Skip to content
2000
Volume 26, Issue 5
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

Background

Actinomycetes, Gram-positive bacteria, are recognized for producing bioactive metabolites. Lonar Soda Lake, an alkaline ecosystem, hosts diverse actinomycetes with possible anticancer activities.

Aim

To assess the cytotoxic potential of fermentation metabolites from actinomycetes isolated from Lonar Soda Lake against HeLa cancer cells employing and methods.

Objectives

Evaluate the cytotoxicity of fermentation metabolites from Lonar Lake actinomycetes on HeLa cells. Execute molecular docking to forecast metabolite connections with cancer-related proteins.

Materials and Methods

The actinomycetes were isolated from the sediment sample of Lonar Lake using a selective medium and recognized by gene sequencing. Cytotoxicity on HeLa cells was assessed using the MTT assay, in consort with oxidative stress and apoptotic markers (GSH, MDA, TNF-α, and caspase 3). Molecular docking and molecular dynamics studies evaluated metabolite binding to cancer-related proteins (Bcl-2, TNF-α, caspase 3).

Results

Fermentation metabolites of three Lonar Lake Sediment isolates (LLSD), LLSD-5, LLSD-7, and LLSD-9 showing promising cytotoxic activity against HeLa cell lines by MTT assay, also significantly modulate the oxidative stress parameters (GSH, MDA), and cell apoptotic marker (TNF-α, caspase 3). IC values were 34.17 µM (LLSD-5), 53.85 µM (LLSD-7), and 69.54 µM (LLSD-9). Furthermore, molecular docking displayed robust binding affinities to cancer-related proteins, uncovering the possible mechanism of action.

Conclusion

The fermentation metabolites actinomycete isolates from Lonar Lake exhibit significant cytotoxic activity against HeLa cancer cell lines. Both and analyses support the potential of these metabolites as anticancer agents.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037334392241216074545
2025-01-08
2025-06-05
Loading full text...

Full text loading...

