Skip to content
2000
Volume 26, Issue 3
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

Background

Metadoxine, also known as pyruvate dehydrogenase activator, is a small molecule drug that has been used in the treatment of various medical conditions. Bovine serum albumin is a commonly studied protein that serves as a plasmatic for understanding protein-drug interactions due to its abundance.

Objective

This research suggests that metadoxine can bind to bovine serum albumin with moderate affinity, leading to an alteration in the secondary structure of the protein, which may also influence the protein's stability and function, which could provide a comprehensive understanding of the interaction at a molecular level. In this study, a variety of methodologies wereused to determine various thermodynamic parameters.

Methods

The study uses UV-visible, Fluorescence, Fourier-transform infrared, Circular dichroism spectroscopy, and Molecular docking to analyze the interaction between bovine serum albumin and metadoxine, providing thermodynamic parameters for understanding the protein structure and its binding.

Results

The binding of metadoxine with bovine serum albumin, causes a hyperchromic shift. In fluorescence spectroscopy, the value of the Stern Volmer increases constantly with an increase in temperature, suggesting a stronger interaction between the Metadoxine and the Bovine serum albumin, leading to dynamic quenching. Additionally, Fourier-transform infrared and circular dichroism indicated a reduction in the secondary structure of Bovine serum albumin.

Conclusion

The interactions between metadoxine and bovine serum albumin, cause hyperchromic shift revealed by UV-visible spectroscopy, whereas in Fluorescence spectroscopy, the value of the Stern Volmer constant increases with an increase in temperature, suggesting a stronger interaction between the MD and the BSA, leading to dynamic quenching. Additionally, Fourier-transform infrared and circular dichroism spectroscopy indicated a reduction in the secondary structure of the protein, as evidenced by the shifting of the amide II band and leading to a slight decrease in the α-helix content. The molecular docking shows that metadoxine was docked in the subdomain IIA binding pocket of BSA.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037318575240919054053
2024-10-28
2025-04-18
Loading full text...

Full text loading...

