Skip to content
2000
Volume 26, Issue 3
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

Introduction

The Q108P pathological variant of the mitochondrial Coiled-Coil-Helix-Coiled-Coil-Helix Domain-Containing Protein 10 (CHCHD10) has been implicated in amyotrophic lateral sclerosis (ALS). Both the wild-type and CHCHD10Q108P proteins exhibit intrinsically disordered regions, posing challenges for structural studies with conventional experimental tools.

Methods

This study presents the foundational characterization of the structural features of CHCHD10Q108P and compares them with those of the wild-type counterpart. We conducted multiple run molecular dynamics simulations and bioinformatics analyses.

Results

Our findings reveal distinct differences in structural properties, free energy surfaces, and the outputs of principal component analysis between these two proteins. These results contribute significantly to the comprehension of CHCHD10 and its Q108P variant in terms of pathology, biochemistry, and structural biology.

Conclusion

The reported structural properties hold promise for informing the development of more effective treatments for ALS.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037335036241007043530
2024-10-23
2025-04-28
Loading full text...

Full text loading...

References

  1. RedlerR.L. DokholyanN.V. The Complex Molecular Biology of Amyotrophic Lateral Sclerosis (ALS).Progress in Molecular Biology and Translational Science.Elsevier2012Vol. 10721526210.1016/B978‑0‑12‑385883‑2.00002‑3
    [Google Scholar]
  2. NijssenJ. ComleyL.H. HedlundE. Motor neuron vulnerability and resistance in amyotrophic lateral sclerosis.Acta Neuropathol.2017133686388510.1007/s00401‑017‑1708‑828409282
    [Google Scholar]
  3. BorasioG.D. MillerR.G. Clinical characteristics and management of ALS.Semin. Neurol.200121215516610.1055/s‑2001‑1526811442324
    [Google Scholar]
  4. MasroriP. Van DammeP. Amyotrophic lateral sclerosis: A clinical review.Eur. J. Neurol.202027101918192910.1111/ene.1439332526057
    [Google Scholar]
  5. RusinaR. VandenbergheR. BruffaertsR. Cognitive and behavioral manifestations in ALS: Beyond motor system involvement.Diagnostics.202111462410.3390/diagnostics1104062433808458
    [Google Scholar]
  6. GuoW. VandoorneT. SteyaertJ. StaatsK.A. Van Den BoschL. The multifaceted role of kinases in amyotrophic lateral sclerosis: Genetic, pathological and therapeutic implications.Brain202014361651167310.1093/brain/awaa02232206784
    [Google Scholar]
  7. YangX. JiY. WangW. ZhangL. ChenZ. YuM. ShenY. DingF. GuX. SunH. Amyotrophic lateral sclerosis: Molecular mechanisms, biomarkers, and therapeutic strategies.Antioxidants2021107101210.3390/antiox1007101234202494
    [Google Scholar]
  8. BannwarthS. Ait-El-MkademS. ChaussenotA. GeninE.C. Lacas-GervaisS. FragakiK. Berg-AlonsoL. KageyamaY. SerreV. MooreD.G. VerschuerenA. RouzierC. Le BerI. AugéG. CochaudC. LespinasseF. N’GuyenK. de SeptenvilleA. BriceA. Yu-Wai-ManP. SesakiH. PougetJ. Paquis-FlucklingerV. A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement.Brain201413782329234510.1093/brain/awu13824934289
    [Google Scholar]
  9. AliciH. UverskyV.N. KangD.E. WooJ.A. Coskuner-WeberO. Structures of the wild-type and S59L mutant CHCHD10 proteins important in amyotrophic lateral sclerosis–frontotemporal dementia.ACS Chem. Neurosci.20221381273128010.1021/acschemneuro.2c0001135349255
    [Google Scholar]
  10. GeninE.C. Abou-AliM. Paquis-FlucklingerV. Mitochondria, a key target in amyotrophic lateral sclerosis pathogenesis.Genes.20231411198110.3390/genes1411198138002924
    [Google Scholar]
  11. LehmerC. SchludiM.H. RansomL. GreilingJ. JunghänelM. ExnerN. RiemenschneiderH. van der ZeeJ. Van BroeckhovenC. WeydtP. HenekaM.T. EdbauerD. A novel CHCHD10 mutation implicates a Mia40-dependent mitochondrial import deficit in ALS.EMBO Mol. Med.2018106e855810.15252/emmm.20170855829789341
    [Google Scholar]
  12. Coskuner-WeberO. MirzanliO. UverskyV.N. Intrinsically disordered proteins and proteins with intrinsically disordered regions in neurodegenerative diseases.Biophys. Rev.202214367970710.1007/s12551‑022‑00968‑035791387
    [Google Scholar]
  13. YangJ. YanR. RoyA. XuD. PoissonJ. ZhangY. The I- TASSER Suite: Protein structure and function prediction.Nat. Methods20151217810.1038/nmeth.321325549265
    [Google Scholar]