References

  1. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.2183438572751
    [Google Scholar]
  2. HullR. MbeleM. MakhafolaT. HicksC. WangS.M. ReisR. MehrotraR. Mkhize-KwitshanaZ. KibikiG. BatesD. DlaminiZ. Cervical cancer in low and middle-income countries (Review).Oncol. Lett.20202032058207410.3892/ol.2020.1175432782524
    [Google Scholar]
  3. BoschF.X. de SanjoséS. The epidemiology of human papillomavirus infection and cervical cancer.Dis. Markers200723421322710.1155/2007/91482317627057
    [Google Scholar]
  4. DuP. Human papillomavirus infection and cervical cancer in HIV+ women.Cancer Treat Res2019177105129
    [Google Scholar]
  5. OzolsR.F. HerbstR.S. ColsonY.L. GralowJ. BonnerJ. CurranW.J.Jr EisenbergB.L. GanzP.A. KramerB.S. KrisM.G. MarkmanM. MayerR.J. RaghavanD. ReamanG.H. SawayaR. SchilskyR.L. SchuchterL.M. SweetenhamJ.W. VahdatL.T. WinnR.J. Clinical cancer advances 2006: Major research advances in cancer treatment, prevention, and screening--A report from the American society of clinical oncology.J. Clin. Oncol.200725114616210.1200/JCO.2006.09.703017158528
    [Google Scholar]
  6. GiddingsL.A. NewmanD.J. Microbial natural products: Molecular blueprints for antitumor drugs.J. Ind. Microbiol. Biotechnol.201340111181121010.1007/s10295‑013‑1331‑123999966
    [Google Scholar]
  7. DemainA.L. VaishnavP. Natural products for cancer chemotherapy.Microb. Biotechnol.20114668769910.1111/j.1751‑7915.2010.00221.x21375717
    [Google Scholar]
  8. NobiliS. LippiD. WitortE. DonniniM. BausiL. MiniE. CapaccioliS. Natural compounds for cancer treatment and prevention.Pharmacol. Res.200959636537810.1016/j.phrs.2009.01.01719429468
    [Google Scholar]
  9. SawantS.S. PatilS.M. GuptaV. KundaN.K. Microbes as medicines: Harnessing the power of bacteria in advancing cancer treatment.Int. J. Mol. Sci.20202120757510.3390/ijms2120757533066447
    [Google Scholar]
  10. IshibashiM. Bioactive heterocyclic natural products from actinomycetes having effects on cancer-related signaling pathways.Prog. Chem. Org. Nat. Prod.20149914719810.1007/978‑3‑319‑04900‑7_325296439
    [Google Scholar]
  11. SharmaP.C. SharmaD. SharmaA. BhagatM. OlaM. ThakurV.K. BhardwajJ.K. GoyalR.K. Recent advances in microbial toxin-related strategies to combat cancer.Proceedings of the Seminars in cancer biologyElsevier2022Vol. 8675376810.1016/j.semcancer.2021.07.007
    [Google Scholar]
  12. DiwanD. ChengL. UsmaniZ. SharmaM. HoldenN. WilloughbyN. SangwanN. BaadheR.R. LiuC. GuptaV.K. Microbial cancer therapeutics: A promising approach.Proceedings of the Seminars in cancer biologyElsevier2022Vol. 8693195010.1016/j.semcancer.2021.05.003
    [Google Scholar]
  13. BorulS.B. Study of water quality of lonar lake.J. Chem. Pharm. Res.2012417161718
    [Google Scholar]
  14. BorulS.B. MoreS.P. Suryakant B. Borul Shivshankar P. More2 Quality assessment of water of the lonar crater in rainy season.IRJAEM20242344945210.47392/IRJAEM.2024.0063
    [Google Scholar]
  15. MaldhureA. RodgeA. KotheA. NagarnaikP. KhadseG. BafanaA. KumarM. LabhasetwarP. Identification of environmental stress parameters to study the natural colour change of water in highly saline inland Crater Lake at Lonar, India.Environ. Monit. Assess.2023195452410.1007/s10661‑023‑11068‑136995487
    [Google Scholar]
  16. KhobragadeK.S. PawarV.B. Physico-chemical studies of lonar lake, Maharashtra, India.Bioinfolet-A Q. J. Life Sci.201613406408
    [Google Scholar]
  17. Paul AntonyC. KumaresanD. HungerS. DrakeH.L. MurrellJ.C. ShoucheY.S. Microbiology of Lonar Lake and other soda lakes.Isme J.20137346847610.1038/ismej.2012.13723178675
    [Google Scholar]
  18. WaniA.A. SurakasiV.P. SiddharthJ. RaghavanR.G. PatoleM.S. RanadeD. ShoucheY.S. Molecular analyses of microbial diversity associated with the Lonar soda lake in India: An impact crater in a basalt area.Res. Microbiol.20061571092893710.1016/j.resmic.2006.08.00517070674
    [Google Scholar]
  19. KanekarP.P. JoshiA.A. KelkarA.S. BorgaveS.B. SarnaikS.S. Alkaline lonar lake, India—A treasure of alkaliphilic and halophilic bacteria.Proc. Taal20071217651774
    [Google Scholar]
  20. KhobragadeK.S. PawarV.B. Physico chemical analysis of lonar lake with reference to bacteriological study.Int. J. Mod. Sci. Eng. Technol.201631522
    [Google Scholar]
  21. ThombreR.S. MangrolaA. Microbial Diversity and Ecology of Saline Environments from India. In: Microbial Diversity in Hotspots.Elsevier2022455910.1016/B978‑0‑323‑90148‑2.00010‑9
