Skip to content
2000
image of In-vitro,In-silico InvestigationsRevealsPotential Cytotoxic Activity of Fermentation Metabolites from Actinomycetes Isolated from Lonar Soda Lake Against HeLa Cancer Cell Lines

Abstract

Background

Actinomycetes, Gram-positive bacteria, are recognized for producing bioactive metabolites. Lonar Soda Lake, an alkaline ecosystem, hosts diverse actinomycetes with possible anticancer activities.

Aim

To assess the cytotoxic potential of fermentation metabolites from actinomycetes isolated from Lonar Soda Lake against HeLa cancer cells employing and methods.

Objectives

Evaluate the cytotoxicity of fermentation metabolites from Lonar Lake actinomycetes on HeLa cells. Execute molecular docking to forecast metabolite connections with cancer-related proteins.

Materials and Methods

The actinomycetes were isolated from the sediment sample of Lonar Lake using a selective medium and recognized by gene sequencing. Cytotoxicity on HeLa cells was assessed using the MTT assay, in consort with oxidative stress and apoptotic markers (GSH, MDA, TNF-α, and caspase 3). Molecular docking and molecular dynamics studies evaluated metabolite binding to cancer-related proteins (Bcl-2, TNF-α, caspase 3).

Results

Fermentation metabolites of three Lonar Lake Sediment isolates (LLSD), LLSD-5, LLSD-7, and LLSD-9 showing promising cytotoxic activity against HeLa cell lines by MTT assay, also significantly modulate the oxidative stress parameters (GSH, MDA), and cell apoptotic marker (TNF-α, caspase 3). IC50 values were 82.9 µg/ml (LLSD-5), 162.3 µg/ml (LLSD-7), and 20.15 µg/ml (LLSD-9). Furthermore, molecular docking displayed robust binding affinities to cancer-related proteins, uncovering the possible mechanism of action.

Conclusion

The fermentation metabolites actinomycete isolates from Lonar Lake exhibit significant cytotoxic activity against HeLa cancer cell lines. Both and analyses support the potential of these metabolites as anticancer agents.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037334392241216074545
2025-01-08
2025-03-13
Loading full text...

Full text loading...

