Skip to content
2000
image of Comparative Proteomic Analysis of Cell Wall Proteins of Aminoglycosides Resistant and Sensitive Mycobacterium tuberculosis Clinical Isolates

Abstract

Introduction

The rising prevalence of () strains resistant to aminoglycosides (amikacin and kanamycin) challenges effective TB control and treatment. Understanding the mechanisms behind this resistance is crucial since aminoglycosides are a mainstay of TB therapy.

Aim

The study aimed to analyze the cell wall proteins overexpressed in aminoglycoside-resistant isolates of using proteomics approaches.

Methods

We used two-dimensional electrophoresis and mass spectrometry to compare the cell wall proteomes of aminoglycosides-resistant and susceptible clinical isolates. The overexpressed protein spots were excised and identified using liquid chromatography-mass spectrometry (LC/MS). The identified proteins were subsequently analyzed for molecular docking, pupylation site identification, and STRING analysis.

Results

We found a total of nine significantly upregulated proteins in aminoglycosides-resistant isolates. Three of these proteins were the same (isoform), resulting in the identification of seven unique proteins. Specifically, Rv3841 and Rv1308 belonged to intermediary metabolism and respiration; Rv2115c to the cell wall and cell processes; Rv2501c, Rv2247 and Rv0295c to lipid metabolism; and Rv2416c to virulence, detoxification/adaptation. Notably, variations in these proteins support cell wall integrity, aiding mycobacteria's establishment and proliferation. Molecular docking study revealed that both drugs bind strongly to the proteins' active site regions. Additionally, the GPS-PUP algorithm successfully identified possible pupylation sites within these proteins, except Rv0295c. Based on interactome analysis using the STRING 12.0 database, we have identified potential interactive partners suggesting their role in aminoglycosides resistance.

Conclusion

Overexpressed proteins not only act to counteract or regulate drug effects but also have a role in protein dynamics that allow for resistance. Some of these identified proteins may serve as innovative drug targets and biomarkers for the early detection of drug-specific resistance in . Further research is needed to elucidate the mechanisms by which these potential protein targets contribute to resistance in AK and KM isolates.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037334796240927055243
2024-11-07
2025-01-22
Loading full text...

Full text loading...

