Skip to content
2000
image of Insights into the Binding of Metadoxine with Bovine Serum Albumin: A Multi-Spectroscopic Investigation Combined with Molecular Docking

Abstract

Background

Metadoxine, also known as pyruvate dehydrogenase activator, is a small molecule drug that has been used in the treatment of various medical conditions. Bovine serum albumin is a commonly studied protein that serves as a plasmatic for understanding protein-drug interactions due to its abundance.

Objective

This research suggests that metadoxine can bind to bovine serum albumin with moderate affinity, leading to an alteration in the secondary structure of the protein, which may also influence the protein's stability and function, which could provide a comprehensive understanding of the interaction at a molecular level. In this study, a variety of methodologies wereused to determine various thermodynamic parameters.

Methods

The study uses UV-visible, Fluorescence, Fourier-transform infrared, Circular dichroism spectroscopy, and Molecular docking to analyze the interaction between bovine serum albumin and metadoxine, providing thermodynamic parameters for understanding the protein structure and its binding.

Result

The binding of metadoxine with bovine serum albumin, causes a hyperchromic shift. In fluorescence spectroscopy, the value of the Stern Volmer increases constantly with an increase in temperature, suggesting a stronger interaction between the Metadoxine and the Bovine serum albumin, leading to dynamic quenching. Additionally, Fourier-transform infrared and circular dichroism indicated a reduction in the secondary structure of Bovine serum albumin.

Conclusion

The interactions between metadoxine and bovine serum albumin, cause hyperchromic shift revealed by UV-visible spectroscopy, whereas in Fluorescence spectroscopy, the value of the Stern Volmer constant increases with an increase in temperature, suggesting a stronger interaction between the MD and the BSA, leading to dynamic quenching. Additionally, Fourier-transform infrared and circular dichroism spectroscopy indicated a reduction in the secondary structure of the protein, as evidenced by the shifting of the amide II band and leading to a slight decrease in the α-helix content. The molecular docking shows that metadoxine was docked in the subdomain IIA binding pocket of BSA.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037318575240919054053
2024-10-28
2025-01-22
Loading full text...

Full text loading...