References

  1. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  2. Hull R. Mbele M. Makhafola T. Hicks C. Wang S.M. Reis R. Mehrotra R. Mkhize-Kwitshana Z. Kibiki G. Bates D. Dlamini Z. Cervical cancer in low and middle‑income countries (Review). Oncol. Lett. 2020 20 3 2058 2074 10.3892/ol.2020.11754 32782524
    [Google Scholar]
  3. Bosch F.X. de Sanjosé S. The epidemiology of human papillomavirus infection and cervical cancer. Dis. Markers 2007 23 4 213 227 10.1155/2007/914823 17627057
    [Google Scholar]
  4. Du P. Human papillomavirus infection and cervical cancer in HIV+ women. Cancer Treat Res 2019 177 105 129
    [Google Scholar]
  5. Ozols R.F. Herbst R.S. Colson Y.L. Gralow J. Bonner J. Curran W.J. Jr Eisenberg B.L. Ganz P.A. Kramer B.S. Kris M.G. Markman M. Mayer R.J. Raghavan D. Reaman G.H. Sawaya R. Schilsky R.L. Schuchter L.M. Sweetenham J.W. Vahdat L.T. Winn R.J. Clinical cancer advances 2006: Major research advances in cancer treatment, prevention, and screening--A report from the American society of clinical oncology. J. Clin. Oncol. 2007 25 1 146 162 10.1200/JCO.2006.09.7030 17158528
    [Google Scholar]
  6. Giddings L.A. Newman D.J. Microbial natural products: Molecular blueprints for antitumor drugs. J. Ind. Microbiol. Biotechnol. 2013 40 11 1181 1210 10.1007/s10295‑013‑1331‑1 23999966
    [Google Scholar]
  7. Demain A.L. Vaishnav P. Natural products for cancer chemotherapy. Microb. Biotechnol. 2011 4 6 687 699 10.1111/j.1751‑7915.2010.00221.x 21375717
    [Google Scholar]
  8. Nobili S. Lippi D. Witort E. Donnini M. Bausi L. Mini E. Capaccioli S. Natural compounds for cancer treatment and prevention. Pharmacol. Res. 2009 59 6 365 378 10.1016/j.phrs.2009.01.017 19429468
    [Google Scholar]
  9. Sawant S.S. Patil S.M. Gupta V. Kunda N.K. Microbes as medicines: Harnessing the power of bacteria in advancing cancer treatment. Int. J. Mol. Sci. 2020 21 20 7575 10.3390/ijms21207575 33066447
    [Google Scholar]
  10. Ishibashi M. Bioactive heterocyclic natural products from actinomycetes having effects on cancer-related signaling pathways. Prog. Chem. Org. Nat. Prod. 2014 99 147 198 10.1007/978‑3‑319‑04900‑7_3 25296439
    [Google Scholar]
  11. Sharma P.C. Sharma D. Sharma A. Bhagat M. Ola M. Thakur V.K. Bhardwaj J.K. Goyal R.K. Recent advances in microbial toxin-related strategies to combat cancer. Proceedings of the Seminars in cancer biology Elsevier 2022 Vol. 86 753 768 10.1016/j.semcancer.2021.07.007
    [Google Scholar]
  12. Diwan D. Cheng L. Usmani Z. Sharma M. Holden N. Willoughby N. Sangwan N. Baadhe R.R. Liu C. Gupta V.K. Microbial cancer therapeutics: A promising approach. Proceedings of the Seminars in cancer biology Elsevier 2022 Vol. 86 931 950 10.1016/j.semcancer.2021.05.003
    [Google Scholar]
  13. Borul S.B. Study of water quality of lonar lake. J. Chem. Pharm. Res. 2012 4 1716 1718
    [Google Scholar]
  14. Borul S.B. More S.P. Suryakant B. Borul Shivshankar P. More2 Quality assessment of water of the lonar crater in rainy season. IRJAEM 2024 2 3 449 452 10.47392/IRJAEM.2024.0063
    [Google Scholar]
  15. Maldhure A. Rodge A. Kothe A. Nagarnaik P. Khadse G. Bafana A. Kumar M. Labhasetwar P. Identification of environmental stress parameters to study the natural colour change of water in highly saline inland Crater Lake at Lonar, India. Environ. Monit. Assess. 2023 195 4 524 10.1007/s10661‑023‑11068‑1 36995487
    [Google Scholar]