References

  1. Hasan A. Praveen S.H. Tarke C. Abdullah F. Clinical aspects and principles of management of Tuberculosis. Mycobacterium Tuberculosis: Molecular Infection Biology, Pathogenesis, Diagnostics and New Interventions Hasnain S. Ehtesham N. Grover S. Springer 2019 10.1007/978‑981‑32‑9413‑4_20
    [Google Scholar]
  2. Global Tuberculosis Report 2023. 2023 Available from: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2023
  3. Akkerman O.W. ter Beek L. Centis R. Maeurer M. Visca D. Muñoz-Torrico M. Tiberi S. Migliori G.B. Rehabilitation, optimized nutritional care, and boosting host internal milieu to improve long-term treatment outcomes in tuberculosis patients. Int. J. Infect. Dis. 2020 92 S10 S14 10.1016/j.ijid.2020.01.029 31982628
    [Google Scholar]
  4. Migliori G.B. Marx F.M. Ambrosino N. Zampogna E. Schaaf H.S. van der Zalm M.M. Allwood B. Byrne A.L. Mortimer K. Wallis R.S. Fox G.J. Leung C.C. Chakaya J.M. Seaworth B. Rachow A. Marais B.J. Furin J. Akkerman O.W. Al Yaquobi F. Amaral A.F.S. Borisov S. Caminero J.A. Carvalho A.C.C. Chesov D. Codecasa L.R. Teixeira R.C. Dalcolmo M.P. Datta S. Dinh-Xuan A-T. Duarte R. Evans C.A. García-García J-M. Günther G. Hoddinott G. Huddart S. Ivanova O. Laniado-Laborín R. Manga S. Manika K. Mariandyshev A. Mello F.C.Q. Mpagama S.G. Muñoz-Torrico M. Nahid P. Ong C.W.M. Palmero D.J. Piubello A. Pontali E. Silva D.R. Singla R. Spanevello A. Tiberi S. Udwadia Z.F. Vitacca M. Centis R. D´Ambrosio L. Sotgiu G. Lange C. Visca D. Clinical standards for the assessment, management and rehabilitation of post-TB lung disease. Int. J. Tuberc. Lung Dis. 2021 25 10 797 813 10.5588/ijtld.21.0425 34615577
    [Google Scholar]
  5. Menzies N.A. Quaife M. Allwood B.W. Byrne A.L. Coussens A.K. Harries A.D. Marx F.M. Meghji J. Pedrazzoli D. Salomon J.A. Sweeney S. van Kampen S.C. Wallis R.S. Houben R.M.G.J. Cohen T. Lifetime burden of disease due to incident tuberculosis: A global reappraisal including post-tuberculosis sequelae. Lancet Glob. Health 2021 9 12 e1679 e1687 10.1016/S2214‑109X(21)00367‑3 34798027
    [Google Scholar]
  6. Global Tuberculosis Report 2022. 2022 Available from: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022
  7. Recht M.I. Douthwaite S. Puglisi J.D. Basis for prokaryotic specificity of action of aminoglycoside antibiotics. EMBO J. 1999 18 11 3133 3138 10.1093/emboj/18.11.3133 10357824
    [Google Scholar]
  8. Watanabe S. Matsumura K. Iwai H. Funatogawa K. Haishima Y. Fukui C. Okumura K. Kato-Miyazawa M. Hashimoto M. Teramoto K. Kirikae F. Miyoshi-Akiyama T. Kirikae T. A Mutation in the 16S rRNA decoding region attenuates the virulence of Mycobacterium tuberculosis. Infect. Immun. 2016 84 8 2264 2273 10.1128/IAI.00417‑16 27245411
    [Google Scholar]
  9. Punetha A. Ngo H.X. Holbrook S.Y.L. Green K.D. Willby M.J. Bonnett S.A. Krieger K. Dennis E.K. Posey J.E. Parish T. Tsodikov O.V. Garneau-Tsodikova S. Structure-guided optimization of inhibitors of acetyltransferase eis from Mycobacterium tuberculosis. ACS Chem. Biol. 2020 15 6 1581 1594 10.1021/acschembio.0c00184 32421305
    [Google Scholar]
  10. Vargas R. Jr Freschi L. Spitaleri A. Tahseen S. Barilar I. Niemann S. Miotto P. Cirillo D.M. Köser C.U. Farhat M.R. Role of Epistasis in Amikacin, Kanamycin, Bedaquiline, and Clofazimine Resistance in Mycobacterium tuberculosis Complex. Antimicrob. Agents Chemother. 2021 65 11 e01164-21 10.1128/AAC.01164‑21 34460306
    [Google Scholar]
