were found to be linked with the USP2 (ubiquitin specific peptidase 2)-mediated pathway. Our results demonstrate that differentially identified proteins, including PPA1, TRIM68, and FBXO46, could be a potential prognostic biomarker for TNBC. Further analysis through the UALCAN and HPA databasess shows the high expression of these proteins in primary breast tumors, which is in contrast to normal. The induction of ML364 significantly reduced the expression of PPA1, TRIM68, and FBXO46 proteins and induced cell cytotoxicity in TNBC cells.

Conclusion

This study provides an understanding of the USP2-mediated signaling pathway in TNBC, emphasizing the role of USP2 and its substrates with apoptotic genes. Our results offer insight into the USP2-mediated cellular mechanism after ML364 treatment in TNBC that could be a potential therapeutic candidate.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037334325241014053319
2025-01-01
2025-01-22
Loading full text...

Full text loading...

References

  1. Xu Y. Gong M. Wang Y. Yang Y. Liu S. Zeng Q. Global trends and forecasts of breast cancer incidence and deaths. Sci. Data 2023 10 1 334 10.1038/s41597‑023‑02253‑5 37244901
    [Google Scholar]
  2. Smolarz B. Nowak A.Z. Romanowicz H. Breast cancer—epidemiology, classification, pathogenesis and treatment review of literature. Cancers 2022 14 10 2569 10.3390/cancers14102569 35626173
    [Google Scholar]
  3. Basmadjian R.B. Chow K. Kim D. Kenney M. Lukmanji A. O’Sullivan D.E. Xu Y. Quan M.L. Cheung W.Y. Lupichuk S. Brenner D.R. The association between early-onset diagnosis and clinical outcomes in triple-negative breast cancer: A systematic review and meta-analysis. Cancers 2023 15 7 1923 10.3390/cancers15071923 37046584
    [Google Scholar]
  4. Almansour N.M. Triple-negative breast cancer: A brief review about epidemiology, risk factors, signaling pathways, treatment and role of artificial intelligence. Front. Mol. Biosci. 2022 9 836417 10.3389/fmolb.2022.836417 35145999
    [Google Scholar]
  5. Hussain S. Durrani F. Khan A. Frequency and clinicopathologic characteristics of triple-negative breast cancer among breast cancer patients presenting to medical oncology department, hayatabad medical complex peshawar, Pakistan. Cureus 2023 15 2 e34581 10.7759/cureus.34581
    [Google Scholar]
  6. Bashir I. Falah S.Q. Shams A. Triple negative receptor status in patients diagnosed with carcinoma breast. Pak. J. Med. Health Sci. 2022 16 2 530 532 10.53350/pjmhs22162530
    [Google Scholar]
  7. Wang L. Zhang S. Wang X. The metabolic mechanisms of breast cancer metastasis. Front. Oncol. 2021 10 602416 10.3389/fonc.2020.602416 33489906
    [Google Scholar]
  8. Han D. Wang L. Jiang S. Yang Q. The ubiquitin–proteasome system in breast cancer. Trends Mol. Med. 2023 29 8 599 621 10.1016/j.molmed.2023.05.006 37328395
    [Google Scholar]
  9. Kong L. Jin X. Dysregulation of deubiquitination in breast cancer. Gene 2024 902 148175 10.1016/j.gene.2024.148175 38242375
    [Google Scholar]
  10. Qu Q. Mao Y. Xiao G. Fei X. Wang J. Zhang Y. Liu J. Cheng G. Chen X. Wang J. Shen K. USP2 promotes cell migration and invasion in triple negative breast cancer cell lines. Tumour Biol. 2015 36 7 5415 5423 10.1007/s13277‑015‑3207‑7 25687182
    [Google Scholar]
  11. Syed N. Ilyas A. Idrees F. Zarina Z. Hashim Z. Inhibition of USP2 induces apoptosis through down regulation of fatty acid synthase and cyclin D1 in triple negative breast cancer. Curr. Proteomics 2020 17 5 425 432 10.2174/1570164617666191008093522