  14. YangJ. ZhangY. I-TASSER server: New development for protein structure and function predictions.Nucleic Acids Res.201543W1W174W18110.1093/nar/gkv34225883148
    [Google Scholar]
  15. BerendsenH.J.C. van der SpoelD. van DrunenR. GROMACS: A message-passing parallel molecular dynamics implementation.Comput. Phys. Commun.1995911-3435610.1016/0010‑4655(95)00042‑E
    [Google Scholar]
  16. JorgensenW.L. ChandrasekharJ. MaduraJ.D. ImpeyR.W. KleinM.L. Comparison of simple potential functions for simulating liquid water.J. Chem. Phys.198379292693510.1063/1.445869
    [Google Scholar]
  17. HuangJ. RauscherS. NawrockiG. RanT. FeigM. de GrootB.L. GrubmüllerH. MacKerellA.D.Jr CHARMM36m. An improved force field for folded and intrinsically disordered proteins.Nat. Methods2017141717310.1038/nmeth.406727819658
    [Google Scholar]
  18. AllisonT. C. CoskunerO. GonzalezC. A. Metallic systems: A quantum chemist’s perspective201110.1201/b10835
    [Google Scholar]
  19. DardenT. YorkD. PedersenL. Particle mesh Ewald: An N-log( N ) method for Ewald sums in large systems.J. Chem. Phys.19939812100891009210.1063/1.464397
    [Google Scholar]
  20. EvansD.J. HolianB.L. The Nose–Hoover thermostat.J. Chem. Phys.19858384069407410.1063/1.449071
    [Google Scholar]
  21. ParrinelloM. RahmanA. Polymorphic transitions in single crystals: A new molecular dynamics method.J. Appl. Phys.198152127182719010.1063/1.328693
    [Google Scholar]
  22. HessB. P-LINCS: A parallel linear constraint solver for molecular simulation.J. Chem. Theory Comput.20084111612210.1021/ct700200b26619985
    [Google Scholar]
  23. VacicV. UverskyV.N. DunkerA.K. LonardiS. Composition Profiler: A tool for discovery and visualization of amino acid composition differences.BMC Bioinformatics20078121110.1186/1471‑2105‑8‑21117578581
    [Google Scholar]
  24. CampenA. WilliamsR. BrownC. MengJ. UverskyV. DunkerA. TOP-IDP-scale: A new amino acid scale measuring propensity for intrinsic disorder.Protein Pept. Lett.200815995696310.2174/09298660878584916418991772
    [Google Scholar]
  25. TheilletF.X. KalmarL. TompaP. HanK.H. SelenkoP. DunkerA.K. DaughdrillG.W. UverskyV.N. The alphabet of intrinsic disorder.Intrinsically Disord. Proteins201311, e24360.10.4161/idp.2436028516008
    [Google Scholar]
  26. DosztányiZ. CsizmokV. TompaP. SimonI. IUPred: Web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content.Bioinformatics200521163433343410.1093/bioinformatics/bti54115955779
    [Google Scholar]
  27. MészárosB. ErdősG. DosztányiZ. IUPred2A: Context-dependent prediction of protein disorder as a function of redox state and protein binding.Nucleic Acids Res.201846W1W329W33710.1093/nar/gky38429860432
    [Google Scholar]
  28. HardenbergM. HorvathA. AmbrusV. FuxreiterM. VendruscoloM. Widespread occurrence of the droplet state of proteins in the human proteome.Proc. Natl. Acad. Sci. USA202011752332543326210.1073/pnas.200767011733318217
    [Google Scholar]
  29. DayhoffG.W.II UverskyV.N. Rapid prediction and analysis of protein intrinsic disorder.Protein Sci.20223112, e4496.10.1002/pro.449636334049
    [Google Scholar]
  30. ObradovicZ. PengK. VuceticS. RadivojacP. DunkerA.K. Exploiting heterogeneous sequence properties improves prediction of protein disorder.Proteins200561S7Suppl. 717618210.1002/prot.2073516187360
    [Google Scholar]
  31. ObradovicZ. PengK. VuceticS. RadivojacP. BrownC.J. DunkerA.K. Predicting intrinsic disorder from amino acid sequence.Proteins200353S6Suppl. 656657210.1002/prot.1053214579347
    [Google Scholar]
  32. XueB. DunbrackR.L. WilliamsR.W. DunkerA.K. UverskyV.N. PONDR-FIT: A meta-predictor of intrinsically disordered amino acids.Biochim. Biophys. Acta. Proteins Proteomics201018044996101010.1016/j.bbapap.2010.01.01120100603
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037335036241007043530
Loading
/content/journals/cpps/10.2174/0113892037335036241007043530
Loading

Data & Media loading...

Supplements

Data obtained from run 1, run 2, and run 3 MD simulations are presented in the Supporting Information section. We present the root mean square deviations, secondary structure elements, root mean square fluctuations, free energy surfaces, tertiary structure properties, Ramachandran plots, and the principal component analysis results. Supplementary material is available on the publisher’s web site along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test