  11. Magnet S. Smith T.A. Zheng R. Nordmann P. Blanchard J.S. Aminoglycoside resistance resulting from tight drug binding to an altered aminoglycoside acetyltransferase. Antimicrob. Agents Chemother. 2003 47 5 1577 1583 10.1128/AAC.47.5.1577‑1583.2003 12709325
    [Google Scholar]
  12. Smith T. Wolff K.A. Nguyen L. Molecular biology of drug resistance in Mycobacterium tuberculosis. Curr. Top. Microbiol. Immunol. 2012 374 53 80 10.1007/82_2012_279 23179675
    [Google Scholar]
  13. Garneau-Tsodikova S. Labby K.J. Mechanisms of resistance to aminoglycoside antibiotics: Overview and perspectives. MedChemComm 2016 7 1 11 27 10.1039/C5MD00344J 26877861
    [Google Scholar]
  14. Hoffmann E. Machelart A. Song O.R. Brodin P. Proteomics of Mycobacterium infection: Moving towards a better understanding of pathogen-driven immunomodulation. Front. Immunol. 2018 9 86 10.3389/fimmu.2018.00086 29441067
    [Google Scholar]
  15. Choudhary E. Sharma R. Pal P. Agarwal N. Deciphering the proteomic landscape of Mycobacterium tuberculosis in response to acid and oxidative stresses. ACS Omega 2022 7 30 26749 26766 10.1021/acsomega.2c03092 35936415
    [Google Scholar]
  16. Gengenbacher M. Mouritsen J. Schubert O.T. Aebersold R. Kaufmann S.H.E. Mycobacterium tuberculosis in the proteomics era. Microbiol. Spectr. 2014 2 2 2.2.05 10.1128/microbiolspec.MGM2‑0020‑2013 26105825
    [Google Scholar]
  17. Zheng J. Ren X. Wei C. Yang J. Hu Y. Liu L. Xu X. Wang J. Jin Q. Analysis of the secretome and identification of novel constituents from culture filtrate of bacillus Calmette-Guerin using high-resolution mass spectrometry. Mol. Cell. Proteomics 2013 12 8 2081 2095 10.1074/mcp.M113.027318 23616670
    [Google Scholar]
  18. Sharma D. Bisht D. Secretory proteome analysis of streptomycin-resistant Mycobacterium tuberculosis clinical isolates. SLAS Discov. 2017 22 10 1229 1238 10.1177/2472555217698428 28314116
    [Google Scholar]
  19. Sharma P. Kumar B. Gupta Y. Singhal N. Katoch V.M. Venkatesan K. Bisht D. Proteomic analysis of streptomycin resistant and sensitive clinical isolates of Mycobacterium tuberculosis. Proteome Sci. 2010 8 1 59 10.1186/1477‑5956‑8‑59 21083941
    [Google Scholar]
  20. Bespyatykh J. Shitikov E. Butenko I. Altukhov I. Alexeev D. Mokrousov I. Dogonadze M. Zhuravlev V. Yablonsky P. Ilina E. Govorun V. Proteome analysis of the Mycobacterium tuberculosis Beijing B0/W148 cluster. Sci. Rep. 2016 6 1 28985 10.1038/srep28985 27356881
    [Google Scholar]
  21. Målen H. De Souza G.A. Pathak S. Søfteland T. Wiker H.G. Comparison of membrane proteins of Mycobacterium tuberculosisH37Rv and H37Ra strains. BMC Microbiol. 2011 11 1 18 10.1186/1471‑2180‑11‑18 21261938
    [Google Scholar]
  22. Bisht D. Singh R. Sharma D. Sharma D. Gupta M.K. Analysis of membrane proteins of streptomycin-resistant Mycobacterium tuberculosis isolates. Curr. Proteomics 2022 19 5 388 399 10.2174/1570164619666220428082752
    [Google Scholar]
  23. Song H. Sandie R. Wang Y. Andrade-Navarro M.A. Niederweis M. Identification of outer membrane proteins of Mycobacterium tuberculosis. Tuberculosis (Edinb.) 2008 88 6 526 544 10.1016/j.tube.2008.02.004 18439872
    [Google Scholar]
  24. He Z. De Buck J. Cell wall proteome analysis of Mycobacterium smegmatis strain MC2 155. BMC Microbiol. 2010 10 1 121 10.1186/1471‑2180‑10‑121 20412585
    [Google Scholar]
  25. He Z. De Buck J. Localization of proteins in the cell wall of Mycobacterium avium subsp. paratuberculosis K10 by proteomic analysis. Proteome Sci. 2010 8 1 21 10.1186/1477‑5956‑8‑21 20377898
    [Google Scholar]