References

  1. Kar A. Essentials of Biopharmaceutics and Pharmacokinetics-E-Book. Elsevier Health Sciences 1st ed 2010
    [Google Scholar]
  2. Raghav D. Mahanty S. Rathinasamy K. Characterizing the interactions of the antipsychotic drug trifluoperazine with bovine serum albumin: Probing the drug-protein and drug-drug interactions using multi-spectroscopic approaches. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020 226 117584 10.1016/j.saa.2019.117584 31698317
    [Google Scholar]
  3. Trainor G.L. The importance of plasma protein binding in drug discovery. Expert Opin. Drug Discov. 2007 2 1 51 64 10.1517/17460441.2.1.51 23496037
    [Google Scholar]
  4. Shi J.H. Wang J. Zhu Y.Y. Chen J. Characterization of interaction between isoliquiritigenin and bovine serum albumin: Spectroscopic and molecular docking methods. J. Lumin. 2014 145 643 650 10.1016/j.jlumin.2013.08.042
    [Google Scholar]
  5. Naik P.N. Chimatadar S.A. Nandibewoor S.T. Interaction between a potent corticosteroid drug – Dexamethasone with bovine serum albumin and human serum albumin: A fluorescence quenching and fourier transformation infrared spectroscopy study. J. Photochem. Photobiol. B 2010 100 3 147 159 10.1016/j.jphotobiol.2010.05.014 20573517
    [Google Scholar]
  6. Sułkowska A. Równicka J. Bojko B. Sułkowski W. Interaction of anticancer drugs with human and bovine serum albumin. J. Mol. Struct. 2003 651-653 133 140 10.1016/S0022‑2860(02)00642‑7
    [Google Scholar]
  7. Guerrini I. Gentili C. Nelli G. Guazzelli M. A follow up study on the efficacy of metadoxine in the treatment of alcohol dependence. Subst. Abuse Treat. Prev. Policy 2006 1 1 35 10.1186/1747‑597X‑1‑35
    [Google Scholar]
  8. Wilk S. Orlowski M. The occurrence of free L‐pyrrolidone carboxylic acid in body fluids and tissues. FEBS Lett. 1973 33 2 157 160 10.1016/0014‑5793(73)80182‑6 4580896
    [Google Scholar]
  9. Annoni G. Contu L. Tronci M. Caputo A. Arosio B. Pyridoxol, 2-pyrrolidon-5 carboxylate prevents active fibroplasia in CCl-treated rats. Pharmacol. Res. 1992 25 1 87 93 10.1016/S1043‑6618(05)80067‑2 1310810
    [Google Scholar]
  10. Lü Y. Kang Z. Liu Y. Li T. Xiao Y. Pharmacokinetics of metadoxine for injection after repeated doses in healthy volunteers. Chin. Med. J. (Engl.) 2007 120 2 166 168 10.1097/00029330‑200701020‑00021 17335665
    [Google Scholar]
  11. Minaiyan M. Mazraati P. Hepatoprotective effect of metadoxine on acetaminophen-induced liver toxicity in mice. Adv. Biomed. Res. 2018 7 1 67 10.4103/abr.abr_142_17 29862216
    [Google Scholar]
  12. Fehér J. Váli L. Blázovics A. Lengyel G. The beneficial effect of metadoxine (pyridoxine-pyrrolidone-carboxylate) in the treatment of fatty liver diseases. Int. J. Clin. Exp. Med. 2009 3 1 65 79 10.1556/CEMED.3.2009.1.6
    [Google Scholar]
  13. Calabrese V. Calderone A. Ragusa N. Rizza V. Effects of Metadoxine on cellular status of glutathione and of enzymatic defence system following acute ethanol intoxication in rats. Drugs Exp. Clin. Res. 1996 22 1 17 24 8839633
    [Google Scholar]
  14. Addolorato G. Ancona C. Capristo E. Gasbarrini G. Metadoxine in the treatment of acute and chronic alcoholism: A review. Int. J. Immunopathol. Pharmacol. 2003 16 3 207 214 10.1177/039463200301600304 14611722
    [Google Scholar]
  15. Leggio L. Kenna G.A. Ferrulli A. Zywiak W.H. Caputo F. Swift R.M. Addolorato G. Preliminary findings on the use of metadoxine for the treatment of alcohol dependence and alcoholic liver disease. Hum. Psychopharmacol. 2011 26 8 554 559 10.1002/hup.1244 22095793
    [Google Scholar]
  16. Felicioli R. Saracchi I. Flagiello A.M. Bartoli C. Effects of pyridoxine-pyrrolidon-carboxylate on hepatic and cerebral ATP levels in ethanol treated rats. Int. J. Clin. Pharmacol. Ther. Toxicol. 1980 18 6 277 280 7192694
    [Google Scholar]