  16. Khobragade K.S. Pawar V.B. Physico-chemical studies of lonar lake, Maharashtra, India. BIOINFOLET-A Q. J. Life Sci. 2016 13 406 408
    [Google Scholar]
  17. Paul Antony C. Kumaresan D. Hunger S. Drake H.L. Murrell J.C. Shouche Y.S. Microbiology of Lonar Lake and other soda lakes. ISME J. 2013 7 3 468 476 10.1038/ismej.2012.137 23178675
    [Google Scholar]
  18. Wani A.A. Surakasi V.P. Siddharth J. Raghavan R.G. Patole M.S. Ranade D. Shouche Y.S. Molecular analyses of microbial diversity associated with the Lonar soda lake in India: An impact crater in a basalt area. Res. Microbiol. 2006 157 10 928 937 10.1016/j.resmic.2006.08.005 17070674
    [Google Scholar]
  19. Kanekar P.P. Joshi A.A. Kelkar A.S. Borgave S.B. Sarnaik S.S. Alkaline lonar lake, India—A treasure of alkaliphilic and halophilic bacteria. Proc. Taal 2007 12 1765 1774
    [Google Scholar]
  20. Khobragade K.S. Pawar V.B. Physico chemical analysis of lonar lake with reference to bacteriological study. Int. J. Mod. Sci. Eng. Technol. 2016 3 15 22
    [Google Scholar]
  21. Thombre R.S. Mangrola A. Microbial Diversity and Ecology of Saline Environments from India. Microbial Diversity in Hotspots. Elsevier 2022 45 59 10.1016/B978‑0‑323‑90148‑2.00010‑9
    [Google Scholar]
  22. Joshi A.A. Kanekar P.P. Kelkar A.S. Shouche Y.S. Vani A.A. Borgave S.B. Sarnaik S.S. Cultivable bacterial diversity of alkaline Lonar lake, India. Microb. Ecol. 2008 55 2 163 172 10.1007/s00248‑007‑9264‑8 17604989
    [Google Scholar]
  23. Kumar N. Singh R.K. Sk M. Ak S. Uc P. Isolation and screening of soil Actinomycetes as source of antibiotics active against bacteria. Int. J. Microbiol. Res. 2010 2 2 12 16 10.9735/0975‑5276.2.2.12‑16
    [Google Scholar]
  24. Victor V.J.H.S. Isolation and characterization of actinomycetes from soil samples and screening their antibacterial activity. Sustain. Agri, Food Environ. Res. 2023 11
    [Google Scholar]
  25. Meenakshi S. Hiremath J. Meenakshi M.H. Shivaveerakumar S. Actinomycetes: Isolation, cultivation and its active biomolecules. J. Pure Appl. Microbiol. 2024 18 1 118 143 10.22207/JPAM.18.1.48
    [Google Scholar]
  26. Yaradoddi J.S. Kontro M.H. Banapurmath N.R. Ganachari S.V. Umesh M.K. Identification of Novel Actinomycetes. Actinobacteria: Ecology, Diversity, Classification and Extensive Applications. Springer 2022 143 157
    [Google Scholar]
  27. Nandan Sah S. Pratap Dhakal P. Screening and molecular characterization of antibacterial secondary metabolite producing actinomycetes from soils of eastern mountain regions of Nepal. Nepal J. Biotechnol. 2023 11 2 109 120 10.54796/njb.v11i2.260
    [Google Scholar]
  28. Sethi Y. Vora V. Anyagwa O.E. Turabi N. Abdelwahab M. Kaiwan O. Chopra H. Attia M.S. Yahya G. Emran T.B. Padda I. Streptomyces paradigm in anticancer therapy: A state-of-the art review. Curr. Cancer Ther. Rev. 2024 20 4 386 401 10.2174/0115733947254550230920170230
    [Google Scholar]
  29. Qiu Z. Wu Y. Lan K. Wang S. Yu H. Wang Y. Wang C. Cao S. Cytotoxic compounds from marine actinomycetes: Sources, structures and bioactivity. Acta Mater Med. 2022 1 4 445 475
    [Google Scholar]
  30. Zhang W. Che Q. Tan H. Qi X. Li J. Li D. Gu Q. Zhu T. Liu M. Marine Streptomyces sp. derived antimycin analogues suppress HeLa cells via depletion HPV E6/E7 mediated by ROS-dependent ubiquitin–proteasome system. Sci. Rep. 2017 7 1 42180 10.1038/srep42180 28176847
    [Google Scholar]