  26. Wolfe L.M. Mahaffey S.B. Kruh N.A. Dobos K.M. Proteomic definition of the cell wall of Mycobacterium tuberculosis. J. Proteome Res. 2010 9 11 5816 5826 10.1021/pr1005873 20825248
    [Google Scholar]
  27. Singh P. Rameshwaram N. R. Ghosh S. Mukhopadhyay S. Cell envelope lipids in the pathophysiology of Mycobacterium tuberculosis . Future Microbiol 2018 13 689 710 10.2217/fmb‑2017‑0135
    [Google Scholar]
  28. Singh G. Kumar A. Maan P. Kaur J. Cell wall associated factors of Mycobacterium tuberculosis as major virulence determinants: Current perspectives in drugs discovery and design. Curr. Drug Targets 2017 18 16 1904 1918 10.2174/1389450118666170711150034 28699515
    [Google Scholar]
  29. Canetti G. Fox W. Khomenko A. Mahler H.T. Menon N.K. Mitchison D.A. Rist N. Smelev N.A. Advances in techniques of testing mycobacterial drug sensitivity, and the use of sensitivity tests in tuberculosis control programmes. Bull. World Health Organ. 1969 41 1 21 43 5309084
    [Google Scholar]
  30. Brodie A.F. Kalra V.K. Lee S. Cohen N.S. Properties of energy-transducing systems in different types of membrane preparations from Mycobacterium phlei-preparation, resolution, and reconstitution. Methods Enzymol. 1979 55 175 200 10.1016/0076‑6879(79)55024‑1 156832
    [Google Scholar]
  31. Hirschfield G.R. McNeil M. Brennan P.J. Peptidoglycan-associated polypeptides of Mycobacterium tuberculosis. J. Bacteriol. 1990 172 2 1005 1013 10.1128/jb.172.2.1005‑1013.1990 2105289
    [Google Scholar]
  32. Kumar B. Sharma D. Sharma P. Katoch V.M. Venkatesan K. Bisht D. Proteomic analysis of Mycobacterium tuberculosis isolates resistant to kanamycin and amikacin. J. Proteomics 2013 94 68 77 10.1016/j.jprot.2013.08.025 24036035
    [Google Scholar]
  33. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976 72 1-2 248 254 10.1016/0003‑2697(76)90527‑3 942051
    [Google Scholar]
  34. Görg A. Obermaier C. Boguth G. Harder A. Scheibe B. Wildgruber R. Weiss W. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 2000 21 6 1037 1053 10.1002/(SICI)1522‑2683(20000401)21:6<1037::AID‑ELPS1037>3.0.CO;2‑V 10786879
    [Google Scholar]
  35. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970 227 5259 680 685 10.1038/227680a0 5432063
    [Google Scholar]
  36. Shevchenko A. Tomas H. Havli J. Olsen J.V. Mann M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 2006 1 6 2856 2860 10.1038/nprot.2006.468 17406544
    [Google Scholar]
  37. Perez-Riverol Y. Bai J. Bandla C. García-Seisdedos D. Hewapathirana S. Kamatchinathan S. Kundu D.J. Prakash A. Frericks-Zipper A. Eisenacher M. Walzer M. Wang S. Brazma A. Vizcaíno J.A. The PRIDE database resources in 2022: A hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022 50 D1 D543 D552 10.1093/nar/gkab1038 34723319
    [Google Scholar]
  38. Liu Z. Ma Q. Cao J. Gao X. Ren J. Xue Y. GPS-PUP: Computational prediction of pupylation sites in prokaryotic proteins. Mol. Biosyst. 2011 7 10 2737 2740 10.1039/c1mb05217a 21850344
    [Google Scholar]
  39. Szklarczyk D. Gable A.L. Lyon D. Junge A. Wyder S. Huerta-Cepas J. Simonovic M. Doncheva N.T. Morris J.H. Bork P. Jensen L.J. Mering C. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019 47 D1 D607 D613 10.1093/nar/gky1131 30476243
    [Google Scholar]
  40. Novichikhina N. Ilin I. Tashchilova A. Sulimov A. Kutov D. Ledenyova I. Krysin M. Shikhaliev K. Gantseva A. Gantseva E. Podoplelova N. Sulimov V. Synthesis, docking, and in vitro anticoagulant activity assay of hybrid derivatives of pyrrolo[3,2,1-ij]quinolin-2(1H)-one as new inhibitors of factor Xa and factor XIa. Molecules 2020 25 8 1889 10.3390/molecules25081889 32325823