  17. Marchi S. Polloni A. Costa F. Bellini M. Bonifazi V. Tumino E. Grassi B. Romano M.R. De Bartolo G. Bertelli A. Liver triglyceride accumulation after chronic ethanol administration: A possible protective role of metadoxina and ubiquinone. Int. J. Tissue React. 1990 12 4 247 250 2283204
    [Google Scholar]
  18. Gutiérrez-Ruiz M.C. Bucio L. Correa A. Souza V. Hernández E. Gómez-Quiroz L.E. Kershenobich D. Metadoxine prevents damage produced by ethanol and acetaldehyde in hepatocyte and hepatic stellate cells in culture. Pharmacol. Res. 2001 44 5 431 436 10.1006/phrs.2001.0883 11712874
    [Google Scholar]
  19. Di Miceli M. Gronier B. Pharmacology, systematic review and recent clinical trials of MD. Rev. Recent Clin. Trials 2018 13 2 114 125 10.2174/1574887113666180227100217 29485008
    [Google Scholar]
  20. Shenoy K.T. Balakumaran L.K. Mathew P. Prasad M. Prabhakar B. Sood A. Singh S.P. Rao N.P. Zargar S.A. Bignamini A.A. Metadoxine versus placebo for the treatment of non-alcoholic steatohepatitis: a randomized controlled trial. J. Clin. Exp. Hepatol. 2014 4 2 94 100 10.1016/j.jceh.2014.03.041 25755546
    [Google Scholar]
  21. Manor I. Newcorn J.H. Faraone S.V. Adler L.A. Efficacy of metadoxine extended release in patients with predominantly inattentive subtype attention-deficit/hyperactivity disorder. Postgrad. Med. 2013 125 4 181 190 10.3810/pgm.2013.07.2689 23933905
    [Google Scholar]
  22. Hariharshan V. 2017 Design and in-vitro characterization of metadoxine buccal patches using Borassus flabellifer fruit resin - A novel mucoadhesive polymer. Master's Degree, Sri Ramakrishna Institute of Paramedical Sciences Coimbatore
    [Google Scholar]
  23. Kumar P. Mittan D.S. Malik A. Kaushik N. Kushnoor A. Gowda N.A.G.A.R.A.J. Derivative spectroscopy: Development and validation of new spectroscopic method for the estimation of metadoxine in bulk and solid dosage form. Orient. J. Chem. 2008 24 1 313
    [Google Scholar]
  24. Zhang R.J. Kou S.B. Hu L. Li L. Shi J.H. Jiang S.L. Exploring binding interaction of baricitinib with bovine serum albumin (BSA): Multi-spectroscopic approaches combined with theoretical calculation. J. Mol. Liq. 2022 354 118831 10.1016/j.molliq.2022.118831
    [Google Scholar]
  25. M M. H D R. Interpretation of the binding interaction between bupropion hydrochloride with human serum albumin: A collective spectroscopic and computational approach. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019 209 264 273 10.1016/j.saa.2018.10.047 30414575
    [Google Scholar]
  26. Wu J. Bi S.Y. Sun X.Y. Zhao R. Wang J.H. Zhou H.F. Study on the interaction of fisetholz with BSA/HSA by multi-spectroscopic, cyclic voltammetric, and molecular docking technique. J. Biomol. Struct. Dyn. 2018 30176766
    [Google Scholar]
  27. Wang P.Y. Yang C.T. Chu L.K. Differentiating the protein dynamics using fluorescence evolution of tryptophan residue(s): A comparative study of bovine and human serum albumins upon temperature jump. Chem. Phys. Lett. 2021 781 138998 10.1016/j.cplett.2021.138998
    [Google Scholar]
  28. Tongkanarak K. Loupiac C. Neiers F. Chambin O. Srichana T. Evaluating the biomolecular interaction between delamanid/formulations and human serum albumin by fluorescence, CD spectroscopy and SPR: Effects on protein conformation, kinetic and thermodynamic parameters. Colloids Surf. B Biointerfaces 2024 239 113964 10.1016/j.colsurfb.2024.113964 38761495
    [Google Scholar]
  29. Tong W. Wang S. Chen G. Li D. Wang Y. Zhao L. Yang Y. Characterization of the structural and molecular interactions of Ferulic acid ethyl ester with human serum albumin and Lysozyme through multi-methods. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024 320 124549 10.1016/j.saa.2024.124549 38870694
    [Google Scholar]
  30. Das S. Nudrat S. Maity S. Jana M. Belwal V.K. Singha Roy A. Isoflavones and lysozyme interplay: Molecular insights into binding mechanisms and inhibitory efficacies of isoflavones against protein modification. Chem. Phys. Impact 2024 8 100643 10.1016/j.chphi.2024.100643