    [Google Scholar]
  22. JoshiA.A. KanekarP.P. KelkarA.S. ShoucheY.S. VaniA.A. BorgaveS.B. SarnaikS.S. Cultivable bacterial diversity of alkaline Lonar lake, India.Microb. Ecol.200855216317210.1007/s00248‑007‑9264‑817604989
    [Google Scholar]
  23. KumarN. SinghR.K. SkM. AkS. UcP. Isolation and screening of soil Actinomycetes as source of antibiotics active against bacteria.Int. J. Microbiol. Res.201022121610.9735/0975‑5276.2.2.12‑16
    [Google Scholar]
  24. VictorV.J.H.S. Isolation and characterization of actinomycetes from soil samples and screening their antibacterial activity.Sustain. Agri, Food Environ. Res.202311
    [Google Scholar]
  25. MeenakshiS. HiremathJ. MeenakshiM.H. ShivaveerakumarS. Actinomycetes: Isolation, cultivation and its active biomolecules.J. Pure Appl. Microbiol.202418111814310.22207/JPAM.18.1.48
    [Google Scholar]
  26. YaradoddiJ.S. KontroM.H. BanapurmathN.R. GanachariS.V. UmeshM.K. Identification of Novel Actinomycetes.Actinobacteria: Ecology, Diversity, Classification and Extensive Applications.Springer2022143157
    [Google Scholar]
  27. Nandan SahS. Pratap DhakalP. Screening and molecular characterization of antibacterial secondary metabolite producing actinomycetes from soils of eastern mountain regions of Nepal.Nepal J. Biotechnol.202311210912010.54796/njb.v11i2.260
    [Google Scholar]
  28. SethiY. VoraV. AnyagwaO.E. TurabiN. AbdelwahabM. KaiwanO. ChopraH. AttiaM.S. YahyaG. EmranT.B. PaddaI. Streptomyces paradigm in anticancer therapy: A state-of-the art review.Curr. Cancer Ther. Rev.202420438640110.2174/0115733947254550230920170230
    [Google Scholar]
  29. QiuZ. WuY. LanK. WangS. YuH. WangY. WangC. CaoS. Cytotoxic compounds from marine actinomycetes: Sources, structures and bioactivity.Acta Mater Med.202214445475
    [Google Scholar]
  30. ZhangW. CheQ. TanH. QiX. LiJ. LiD. GuQ. ZhuT. LiuM. Marine Streptomyces sp. derived antimycin analogues suppress HeLa cells via depletion HPV E6/E7 mediated by ROS-dependent ubiquitin–proteasome system.Sci. Rep.2017714218010.1038/srep4218028176847
    [Google Scholar]
  31. YurttasA.G.O.K. OkatZ. ElgunT. Ci̇fci̇K.U.C.A.R. SevimA.M. GulA. Genetic deviation associated with photodynamic therapy in HeLa cell.Photodiagn. Photodyn. Ther.20234210334610.1016/j.pdpdt.2023.10334636809810
    [Google Scholar]
  32. ZhangQ. ZhangF. ThakurK. WangJ. WangH. HuF. ZhangJ.G. WeiZ.J. Molecular mechanism of anti-cancerous potential of Morin extracted from mulberry in Hela cells.Food Chem. Toxicol.201811246647510.1016/j.fct.2017.07.00228689916
    [Google Scholar]
  33. XuT. PangQ. ZhouD. ZhangA. LuoS. WangY. YanX. Proteomic investigation into betulinic acid-induced apoptosis of human cervical cancer HeLa cells.PLoS One201498e10576810.1371/journal.pone.010576825148076
    [Google Scholar]
  34. LiuX. SunJ. YuanP. ShouK. ZhouY. GaoW. SheJ. HuJ. YangJ. YangJ. Mfn2 inhibits proliferation and cell-cycle in Hela cells via Ras-NF-κB signal pathway.Cancer Cell Int.201919119710.1186/s12935‑019‑0916‑9
    [Google Scholar]
  35. WangY. YuH. ZhangJ. GaoJ. GeX. LouG. Hesperidin inhibits HeLa cell proliferation through apoptosis mediated by endoplasmic reticulum stress pathways and cell cycle arrest.BMC Cancer201515168210.1186/s12885‑015‑1706‑y26459308
    [Google Scholar]
  36. LiuL. WangM. LiX. YinS. WangB. An overview of novel agents for cervical cancer treatment by inducing apoptosis: emerging drugs ongoing clinical trials and preclinical studies.Front. Med.2021868236610.3389/fmed.2021.68236634395473
    [Google Scholar]
  37. NowakA. Zakłos-SzydaM. Rosicka-KaczmarekJ. MotylI. Anticancer potential of post-fermentation media and cell extracts of probiotic strains: An in vitro study.Cancers20221471853
    [Google Scholar]
  38. TaritlaS. KumariM. KamatS. BhatS.G. JayabaskaranC. Optimization of physicochemical parameters for production of cytotoxic secondary metabolites and apoptosis induction activities in the culture extract of a marine algal–Derived endophytic fungus aspergillus sp.Front. Pharmacol.20211254289110.3389/fphar.2021.54289133981211
    [Google Scholar]
  39. BhatM.P. NayakaS. KumarR.S. A swamp forest Streptomyces sp. strain KF15 with broad spectrum antifungal activity against chilli pathogens exhibits anticancer activity on HeLa cells.Arch. Microbiol.2022204954010.1007/s00203‑022‑03147‑735927484
    [Google Scholar]