References

  1. KarA. Essentials of Biopharmaceutics and Pharmacokinetics-E-Book.Elsevier Health Sciences1st ed2010
    [Google Scholar]
  2. RaghavD. MahantyS. RathinasamyK. Characterizing the interactions of the antipsychotic drug trifluoperazine with bovine serum albumin: Probing the drug-protein and drug-drug interactions using multi-spectroscopic approaches.Spectrochim. Acta A Mol. Biomol. Spectrosc.202022611758410.1016/j.saa.2019.11758431698317
    [Google Scholar]
  3. TrainorG.L. The importance of plasma protein binding in drug discovery.Expert Opin. Drug Discov.200721516410.1517/17460441.2.1.5123496037
    [Google Scholar]
  4. ShiJ.H. WangJ. ZhuY.Y. ChenJ. Characterization of interaction between isoliquiritigenin and bovine serum albumin: Spectroscopic and molecular docking methods.J. Lumin.201414564365010.1016/j.jlumin.2013.08.042
    [Google Scholar]
  5. NaikP.N. ChimatadarS.A. NandibewoorS.T. Interaction between a potent corticosteroid drug – Dexamethasone with bovine serum albumin and human serum albumin: A fluorescence quenching and fourier transformation infrared spectroscopy study.J. Photochem. Photobiol. B2010100314715910.1016/j.jphotobiol.2010.05.01420573517
    [Google Scholar]
  6. SułkowskaA. RównickaJ. BojkoB. SułkowskiW. Interaction of anticancer drugs with human and bovine serum albumin.J. Mol. Struct.2003651-65313314010.1016/S0022‑2860(02)00642‑7
    [Google Scholar]
  7. GuerriniI. GentiliC. NelliG. GuazzelliM. A follow up study on the efficacy of metadoxine in the treatment of alcohol dependence.Subst. Abuse Treat. Prev. Policy2006113510.1186/1747‑597X‑1‑35
    [Google Scholar]
  8. WilkS. OrlowskiM. The occurrence of free L‐pyrrolidone carboxylic acid in body fluids and tissues.FEBS Lett.197333215716010.1016/0014‑5793(73)80182‑64580896
    [Google Scholar]
  9. AnnoniG. ContuL. TronciM. CaputoA. ArosioB. Pyridoxol, 2-pyrrolidon-5 carboxylate prevents active fibroplasia in CCl-treated rats.Pharmacol. Res.1992251879310.1016/S1043‑6618(05)80067‑21310810
    [Google Scholar]
  10. LüY. KangZ. LiuY. LiT. XiaoY. Pharmacokinetics of metadoxine for injection after repeated doses in healthy volunteers.Chin. Med. J. (Engl.)2007120216616810.1097/00029330‑200701020‑0002117335665
    [Google Scholar]
  11. MinaiyanM. MazraatiP. Hepatoprotective effect of metadoxine on acetaminophen-induced liver toxicity in mice.Adv. Biomed. Res.2018716710.4103/abr.abr_142_1729862216
    [Google Scholar]
  12. FehérJ. VáliL. BlázovicsA. LengyelG. The beneficial effect of metadoxine (pyridoxine-pyrrolidone-carboxylate) in the treatment of fatty liver diseases.Int. J. Clin. Exp. Med.200931657910.1556/CEMED.3.2009.1.6
    [Google Scholar]
  13. CalabreseV. CalderoneA. RagusaN. RizzaV. Effects of Metadoxine on cellular status of glutathione and of enzymatic defence system following acute ethanol intoxication in rats.Drugs Exp. Clin. Res.199622117248839633
    [Google Scholar]
  14. AddoloratoG. AnconaC. CapristoE. GasbarriniG. Metadoxine in the treatment of acute and chronic alcoholism: A review.Int. J. Immunopathol. Pharmacol.200316320721410.1177/03946320030160030414611722
    [Google Scholar]
  15. LeggioL. KennaG.A. FerrulliA. ZywiakW.H. CaputoF. SwiftR.M. AddoloratoG. Preliminary findings on the use of metadoxine for the treatment of alcohol dependence and alcoholic liver disease.Hum. Psychopharmacol.201126855455910.1002/hup.124422095793
    [Google Scholar]
  16. FelicioliR. SaracchiI. FlagielloA.M. BartoliC. Effects of pyridoxine-pyrrolidon-carboxylate on hepatic and cerebral ATP levels in ethanol treated rats.Int. J. Clin. Pharmacol. Ther. Toxicol.19801862772807192694
    [Google Scholar]