    [Google Scholar]
  31. Das S. Roy P. Sardar P.S. Ghosh S. Addressing the interaction of stem bromelain with different anionic surfactants, below, at and above the critical micelle concentration (cmc) in phosphate buffer at pH 7: Physicochemical, spectroscopic, & molecular docking study. Int. J. Biol. Macromol. 2024 271 Pt 1 132368 10.1016/j.ijbiomac.2024.132368 38761912
    [Google Scholar]
  32. Yan X. Chen J.Q. Hu M.L. Sakiyama H. Muddassir M. Liu J.Q. Syntheses, structures and mechanisms of interactions with DNA of two new 20-core silver(I) complexes with different ligands. Inorg. Chim. Acta 2023 546 121297 10.1016/j.ica.2022.121297
    [Google Scholar]
  33. Kou S.B. Lin Z.Y. Wang B.L. Shi J.H. Liu Y.X. Evaluation of the binding behavior of olmutinib (HM61713) with model transport protein: Insights from spectroscopic and molecular docking studies. J. Mol. Struct. 2021 1224 129024 10.1016/j.molstruc.2020.129024
    [Google Scholar]
  34. Jameson D.M. Introduction to fluorescence. CRC Press Boca Raton 1st ed 2014 10.1201/b16502
    [Google Scholar]
  35. Huang F. Chen C. Insights into the interaction between the kusaginin and bovine serum albumin: Multi‐spectroscopic techniques and computational approaches. J. Mol. Recognit. 2023 36 3 e3003 10.1002/jmr.3003 36519271
    [Google Scholar]
  36. Hu Y.J. Liu Y. Shen X.S. Fang X.Y. Qu S.S. Studies on the interaction between 1-hexylcarbamoyl-5-fluorouracil and bovine serum albumin. J. Mol. Struct. 2005 738 1-3 143 147 10.1016/j.molstruc.2004.11.062
    [Google Scholar]
  37. Shi J.H. Wang Q. Pan D.Q. Liu T.T. Jiang M. Characterization of interactions of simvastatin, pravastatin, fluvastatin, and pitavastatin with bovine serum albumin: multiple spectroscopic and molecular docking. J. Biomol. Struct. Dyn. 2017 35 7 1529 1546 10.1080/07391102.2016.1188416 27484332
    [Google Scholar]
  38. Negrea E. Oancea P. Leonties A. Ana Maria U. Avram S. Raducan A. Spectroscopic studies on binding of ibuprofen and drotaverine with bovine serum albumin. J. Photochem. Photobiol. Chem. 2023 438 114512 10.1016/j.jphotochem.2022.114512
    [Google Scholar]
  39. Zhang W. Han B. Zhao S. Ge F. Xiong X. Chen D. Liu D. Chen C. Study on the interaction between theasinesin and bovine serum albumin by fluorescence method. Anal. Lett. 2010 43 2 289 299 10.1080/00032710903325823
    [Google Scholar]
  40. Riccardi C. Piccolo M. Ferraro M.G. Graziano R. Musumeci D. Trifuoggi M. Irace C. Montesarchio D. Bioengineered lipophilic Ru(III) complexes as potential anticancer agents. Biomater. Adv. 2022 139 213016 10.1016/j.bioadv.2022.213016 35882162
    [Google Scholar]
  41. Iovescu A. Băran A. Stîngă G. Cantemir-Leontieş A.R. Maxim M.E. Anghel D.F. A combined binding mechanism of nonionic ethoxylated surfactants to bovine serum albumin revealed by fluorescence and circular dichroism. J. Photochem. Photobiol. B 2015 153 198 205 10.1016/j.jphotobiol.2015.09.021 26422749
    [Google Scholar]
  42. Saranya V. Mary P.V. Vijayakumar S. Shankar R. The hazardous effects of the environmental toxic gases on amyloid beta-peptide aggregation: A theoretical perspective. Biophys. Chem. 2020 263 106394 10.1016/j.bpc.2020.106394 32480019
    [Google Scholar]
  43. Kafshgari M.H. Mansouri M. Khorram M. Samimi A. Osfouri S. Bovine serum albumin-loaded chitosan particles: an evaluation of effective parameters on fabrication, characteristics, and in vitro release in the presence of non-covalent interactions. Int. J. Polym. Mater. 2012 61 14 1079 1090 10.1080/00914037.2011.617334
    [Google Scholar]
  44. Lopes M.A. Abrahim-Vieira B. Oliveira C. Fonte P. Souza A.M. Lira T. Sequeira J.A. Rodrigues C.R. Cabral L.M. Sarmento B. Seiça R. Veiga F. Ribeiro A.J. Probing insulin bioactivity in oral nanoparticles produced by ultrasonication-assisted emulsification/internal gelation. Int. J. Nanomedicine 2015 10 5865 5880 26425087