  31. Yurttas A.G.O.K. Okat Z. Elgun T. Ci̇fci̇ K.U.C.A.R. Sevim A.M. Gul A. Genetic deviation associated with photodynamic therapy in HeLa cell. Photodiagn. Photodyn. Ther. 2023 42 103346 10.1016/j.pdpdt.2023.103346 36809810
    [Google Scholar]
  32. Zhang Q. Zhang F. Thakur K. Wang J. Wang H. Hu F. Zhang J.G. Wei Z.J. Molecular mechanism of anti-cancerous potential of Morin extracted from mulberry in Hela cells. Food Chem. Toxicol. 2018 112 466 475 10.1016/j.fct.2017.07.002 28689916
    [Google Scholar]
  33. Xu T. Pang Q. Zhou D. Zhang A. Luo S. Wang Y. Yan X. Proteomic investigation into betulinic acid-induced apoptosis of human cervical cancer HeLa cells. PLoS One 2014 9 8 e105768 10.1371/journal.pone.0105768 25148076
    [Google Scholar]
  34. Liu X. Sun J. Yuan P. Shou K. Zhou Y. Gao W. She J. Hu J. Yang J. Yang J. Mfn2 inhibits proliferation and cell-cycle in Hela cells via Ras-NF-κB signal pathway. Cancer Cell Int. 2019 19 1 197 10.1186/s12935‑019‑0916‑9
    [Google Scholar]
  35. Wang Y. Yu H. Zhang J. Gao J. Ge X. Lou G. Hesperidin inhibits HeLa cell proliferation through apoptosis mediated by endoplasmic reticulum stress pathways and cell cycle arrest. BMC Cancer 2015 15 1 682 10.1186/s12885‑015‑1706‑y 26459308
    [Google Scholar]
  36. Liu L. Wang M. Li X. Yin S. Wang B. An overview of novel agents for cervical cancer treatment by inducing apoptosis: emerging drugs ongoing clinical trials and preclinical studies. Front. Med. 2021 8 682366 10.3389/fmed.2021.682366 34395473
    [Google Scholar]
  37. Nowak A. Zakłos-Szyda M. Rosicka-Kaczmarek J. Motyl I. Anticancer potential of post-fermentation media and cell extracts of probiotic strains: An in vitro study. Cancers 2022 14 7 1853 2022
    [Google Scholar]
  38. Taritla S. Kumari M. Kamat S. Bhat S.G. Jayabaskaran C. Optimization of physicochemical parameters for production of cytotoxic secondary metabolites and apoptosis induction activities in the culture extract of a marine algal–Derived endophytic fungus aspergillus sp. Front. Pharmacol. 2021 12 542891 10.3389/fphar.2021.542891 33981211
    [Google Scholar]
  39. Bhat M.P. Nayaka S. Kumar R.S. A swamp forest Streptomyces sp. strain KF15 with broad spectrum antifungal activity against chilli pathogens exhibits anticancer activity on HeLa cells. Arch. Microbiol. 2022 204 9 540 10.1007/s00203‑022‑03147‑7 35927484
    [Google Scholar]
  40. In vitro screening in cervical cancer cells of anti-cancer compounds derived from cameroonian plants. 2023 Available from: https://repository.up.ac.za/handle/2263/89435
  41. Al-Oqail M.M. Farshori N.N. Al-Sheddi E.S. Al-Massarani S.M. Saquib Q. Siddiqui M.A. Al-Khedhairy A.A. Oxidative stress mediated cytotoxicity, cell cycle arrest, and apoptosis induced by rosa damascena in human cervical cancer hela cells. Oxid. Med. Cell. Longev. 2021 2021 1 6695634 10.1155/2021/6695634 33574980
    [Google Scholar]
  42. Wang W. Zhang N. Oridonin inhibits Hela cell proliferation via downregulation of glutathione metabolism: A new insight from metabolomics. J. Pharm. Pharmacol. 2023 75 6 837 845 10.1093/jpp/rgad025 36972333
    [Google Scholar]
  43. Alemón-Medina R. Muñoz-Sánchez J.L. Ruiz-Azuara L. Gracia-Mora I. Casiopeína IIgly induced cytotoxicity to HeLa cells depletes the levels of reduced glutathione and is prevented by dimethyl sulfoxide. Toxicol. In Vitro 2008 22 3 710 715 10.1016/j.tiv.2007.11.011 18166334
    [Google Scholar]