  17. MarchiS. PolloniA. CostaF. BelliniM. BonifaziV. TuminoE. GrassiB. RomanoM.R. De BartoloG. BertelliA. Liver triglyceride accumulation after chronic ethanol administration: A possible protective role of metadoxina and ubiquinone.Int. J. Tissue React.19901242472502283204
    [Google Scholar]
  18. Gutiérrez-RuizM.C. BucioL. CorreaA. SouzaV. HernándezE. Gómez-QuirozL.E. KershenobichD. Metadoxine prevents damage produced by ethanol and acetaldehyde in hepatocyte and hepatic stellate cells in culture.Pharmacol. Res.200144543143610.1006/phrs.2001.088311712874
    [Google Scholar]
  19. Di MiceliM. GronierB. Pharmacology, systematic review and recent clinical trials of MD.Rev. Recent Clin. Trials201813211412510.2174/157488711366618022710021729485008
    [Google Scholar]
  20. ShenoyK.T. BalakumaranL.K. MathewP. PrasadM. PrabhakarB. SoodA. SinghS.P. RaoN.P. ZargarS.A. BignaminiA.A. Metadoxine versus placebo for the treatment of non-alcoholic steatohepatitis: a randomized controlled trial.J. Clin. Exp. Hepatol.2014429410010.1016/j.jceh.2014.03.04125755546
    [Google Scholar]
  21. ManorI. NewcornJ.H. FaraoneS.V. AdlerL.A. Efficacy of metadoxine extended release in patients with predominantly inattentive subtype attention-deficit/hyperactivity disorder.Postgrad. Med.2013125418119010.3810/pgm.2013.07.268923933905
    [Google Scholar]
  22. HariharshanV. 2017. Design and in vitro characterization of metadoxine buccal patches using Borassus flabellifer fruit resin - A novel mucoadhesive polymer.Master's Degree, Sri Ramakrishna Institute of Paramedical Sciences Coimbatore
    [Google Scholar]
  23. KumarP. MittanD.S. MalikA. KaushikN. KushnoorA. GowdaN.A.G.A.R.A.J. Derivative spectroscopy: Development and validation of new spectroscopic method for the estimation of metadoxine in bulk and solid dosage form.Orient. J. Chem.2008241313
    [Google Scholar]
  24. ZhangR.J. KouS.B. HuL. LiL. ShiJ.H. JiangS.L. Exploring binding interaction of baricitinib with bovine serum albumin (BSA): Multi-spectroscopic approaches combined with theoretical calculation.J. Mol. Liq.202235411883110.1016/j.molliq.2022.118831
    [Google Scholar]
  25. MM. H DR. Interpretation of the binding interaction between bupropion hydrochloride with human serum albumin: A collective spectroscopic and computational approach.Spectrochim. Acta A Mol. Biomol. Spectrosc.201920926427310.1016/j.saa.2018.10.04730414575
    [Google Scholar]
  26. WuJ. BiS.Y. SunX.Y. ZhaoR. WangJ.H. ZhouH.F. Study on the interaction of fisetholz with BSA/HSA by multi-spectroscopic, cyclic voltammetric, and molecular docking technique.J. Biomol. Struct. Dyn.20193713399650530176766
    [Google Scholar]
  27. WangP.Y. YangC.T. ChuL.K. Differentiating the protein dynamics using fluorescence evolution of tryptophan residue(s): A comparative study of bovine and human serum albumins upon temperature jump.Chem. Phys. Lett.202178113899810.1016/j.cplett.2021.138998
    [Google Scholar]
  28. TongkanarakK. LoupiacC. NeiersF. ChambinO. SrichanaT. Evaluating the biomolecular interaction between delamanid/formulations and human serum albumin by fluorescence, CD spectroscopy and SPR: Effects on protein conformation, kinetic and thermodynamic parameters.Colloids Surf. B Biointerfaces202423911396410.1016/j.colsurfb.2024.11396438761495
    [Google Scholar]
  29. TongW. WangS. ChenG. LiD. WangY. ZhaoL. YangY. Characterization of the structural and molecular interactions of Ferulic acid ethyl ester with human serum albumin and Lysozyme through multi-methods.Spectrochim. Acta A Mol. Biomol. Spectrosc.202432012454910.1016/j.saa.2024.12454938870694
    [Google Scholar]
  30. DasS. NudratS. MaityS. JanaM. BelwalV.K. Singha RoyA. Isoflavones and lysozyme interplay: Molecular insights into binding mechanisms and inhibitory efficacies of isoflavones against protein modification.Chem. Phys. Impact2024810064310.1016/j.chphi.2024.100643