    [Google Scholar]
  45. Samivel R. Almubrad T. Khan A. A. Masmali A. Therapeutic efficacy of bovine serum albumin-gold nanocluster against antibiotic-resistant bacterial susceptibility. Res. Sq. 10.21203/rs.3.rs‑4354331/v1 2024
    [Google Scholar]
  46. Wang X. Sun J. Nie Z. Ma L. Sai H. Cheng J. Liu Y. Duan J. The interaction between troxerutin and pepsin was studied by multispectral method and molecular docking simulation. J. Mol. Struct. 2024 1309 138129 10.1016/j.molstruc.2024.138129
    [Google Scholar]
  47. Tabassum S. Al-Asbahy W.M. Afzal M. Arjmand F. Synthesis, characterization and interaction studies of copper based drug with Human Serum Albumin (HSA): Spectroscopic and molecular docking investigations. J. Photochem. Photobiol. B 2012 114 132 139 10.1016/j.jphotobiol.2012.05.021 22750083
    [Google Scholar]
  48. Taheri S. Asadi Z. Jahromi Z. M. Kucerakova M. Dusek M. Rastegari B. DNA and bovine serum albumin protein (BSA) interaction of antitumor supramolecular nickel(II) complex: Inference for drug design. J. Ind. Eng. Chem. 2024 10.1016/j.jiec.2024.05.042
    [Google Scholar]
  49. Yousuf I. Bashir M. Arjmand F. Tabassum S. Multispectroscopic insight, morphological analysis and molecular docking studies of Cu II -based chemotherapeutic drug entity with human serum albumin (HSA) and bovine serum albumin (BSA). J. Biomol. Struct. Dyn. 2019 37 12 3290 3304 10.1080/07391102.2018.1512899 30124142
    [Google Scholar]
  50. Usoltsev D. Sitnikova V. Kajava A. Uspenskaya M. Systematic FTIR spectroscopy study of the secondary structure changes in human serum albumin under various denaturation conditions. Biomolecules 2019 9 8 359 10.3390/biom9080359 31409012
    [Google Scholar]
  51. Jalali E. Sargolzaei J. Rajabi P. Investigating the interaction between sertraline hydrochloride and human serum albumin using equilibrium dialysis and spectroscopic methods. Inorg. Chem. Commun. 2024 166 112586 10.1016/j.inoche.2024.112586
    [Google Scholar]
  52. Luangtana-anan M. Nunthanid J. Limmatvapirat S. Potential of different salt forming agents on the formation of chitosan nanoparticles as carriers for protein drug delivery systems. J. Pharm. Investig. 2019 49 1 37 44 10.1007/s40005‑017‑0369‑x
    [Google Scholar]
  53. Alhazmi H.A. FT-IR spectroscopy for the identification of binding sites and measurements of the binding interactions of important metal ions with bovine serum albumin. Sci. Pharm. 2019 87 1 5 10.3390/scipharm87010005
    [Google Scholar]
  54. Meti M.D. Nandibewoor S.T. Joshi S.D. More U.A. Chimatadar S.A. Binding interaction and conformational changes of human serum albumin with ranitidine studied by spectroscopic and time-resolved fluorescence methods. J. Indian Chem. Soc. 2016 13 1325 1338
    [Google Scholar]
  55. Kumari M. Maurya J.K. Tasleem M. Singh P. Patel R. Probing HSA-ionic liquid interactions by spectroscopic and molecular docking methods. J. Photochem. Photobiol. B 2014 138 27 35 10.1016/j.jphotobiol.2014.05.009 24911269
    [Google Scholar]
  56. Leilabadi-Asl A. Divsalar A. Zare Karizak A. Fateminasab F. Shityakov S. Eslami Moghadam M. Saboury A.A. Unraveling the binding interactions between two Pt(II) complexes of aliphatic glycine derivatives with human serum albumin: A comprehensive computational and multi-spectral investigation. Int. J. Biol. Macromol. 2024 266 Pt 2 131298 10.1016/j.ijbiomac.2024.131298 38574913
    [Google Scholar]
  57. Soares M.A.G. de Aquino P.A. Costa T. Serpa C. Chaves O.A. Insights into the effect of glucose on the binding between human serum albumin and the nonsteroidal anti-inflammatory drug nimesulide. Int. J. Biol. Macromol. 2024 265 Pt 2 131148 10.1016/j.ijbiomac.2024.131148 38547949
    [Google Scholar]