    [Google Scholar]
  41. Laskowski R.A. Jabłońska J. Pravda L. Vařeková R.S. Thornton J.M. PDBsum: Structural summaries of PDB entries. Protein Sci. 2018 27 1 129 134 10.1002/pro.3289 28875543
    [Google Scholar]
  42. Pettersen E.F. Goddard T.D. Huang C.C. Couch G.S. Greenblatt D.M. Meng E.C. Ferrin T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004 25 13 1605 1612 10.1002/jcc.20084 15264254
    [Google Scholar]
  43. Dassault Systèmes. Discovery Studio Visualizer. 2021 Available from: https://discover.3ds.com/discovery-studio-visualizer-download
  44. Wallace A.C. Laskowski R.A. Thornton J.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng. Des. Sel. 1995 8 2 127 134 10.1093/protein/8.2.127 7630882
    [Google Scholar]
  45. Pandey R. Rodriguez G.M. A ferritin mutant of Mycobacterium tuberculosis is highly susceptible to killing by antibiotics and is unable to establish a chronic infection in mice. Infect. Immun. 2012 80 10 3650 3659 10.1128/IAI.00229‑12 22802345
    [Google Scholar]
  46. Khare G. Nangpal P. Tyagi A.K. Differential roles of iron storage proteins in maintaining the iron homeostasis in Mycobacterium tuberculosis. PLoS One 2017 12 1 e0169545 10.1371/journal.pone.0169545 28060867
    [Google Scholar]
  47. Sharma D. Lata M. Faheem M. Khan A.U. Joshi B. Venkatesan K. Shukla S. Bisht D. M. tuberculosis ferritin (Rv3841): Potential involvement in Amikacin (AK) & Kanamycin (KM) resistance. Biochem. Biophys. Res. Commun. 2016 478 2 908 912 10.1016/j.bbrc.2016.08.049 27521892
    [Google Scholar]
  48. Yin Y. Kovach A. Hsu H.C. Darwin K.H. Li H. The mycobacterial proteasomal ATPase Mpa forms a gapped ring to engage the 20S proteasome. J. Biol. Chem. 2021 296 100713 10.1016/j.jbc.2021.100713 33930464
    [Google Scholar]
  49. Darwin K.H. Lin G. Chen Z. Li H. Nathan C.F. Characterization of a Mycobacterium tuberculosis proteasomal ATPase homologue. Mol. Microbiol. 2005 55 2 561 571 10.1111/j.1365‑2958.2004.04403.x 15659170
    [Google Scholar]
  50. Wang T. Li H. Lin G. Tang C. Li D. Nathan C. Darwin K.H. Li H. Structural insights on the Mycobacterium tuberculosis proteasomal ATPase Mpa. Structure 2009 17 10 1377 1385 10.1016/j.str.2009.08.010 19836337
    [Google Scholar]
  51. Ullah N. Hao L. Banga Ndzouboukou J.L. Chen S. Wu Y. Li L. Borham Mohamed E. Hu Y. Fan X. Label-free comparative proteomics of differentially expressed Mycobacterium tuberculosis protein in rifampicin-related drug-resistant strains. Pathogens 2021 10 5 607 10.3390/pathogens10050607 34063426
    [Google Scholar]
  52. Montgomery M.G. Petri J. Spikes T.E. Walker J.E. Structure of the ATP synthase from Mycobacterium smegmatis provides targets for treating tuberculosis. Proc. Natl. Acad. Sci. USA 2021 118 47 e2111899118 10.1073/pnas.2111899118 34782468
    [Google Scholar]
  53. Ragunathan P. Sielaff H. Sundararaman L. Biuković G. Subramanian Manimekalai M.S. Singh D. Kundu S. Wohland T. Frasch W. Dick T. Grüber G. The uniqueness of subunit α of mycobacterial F-ATP synthases: An evolutionary variant for niche adaptation. J. Biol. Chem. 2017 292 27 11262 11279 10.1074/jbc.M117.784959 28495884
    [Google Scholar]
  54. Gago G. Kurth D. Diacovich L. Tsai S.C. Gramajo H. Biochemical and structural characterization of an essential acyl coenzyme A carboxylase from Mycobacterium tuberculosis. J. Bacteriol. 2006 188 2 477 486 10.1128/JB.188.2.477‑486.2006 16385038