    [Google Scholar]
  31. DasS. RoyP. SardarP.S. GhoshS. Addressing the interaction of stem bromelain with different anionic surfactants, below, at and above the critical micelle concentration (cmc) in phosphate buffer at pH 7: Physicochemical, spectroscopic, & molecular docking study.Int. J. Biol. Macromol.2024271Pt 113236810.1016/j.ijbiomac.2024.13236838761912
    [Google Scholar]
  32. YanX. ChenJ.Q. HuM.L. SakiyamaH. MuddassirM. LiuJ.Q. Syntheses, structures and mechanisms of interactions with DNA of two new 20-core silver(I) complexes with different ligands.Inorg. Chim. Acta202354612129710.1016/j.ica.2022.121297
    [Google Scholar]
  33. KouS.B. LinZ.Y. WangB.L. ShiJ.H. LiuY.X. Evaluation of the binding behavior of olmutinib (HM61713) with model transport protein: Insights from spectroscopic and molecular docking studies.J. Mol. Struct.2021122412902410.1016/j.molstruc.2020.129024
    [Google Scholar]
  34. JamesonD.M. Introduction to fluorescence.CRC PressBoca Raton1st ed201410.1201/b16502
    [Google Scholar]
  35. HuangF. ChenC. Insights into the interaction between the kusaginin and bovine serum albumin: Multi‐spectroscopic techniques and computational approaches.J. Mol. Recognit.2023363e300310.1002/jmr.300336519271
    [Google Scholar]
  36. HuY.J. LiuY. ShenX.S. FangX.Y. QuS.S. Studies on the interaction between 1-hexylcarbamoyl-5-fluorouracil and bovine serum albumin.J. Mol. Struct.20057381-314314710.1016/j.molstruc.2004.11.062
    [Google Scholar]
  37. ShiJ.H. WangQ. PanD.Q. LiuT.T. JiangM. Characterization of interactions of simvastatin, pravastatin, fluvastatin, and pitavastatin with bovine serum albumin: multiple spectroscopic and molecular docking.J. Biomol. Struct. Dyn.20173571529154610.1080/07391102.2016.118841627484332
    [Google Scholar]
  38. NegreaE. OanceaP. LeontiesA. Ana MariaU. AvramS. RaducanA. Spectroscopic studies on binding of ibuprofen and drotaverine with bovine serum albumin.J. Photochem. Photobiol. Chem.202343811451210.1016/j.jphotochem.2022.114512
    [Google Scholar]
  39. ZhangW. HanB. ZhaoS. GeF. XiongX. ChenD. LiuD. ChenC. Study on the interaction between theasinesin and bovine serum albumin by fluorescence method.Anal. Lett.201043228929910.1080/00032710903325823
    [Google Scholar]
  40. RiccardiC. PiccoloM. FerraroM.G. GrazianoR. MusumeciD. TrifuoggiM. IraceC. MontesarchioD. Bioengineered lipophilic Ru(III) complexes as potential anticancer agents.Biomater. Adv.202213921301610.1016/j.bioadv.2022.21301635882162
    [Google Scholar]
  41. IovescuA. BăranA. StîngăG. Cantemir-LeontieşA.R. MaximM.E. AnghelD.F. A combined binding mechanism of nonionic ethoxylated surfactants to bovine serum albumin revealed by fluorescence and circular dichroism.J. Photochem. Photobiol. B201515319820510.1016/j.jphotobiol.2015.09.02126422749
    [Google Scholar]
  42. SaranyaV. MaryP.V. VijayakumarS. ShankarR. The hazardous effects of the environmental toxic gases on amyloid beta-peptide aggregation: A theoretical perspective.Biophys. Chem.202026310639410.1016/j.bpc.2020.10639432480019
    [Google Scholar]
  43. KafshgariM.H. MansouriM. KhorramM. SamimiA. OsfouriS. Bovine serum albumin-loaded chitosan particles: an evaluation of effective parameters on fabrication, characteristics, and in vitro release in the presence of non-covalent interactions.Int. J. Polym. Mater.201261141079109010.1080/00914037.2011.617334
    [Google Scholar]
  44. LopesM.A. Abrahim-VieiraB. OliveiraC. FonteP. SouzaA.M. LiraT. SequeiraJ.A. RodriguesC.R. CabralL.M. SarmentoB. SeiçaR. VeigaF. RibeiroA.J. Probing insulin bioactivity in oral nanoparticles produced by ultrasonication-assisted emulsification/internal gelation.Int. J. Nanomedicine2015105865588026425087