  58. Barbir R. Capjak I. Crnković T. Debeljak Ž. Domazet Jurašin D. Ćurlin M. Šinko G. Weitner T. Vinković Vrček I. Interaction of silver nanoparticles with plasma transport proteins: A systematic study on impacts of particle size, shape and surface functionalization. Chem. Biol. Interact. 2021 335 109364 10.1016/j.cbi.2020.109364 33359597
    [Google Scholar]
  59. Ayimbila F. Tantimongcolwat T. Ruankham W. Pingaew R. Prachayasittikul V. Worachartcheewan A. Prachayasittikul V. Prachayasittikul S. Phopin K. Insight into the binding mechanisms of fluorinated 2-aminothiazole sulfonamide and human serum albumin: Spectroscopic and in silico approaches. Int. J. Biol. Macromol. 2024 277 134048 10.1016/j.ijbiomac.2024.134048 39116983
    [Google Scholar]
  60. Manjushree M. Revanasiddappa H.D. Evaluation of binding mode between anticancer drug etoposide and human serum albumin by numerous spectrometric techniques and molecular docking. Chem. Phys. 2020 530 110593 10.1016/j.chemphys.2019.110593
    [Google Scholar]
  61. Altwaijry N. Almutairi G.S. Khan M.S. Shaik G.M. Alokail M.S. Effect of antihypertensive drug (Chlorothiazide) on fibrillation of lysozyme: A combined spectroscopy, microscopy, and computational study. Int. J. Mol. Sci. 2023 24 4 3112 10.3390/ijms24043112 36834523
    [Google Scholar]
  62. Shahraki S. Saeidifar M. Shiri F. Heidari A. Assessment of the interaction procedure between Pt(IV) prodrug [Pt(5,5′-dmbpy)Cl 4 and human serum albumin: Combination of spectroscopic and molecular modeling technique. J. Biomol. Struct. Dyn. 2017 35 14 3098 3106 10.1080/07391102.2016.1243074 27685781
    [Google Scholar]
  63. Hall D.C. Jr Ji H.F. A search for medications to treat COVID-19 via in silico molecular docking models of the SARS-CoV-2 spike glycoprotein and 3CL protease. Travel Med. Infect. Dis. 2020 35 101646 10.1016/j.tmaid.2020.101646 32294562
    [Google Scholar]
  64. Sharma V. Sharma P.C. Kumar V. in silico molecular docking analysis of natural pyridoacridines as anticancer agents. Adv. Chem. 2016 2016 1 1 9 10.1155/2016/5409387
    [Google Scholar]
  65. Peele K.A. Potla Durthi C. Srihansa T. Krupanidhi S. Ayyagari V.S. Babu D.J. Indira M. Reddy A.R. Venkateswarulu T.C. Molecular docking and dynamic simulations for antiviral compounds against SARS-CoV-2: A computational study. Inform. Med. Unlocked 2020 19 100345 10.1016/j.imu.2020.100345 32395606
    [Google Scholar]
  66. Kumar S. Singh J. Narasimhan B. Shah S.A.A. Lim S.M. Ramasamy K. Mani V. Reverse pharmacophore mapping and molecular docking studies for discovery of GTPase HRas as promising drug target for bis-pyrimidine derivatives. Chem. Cent. J. 2018 12 1 106 10.1186/s13065‑018‑0475‑5 30345469
    [Google Scholar]
  67. Thakur A. Patwa J. Pant S. Sharma A. Flora S.J.S. Interaction study of monoisoamyl dimercaptosuccinic acid with bovine serum albumin using biophysical and molecular docking approaches. Sci. Rep. 2021 11 1 4068 10.1038/s41598‑021‑83534‑0 33603022
    [Google Scholar]
  68. Rahman S. Rehman M.T. Rabbani G. Khan P. AlAjmi M.F. Hassan M.I. Muteeb G. Kim J. Insight of the interaction between 2, 4-thiazolidinedione and human serum albumin: A spectroscopic, thermodynamic and molecular docking study. Int. J. Mol. Sci. 2019 20 11 2727 10.3390/ijms20112727 31163649
    [Google Scholar]
  69. Romu A. Li A. Chen K. Korlipara V. Wang E. UV-vis, fluorescence and molecular docking studies on the binding of bovine and human serum albumins with novel anticancer drug candidates. J Biochem Analyt Stud 2019 4 1
    [Google Scholar]
  70. Siddiqi M. Nusrat S. Alam P. Malik S. Chaturvedi S.K. Ajmal M.R. Abdelhameed A.S. Khan R.H. Investigating the site selective binding of busulfan to human serum albumin: Biophysical and molecular docking approaches. Int. J. Biol. Macromol. 2018 107 Pt B 1414 1421 10.1016/j.ijbiomac.2017.10.006 28987797
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037318575240919054053
Loading
/content/journals/cpps/10.2174/0113892037318575240919054053
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test