    [Google Scholar]
  12. Zhang Z. Liu W. Bao X. Sun T. Wang J. Li M. Liu C. USP39 facilitates breast cancer cell proliferation through stabilization of FOXM1. Am. J. Cancer Res. 2022 12 8 3644 3661 36119839
    [Google Scholar]
  13. Huang M.L. Shen G.T. Li N.L. Emerging potential of ubiquitin-specific proteases and ubiquitin-specific proteases inhibitors in breast cancer treatment. World J. Clin. Cases 2022 10 32 11690 11701 10.12998/wjcc.v10.i32.11690 36405275
    [Google Scholar]
  14. Lakshmanan M. Bughani U. Duraisamy S. Diwan M. Dastidar S. Ray A. Molecular targeting of E3 ligases – A therapeutic approach for cancer. Expert Opin. Ther. Targets 2008 12 7 855 870 10.1517/14728222.12.7.855 18554154
    [Google Scholar]
  15. Shi D. Grossman S.R. Ubiquitin becomes ubiquitous in cancer. Cancer Biol. Ther. 2010 10 8 737 747 10.4161/cbt.10.8.13417 20930542
    [Google Scholar]
  16. Bai X. Tang J. TRIM proteins in breast cancer: Function and mechanism. Biochem. Biophys. Res. Commun. 2023 640 26 31 10.1016/j.bbrc.2022.11.103 36495607
    [Google Scholar]
  17. Kitamura H. Hashimoto M. USP2-related cellular signaling and consequent pathophysiological outcomes. Int. J. Mol. Sci. 2021 22 3 1209 10.3390/ijms22031209 33530560
    [Google Scholar]
  18. Antao A.M. Tyagi A. Kim K.S. Ramakrishna S. Advances in deubiquitinating enzyme inhibition and applications in cancer therapeutics. Cancers 2020 12 6 1579 10.3390/cancers12061579 32549302
    [Google Scholar]
  19. Zhu M. Wang H. Ding Y. Yang Y. Xu Z. Shi L. Zhang N. Ribonucleotide reductase holoenzyme inhibitor COH29 interacts with deubiquitinase ubiquitin‐specific protease 2 and downregulates its substrate protein cyclin D1. FASEB J. 2022 36 5 e22329 10.1096/fj.202101914RR 35476303
    [Google Scholar]
  20. Shan J. Zhao W. Gu W. Suppression of cancer cell growth by promoting cyclin D1 degradation. Mol. Cell 2009 36 3 469 476 10.1016/j.molcel.2009.10.018 19917254
    [Google Scholar]
  21. Menendez J.A. Lupu R. Fatty acid synthase (FASN) as a therapeutic target in breast cancer. Expert Opin. Ther. Targets 2017 21 11 1001 1016 10.1080/14728222.2017.1381087 28922023
    [Google Scholar]
  22. Alhoshani A. Alatawi F.O. Al-Anazi F.E. Attafi I.M. Zeidan A. Agouni A. El Gamal H.M. Shamoon L.S. Khalaf S. Korashy H.M. BCL-2 inhibitor venetoclax induces autophagy-associated cell death, cell cycle arrest, and apoptosis in human breast cancer cells. OncoTargets Ther. 2020 13 13357 13370 10.2147/OTT.S281519 33414642
    [Google Scholar]
  23. Merino D. Lok S.W. Visvader J.E. Lindeman G.J. Targeting BCL-2 to enhance vulnerability to therapy in estrogen receptor-positive breast cancer. Oncogene 2016 35 15 1877 1887 10.1038/onc.2015.287 26257067
    [Google Scholar]
  24. Zhang Y. Liu J-L. Wang J. KRAS gene silencing inhibits the activation of PI3K-Akt-mTOR signaling pathway to regulate breast cancer cell epithelial-mesenchymal transition, proliferation and apoptosis. Eur. Rev. Med. Pharmacol. Sci. 2020 24 6 3085 3096 10.26355/eurrev_202003_20673 32271426
    [Google Scholar]
  25. Kwon S.K. Saindane M. Baek K.H. p53 stability is regulated by diverse deubiquitinating enzymes. Biochim. Biophys. Acta Rev. Cancer 2017 1868 2 404 411 10.1016/j.bbcan.2017.08.001 28801249
    [Google Scholar]