    [Google Scholar]
  45. SamivelR. AlmubradT. KhanA. A. MasmaliA. Therapeutic efficacy of bovine serum albumin-gold nanocluster against antibiotic-resistant bacterial susceptibility.Res. Sq.10.21203/rs.3.rs‑4354331/v12024
    [Google Scholar]
  46. WangX. SunJ. NieZ. MaL. SaiH. ChengJ. LiuY. DuanJ. The interaction between troxerutin and pepsin was studied by multispectral method and molecular docking simulation.J. Mol. Struct.2024130913812910.1016/j.molstruc.2024.138129
    [Google Scholar]
  47. TabassumS. Al-AsbahyW.M. AfzalM. ArjmandF. Synthesis, characterization and interaction studies of copper based drug with Human Serum Albumin (HSA): Spectroscopic and molecular docking investigations.J. Photochem. Photobiol. B201211413213910.1016/j.jphotobiol.2012.05.02122750083
    [Google Scholar]
  48. TaheriS. AsadiZ. JahromiZ. M. KucerakovaM. DusekM. RastegariB. DNA and bovine serum albumin protein (BSA) interaction of antitumor supramolecular nickel(II) complex: Inference for drug design.J. Ind. Eng. Chem.202410.1016/j.jiec.2024.05.042
    [Google Scholar]
  49. YousufI. BashirM. ArjmandF. TabassumS. Multispectroscopic insight, morphological analysis and molecular docking studies of Cu II -based chemotherapeutic drug entity with human serum albumin (HSA) and bovine serum albumin (BSA).J. Biomol. Struct. Dyn.201937123290330410.1080/07391102.2018.151289930124142
    [Google Scholar]
  50. UsoltsevD. SitnikovaV. KajavaA. UspenskayaM. Systematic FTIR spectroscopy study of the secondary structure changes in human serum albumin under various denaturation conditions.Biomolecules20199835910.3390/biom908035931409012
    [Google Scholar]
  51. JalaliE. SargolzaeiJ. RajabiP. Investigating the interaction between sertraline hydrochloride and human serum albumin using equilibrium dialysis and spectroscopic methods.Inorg. Chem. Commun.202416611258610.1016/j.inoche.2024.112586
    [Google Scholar]
  52. Luangtana-ananM. NunthanidJ. LimmatvapiratS. Potential of different salt forming agents on the formation of chitosan nanoparticles as carriers for protein drug delivery systems.J. Pharm. Investig.2019491374410.1007/s40005‑017‑0369‑x
    [Google Scholar]
  53. AlhazmiH.A. FT-IR spectroscopy for the identification of binding sites and measurements of the binding interactions of important metal ions with bovine serum albumin.Sci. Pharm.2019871510.3390/scipharm87010005
    [Google Scholar]
  54. MetiM.D. NandibewoorS.T. JoshiS.D. MoreU.A. ChimatadarS.A. Binding interaction and conformational changes of human serum albumin with ranitidine studied by spectroscopic and time-resolved fluorescence methods.J. Indian Chem. Soc.20161313251338
    [Google Scholar]
  55. KumariM. MauryaJ.K. TasleemM. SinghP. PatelR. Probing HSA-ionic liquid interactions by spectroscopic and molecular docking methods.J. Photochem. Photobiol. B2014138273510.1016/j.jphotobiol.2014.05.00924911269
    [Google Scholar]
  56. Leilabadi-AslA. DivsalarA. Zare KarizakA. FateminasabF. ShityakovS. Eslami MoghadamM. SabouryA.A. Unraveling the binding interactions between two Pt(II) complexes of aliphatic glycine derivatives with human serum albumin: A comprehensive computational and multi-spectral investigation.Int. J. Biol. Macromol.2024266Pt 213129810.1016/j.ijbiomac.2024.13129838574913
    [Google Scholar]
  57. SoaresM.A.G. de AquinoP.A. CostaT. SerpaC. ChavesO.A. Insights into the effect of glucose on the binding between human serum albumin and the nonsteroidal anti-inflammatory drug nimesulide.Int. J. Biol. Macromol.2024265Pt 213114810.1016/j.ijbiomac.2024.13114838547949
    [Google Scholar]