  44. Mallepogu V. Jayasekhar Babu P. Doble M. Suman B. Nagalakshmamma V. Chalapathi P.V. Thyagaraju K. Effects of acrylamide on cervical cancer (HeLa) cells proliferation and few marker enzymes. Austin J. Biotechnol. Bioeng 2017 4 1087
    [Google Scholar]
  45. Sagar P.S. Das U.N. Cytotoxic action of cis-unsaturated fatty acids on human cervical carcinoma (HeLa) cells in vitro. Prostaglandins Leukot. Essent. Fatty Acids 1995 53 4 287 299 10.1016/0952‑3278(95)90129‑9 8577783
    [Google Scholar]
  46. Mojarradgandoukmolla S. Akan H. Kasım T. Dastan S.D. Aktas H.G. Anticancer and cytotoxic activities of some trigonella species on MCF-7, L929 and HeLa cell lines. Biol. Bull. 2024 ••• 1 16
    [Google Scholar]
  47. Wang H. Zhou B. Cao J. Zhao J. Zhao W. Tan P. Pro-inflammatory cytokines are involved in fluoride-induced cytotoxic potential in HeLa cells. Biol. Trace Elem. Res. 2017 175 1 98 102 10.1007/s12011‑016‑0749‑5 27206670
    [Google Scholar]
  48. Zohmachhuana A. Malsawmdawngliana Lalnunmawia F. Mathipi V. Lalrinzuali K. Kumar N.S. Curcuma aeruginosa Roxb. exhibits cytotoxicity in A-549 and HeLa cells by inducing apoptosis through caspase-dependent pathways. Biomed. Pharmacother. 2022 150 113039 10.1016/j.biopha.2022.113039 35658209
    [Google Scholar]
  49. da Conceição de Lira M.A. da Silva M.M. Rocha T.A. de Moura D.F. Santos Costa E.C. dos Santos Maia M. Scotti L. Scotti M.T. de Lourdes Lacerda Buril M. Pereira E.C. Assessment of cytotoxic/antitumour potential and in silico study of salazinic acid isolated from parmotrema concurrens. Anticancer Agents Med Chem 2023 23 12 1469 1481
    [Google Scholar]
  50. Naine S.J. Devi C.S. Mohanasrinivasan V. Doss C.G.P. Kumar D.T. Binding and molecular dynamic studies of sesquiterpenes (2R-acetoxymethyl-1,3,3-trimethyl-4t-(3-methyl-2-buten-1-yl)-1t-cyclohexanol) derived from marine Streptomyces sp. VITJS8 as potential anticancer agent. Appl. Microbiol. Biotechnol. 2016 100 6 2869 2882 10.1007/s00253‑015‑7156‑2 26590587
    [Google Scholar]
  51. Elkhalifa A.E.O. Banu H. Khan M.I. Ashraf S.A. Integrated network pharmacology, molecular docking, molecular simulation, and in vitro validation revealed the bioactive components in soy-fermented food products and the underlying mechanistic pathways in lung cancer. Nutrients 2023 15 18 3949 10.3390/nu15183949 37764733
    [Google Scholar]
  52. Bawane P. Deshpande S. Yele S. Industrial and pharmaceutical applications of microbial diversity of hypersaline ecology from lonar soda crater. Curr. Pharm. Biotechnol. 2024 25 12 1564 1584 10.2174/0113892010265978231109085224 38258768
    [Google Scholar]
  53. Kharat K.R. Kharat A. Hardikar B.P. Antimicrobial and cytotoxic activity of streptomyces Sp. from lonar lake. Afr. J. Biotechnol. 2009 8
    [Google Scholar]
  54. Rathod D. Golinska P. Wypij M. Dahm H. Rai M. A new report of Nocardiopsis valliformis strain OT1 from alkaline Lonar crater of India and its use in synthesis of silver nanoparticles with special reference to evaluation of antibacterial activity and cytotoxicity. Med. Microbiol. Immunol. 2016 205 5 435 447 10.1007/s00430‑016‑0462‑1 27278909
    [Google Scholar]
  55. Bhosale H.J. Raut S. Kadam T.A. Antifungal activity of Streptomyces longisporoflavus isolated from Lonar Lake against Alternaria solani. Int. J. Sci. Res. Biol. Sci. 2018 5 3 21 26 10.26438/ijsrbs/v5i3.2126
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037334392241216074545
Loading
/content/journals/cpps/10.2174/0113892037334392241216074545
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test