  26. Tahaney W.M. Qian J. Powell R. Moyer C.L. Ma Y. Nguyen N. Hill J. Stephan C. Mazumdar A. Davies P.J. Brown P.H. Abstract GS1-09: Inhibition of GPX4 induces preferential death of p53-mutant triple-negative breast cancer cells. Cancer Res. 2022 82 GS1-09 10.1158/1538‑7445.SABCS21‑GS1‑09
    [Google Scholar]
  27. Zhang Z. Xue S. Gao Y. Li Y. Zhou Z. Wang J. Li Z. Liu Z. Small molecule targeting FOXM1 DNA binding domain exhibits anti-tumor activity in ovarian cancer. Cell Death Discov. 2022 8 1 280 10.1038/s41420‑022‑01070‑w 35680842
    [Google Scholar]
  28. Ahluwalia P. Mondal A.K. Bloomer C. Fulzele S. Jones K. Ananth S. Gahlay G.K. Heneidi S. Rojiani A.M. Kota V. Kolhe R. Identification and clinical validation of a novel 4 gene-signature with prognostic utility in colorectal cancer. Int. J. Mol. Sci. 2019 20 15 3818 10.3390/ijms20153818 31387239
    [Google Scholar]
  29. Choppara S. Ganga S. Manne R. Dutta P. Singh S. Santra M.K. The SCFFBXO46 ubiquitin ligase complex mediates degradation of the tumor suppressor FBXO31 and thereby prevents premature cellular senescence. J. Biol. Chem. 2018 293 42 16291 16306 10.1074/jbc.RA118.005354 30171069
    [Google Scholar]
  30. Mishra D.R. Chaudhary S. Krishna B.M. Mishra S.K. Identification of critical elements for regulation of inorganic pyrophosphatase (PPA1) in MCF7 breast cancer cells. PLoS One 2015 10 4 e0124864 10.1371/journal.pone.0124864 25923237
    [Google Scholar]
  31. Niu H. Zhu J. Qu Q. Zhou X. Huang X. Du Z. Crystallographic and modeling study of the human inorganic pyrophosphatase 1: A potential anti‐cancer drug target. Proteins 2021 89 7 853 865 10.1002/prot.26064 33583053
    [Google Scholar]
  32. Ning L. Huo Q. Xie N. Comprehensive analysis of the expression and prognosis for tripartite motif-containing genes in breast cancer. Front. Genet. 2022 13 876325 10.3389/fgene.2022.876325 35928444
    [Google Scholar]
  33. Tan Z. Liu X. Yu E. Wang H. Tang L. Wang H. Fu C. Lentivirus-mediated RNA interference of tripartite motif 68 inhibits the proliferation of colorectal cancer cell lines SW1116 and HCT116 in vitro. Oncol. Lett. 2017 13 4 2649 2655 10.3892/ol.2017.5787 28454446
    [Google Scholar]
  34. Christenson J.L. Butterfield K.T. Spoelstra N.S. Norris J.D. Josan J.S. Pollock J.A. McDonnell D.P. Katzenellenbogen B.S. Katzenellenbogen J.A. Richer J.K. MMTV-PyMT and derived met-1 mouse mammary tumor cells as models for studying the role of the androgen receptor in triple-negative breast cancer progression. Horm. Cancer 2017 8 2 69 77 10.1007/s12672‑017‑0285‑6 28194662
    [Google Scholar]
  35. Xu M. Yuan Y. Yan P. Jiang J. Ma P. Niu X. Ma S. Cai H. Yang K. Prognostic significance of androgen receptor expression in triple negative breast cancer: A systematic review and meta-analysis. Clin. Breast Cancer 2020 20 4 e385 e396 10.1016/j.clbc.2020.01.002 32139270
    [Google Scholar]
  36. Wang X. Xu Y. Xu K. Chen Y. Xiao X. Guan X. BCL11A confers cell invasion and migration in androgen receptor‑positive triple‑negative breast cancer. Oncol. Lett. 2020 19 4 2916 2924 10.3892/ol.2020.11383 32218847
    [Google Scholar]
  37. Szklarczyk D. Gable A.L. Lyon D. Junge A. Wyder S. Huerta-Cepas J. Simonovic M. Doncheva N.T. Morris J.H. Bork P. Jensen L.J. Mering C. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019 47 D1 D607 D613 10.1093/nar/gky1131 30476243
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037334325241014053319
Loading
/content/journals/cpps/10.2174/0113892037334325241014053319
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test