  58. BarbirR. CapjakI. CrnkovićT. DebeljakŽ. Domazet JurašinD. ĆurlinM. ŠinkoG. WeitnerT. Vinković VrčekI. Interaction of silver nanoparticles with plasma transport proteins: A systematic study on impacts of particle size, shape and surface functionalization.Chem. Biol. Interact.202133510936410.1016/j.cbi.2020.10936433359597
    [Google Scholar]
  59. AyimbilaF. TantimongcolwatT. RuankhamW. PingaewR. PrachayasittikulV. WorachartcheewanA. PrachayasittikulV. PrachayasittikulS. PhopinK. Insight into the binding mechanisms of fluorinated 2-aminothiazole sulfonamide and human serum albumin: Spectroscopic and in silico approaches.Int. J. Biol. Macromol.202427713404810.1016/j.ijbiomac.2024.13404839116983
    [Google Scholar]
  60. ManjushreeM. RevanasiddappaH.D. Evaluation of binding mode between anticancer drug etoposide and human serum albumin by numerous spectrometric techniques and molecular docking.Chem. Phys.202053011059310.1016/j.chemphys.2019.110593
    [Google Scholar]
  61. AltwaijryN. AlmutairiG.S. KhanM.S. ShaikG.M. AlokailM.S. Effect of antihypertensive drug (Chlorothiazide) on fibrillation of lysozyme: A combined spectroscopy, microscopy, and computational study.Int. J. Mol. Sci.2023244311210.3390/ijms2404311236834523
    [Google Scholar]
  62. ShahrakiS. SaeidifarM. ShiriF. HeidariA. Assessment of the interaction procedure between Pt(IV) prodrug [Pt(5,5′-dmbpy)Cl 4 and human serum albumin: Combination of spectroscopic and molecular modeling technique.J. Biomol. Struct. Dyn.201735143098310610.1080/07391102.2016.124307427685781
    [Google Scholar]
  63. HallD.C.Jr JiH.F. A search for medications to treat COVID-19 via in silico molecular docking models of the SARS-CoV-2 spike glycoprotein and 3CL protease.Travel Med. Infect. Dis.20203510164610.1016/j.tmaid.2020.10164632294562
    [Google Scholar]
  64. SharmaV. SharmaP.C. KumarV. In silico molecular docking analysis of natural pyridoacridines as anticancer agents.Adv. Chem.2016201611910.1155/2016/5409387
    [Google Scholar]
  65. PeeleK.A. Potla DurthiC. SrihansaT. KrupanidhiS. AyyagariV.S. BabuD.J. IndiraM. ReddyA.R. VenkateswaruluT.C. Molecular docking and dynamic simulations for antiviral compounds against SARS-CoV-2: A computational study.Inform. Med. Unlocked20201910034510.1016/j.imu.2020.10034532395606
    [Google Scholar]
  66. KumarS. SinghJ. NarasimhanB. ShahS.A.A. LimS.M. RamasamyK. ManiV. Reverse pharmacophore mapping and molecular docking studies for discovery of GTPase HRas as promising drug target for bis-pyrimidine derivatives.Chem. Cent. J.201812110610.1186/s13065‑018‑0475‑530345469
    [Google Scholar]
  67. ThakurA. PatwaJ. PantS. SharmaA. FloraS.J.S. Interaction study of monoisoamyl dimercaptosuccinic acid with bovine serum albumin using biophysical and molecular docking approaches.Sci. Rep.2021111406810.1038/s41598‑021‑83534‑033603022
    [Google Scholar]
  68. RahmanS. RehmanM.T. RabbaniG. KhanP. AlAjmiM.F. HassanM.I. MuteebG. KimJ. Insight of the interaction between 2, 4-thiazolidinedione and human serum albumin: A spectroscopic, thermodynamic and molecular docking study.Int. J. Mol. Sci.20192011272710.3390/ijms2011272731163649
    [Google Scholar]
  69. RomuA. LiA. ChenK. KorliparaV. WangE. UV-vis, fluorescence and molecular docking studies on the binding of bovine and human serum albumins with novel anticancer drug candidates.J Biochem Analyt Stud201941
    [Google Scholar]
  70. SiddiqiM. NusratS. AlamP. MalikS. ChaturvediS.K. AjmalM.R. AbdelhameedA.S. KhanR.H. Investigating the site selective binding of busulfan to human serum albumin: Biophysical and molecular docking approaches.Int. J. Biol. Macromol.2018107Pt B1414142110.1016/j.ijbiomac.2017.10.00628987797
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037318575240919054053
Loading
/content/journals/cpps/10.2174/0113892037318575240919054053
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test