  40. In vitro screening in cervical cancer cells of anti-cancer compounds derived from cameroonian plants.2023Available from: https://repository.up.ac.za/handle/2263/89435
  41. Al-OqailM.M. FarshoriN.N. Al-SheddiE.S. Al-MassaraniS.M. SaquibQ. SiddiquiM.A. Al-KhedhairyA.A. Oxidative stress mediated cytotoxicity, cell cycle arrest, and apoptosis induced by rosa damascena in human cervical cancer hela cells.Oxid. Med. Cell. Longev.202120211669563410.1155/2021/669563433574980
    [Google Scholar]
  42. WangW. ZhangN. Oridonin inhibits Hela cell proliferation via downregulation of glutathione metabolism: A new insight from metabolomics.J. Pharm. Pharmacol.202375683784510.1093/jpp/rgad02536972333
    [Google Scholar]
  43. Alemón-MedinaR. Muñoz-SánchezJ.L. Ruiz-AzuaraL. Gracia-MoraI. Casiopeína IIgly induced cytotoxicity to HeLa cells depletes the levels of reduced glutathione and is prevented by dimethyl sulfoxide.Toxicol. In Vitro200822371071510.1016/j.tiv.2007.11.01118166334
    [Google Scholar]
  44. MallepoguV. Jayasekhar BabuP. DobleM. SumanB. NagalakshmammaV. ChalapathiP.V. ThyagarajuK. Effects of acrylamide on cervical cancer (HeLa) cells proliferation and few marker enzymes.Austin J. Biotechnol. Bioeng201741087
    [Google Scholar]
  45. SagarP.S. DasU.N. Cytotoxic action of cis-unsaturated fatty acids on human cervical carcinoma (HeLa) cells in vitro.Prostaglandins Leukot. Essent. Fatty Acids199553428729910.1016/0952‑3278(95)90129‑98577783
    [Google Scholar]
  46. MojarradgandoukmollaS. AkanH. KasımT. DastanS.D. AktasH.G. Anticancer and cytotoxic activities of some trigonella species on MCF-7, L929 and HeLa cell lines.Biol. Bull.20245111371152
    [Google Scholar]
  47. WangH. ZhouB. CaoJ. ZhaoJ. ZhaoW. TanP. Pro-inflammatory cytokines are involved in fluoride-induced cytotoxic potential in HeLa cells.Biol. Trace Elem. Res.201717519810210.1007/s12011‑016‑0749‑527206670
    [Google Scholar]
  48. ZohmachhuanaA. Malsawmdawngliana LalnunmawiaF. MathipiV. LalrinzualiK. KumarN.S. Curcuma aeruginosa Roxb. exhibits cytotoxicity in A-549 and HeLa cells by inducing apoptosis through caspase-dependent pathways.Biomed. Pharmacother.202215011303910.1016/j.biopha.2022.11303935658209
    [Google Scholar]
  49. da Conceição de LiraM.A. da SilvaM.M. RochaT.A. de MouraD.F. Santos CostaE.C. dos Santos MaiaM. ScottiL. ScottiM.T. de Lourdes Lacerda BurilM. PereiraE.C. Assessment of cytotoxic/antitumour potential and in silico study of salazinic acid isolated from parmotrema concurrens.Anticancer Agents Med. Chem.2023231214691481
    [Google Scholar]
  50. NaineS.J. DeviC.S. MohanasrinivasanV. DossC.G.P. KumarD.T. Binding and molecular dynamic studies of sesquiterpenes (2R-acetoxymethyl-1,3,3-trimethyl-4t- (3-methyl-2-buten-1-yl)-1t-cyclohexanol) derived from marine Streptomyces sp. VITJS8 as potential anticancer agent.Appl. Microbiol. Biotechnol.201610062869288210.1007/s00253‑015‑7156‑226590587
    [Google Scholar]
  51. ElkhalifaA.E.O. BanuH. KhanM.I. AshrafS.A. Integrated network pharmacology, molecular docking, molecular simulation, and in vitro validation revealed the bioactive components in soy-fermented food products and the underlying mechanistic pathways in lung cancer.Nutrients20231518394910.3390/nu1518394937764733
    [Google Scholar]
  52. BawaneP. DeshpandeS. YeleS. Industrial and pharmaceutical applications of microbial diversity of hypersaline ecology from lonar soda crater.Curr. Pharm. Biotechnol.202425121564158410.2174/011389201026597823110908522438258768
    [Google Scholar]
  53. KharatK.R. KharatA. HardikarB.P. Antimicrobial and cytotoxic activity of Streptomyces Sp. from lonar lake.Afr. J. Biotechnol.20098
    [Google Scholar]
  54. RathodD. GolinskaP. WypijM. DahmH. RaiM. A new report of Nocardiopsis valliformis strain OT1 from alkaline Lonar crater of India and its use in synthesis of silver nanoparticles with special reference to evaluation of antibacterial activity and cytotoxicity.Med. Microbiol. Immunol.2016205543544710.1007/s00430‑016‑0462‑127278909
    [Google Scholar]
  55. BhosaleH.J. RautS. KadamT.A. Antifungal activity of Streptomyces longisporoflavus isolated from Lonar Lake against Alternaria solani.Int. J. Sci. Res. Biol. Sci.201853212610.26438/ijsrbs/v5i3.2126
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037334392241216074545
Loading
/content/journals/cpps/10.2174/0113892037334392241216074545
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test