    [Google Scholar]
  55. Ehebauer M.T. Zimmermann M. Jakobi A.J. Noens E.E. Laubitz D. Cichocki B. Marrakchi H. Lanéelle M.A. Daffé M. Sachse C. Dziembowski A. Sauer U. Wilmanns M. Characterization of the mycobacterial acyl-CoA carboxylase holo complexes reveals their functional expansion into amino acid catabolism. PLoS Pathog. 2015 11 2 e1004623 10.1371/journal.ppat.1004623 25695631
    [Google Scholar]
  56. Reddy M.C.M. Breda A. Bruning J.B. Sherekar M. Valluru S. Thurman C. Ehrenfeld H. Sacchettini J.C. Structure, activity, and inhibition of the Carboxyltransferase β-subunit of acetyl coenzyme A carboxylase (AccD6) from Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2014 58 10 6122 6132 10.1128/AAC.02574‑13 25092705
    [Google Scholar]
  57. Liu X.X. Shen M.J. Liu W.B. Ye B.C. Transcriptional and post-translational regulation of AccD6 in Mycobacterium smegmatis. FEMS Microbiol. Lett. 2018 365 9 10.1093/femsle/fny074 29590418
    [Google Scholar]
  58. Pawelczyk J. Brzostek A. Kremer L. Dziadek B. Rumijowska-Galewicz A. Fiolka M. Dziadek J. AccD6, a key carboxyltransferase essential for mycolic acid synthesis in Mycobacterium tuberculosis, is dispensable in a nonpathogenic strain. J. Bacteriol. 2011 193 24 6960 6972 10.1128/JB.05638‑11 21984794
    [Google Scholar]
  59. Pawelczyk J. Viljoen A. Kremer L. Dziadek J. The influence of AccD5 on AccD6 carboxyltransferase essentiality in pathogenic and non-pathogenic Mycobacterium. Sci. Rep. 2017 7 1 42692 10.1038/srep42692 28205597
    [Google Scholar]
  60. Sanz-García F. Anoz-Carbonell E. Pérez-Herrán E. Martín C. Lucía A. Rodrigues L. Aínsa J.A. Mycobacterial aminoglycoside acetyltransferases: A little of drug resistance, and a lot of other roles. Front. Microbiol. 2019 10 46 10.3389/fmicb.2019.00046 30761098
    [Google Scholar]
  61. Chen W. Green K.D. Garneau-Tsodikova S. Cosubstrate tolerance of the aminoglycoside resistance enzyme Eis from Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2012 56 11 5831 5838 10.1128/AAC.00932‑12 22948873
    [Google Scholar]
  62. Tsodikov O.V. Green K.D. Garneau-Tsodikova S. A random sequential mechanism of aminoglycoside acetylation by Mycobacterium tuberculosis Eis protein. PLoS One 2014 9 4 e92370 10.1371/journal.pone.0092370 24699000
    [Google Scholar]
  63. Sowajassatakul A. Prammananan T. Chaiprasert A. Phunpruch S. Overexpression of eis without a mutation in promoter region of amikacin- and kanamycin-resistant Mycobacterium tuberculosis clinical strain. Ann. Clin. Microbiol. Antimicrob. 2018 17 1 33 10.1186/s12941‑018‑0285‑6 30008266
    [Google Scholar]
  64. Garzan A. Willby M.J. Ngo H.X. Gajadeera C.S. Green K.D. Holbrook S.Y.L. Hou C. Posey J.E. Tsodikov O.V. Garneau-Tsodikova S. Combating enhanced intracellular survival (Eis)-mediated kanamycin resistance of Mycobacterium tuberculosis by novel pyrrolo[1,5- a ]pyrazine-based Eis inhibitors. ACS Infect. Dis. 2017 3 4 302 309 10.1021/acsinfecdis.6b00193 28192916
    [Google Scholar]
  65. Mishra M. Dadhich R. Mogha P. Kapoor S. Correction to “Mycobacterium lipids modulate host cell membrane mechanics, lipid diffusivity, and cytoskeleton in a virulence-selective manner”. ACS Infect. Dis. 2021 7 1 202 10.1021/acsinfecdis.0c00828 33301307
    [Google Scholar]
  66. Mougous J.D. Petzold C.J. Senaratne R.H. Lee D.H. Akey D.L. Lin F.L. Munchel S.E. Pratt M.R. Riley L.W. Leary J.A. Berger J.M. Bertozzi C.R. Identification, function and structure of the mycobacterial sulfotransferase that initiates sulfolipid-1 biosynthesis. Nat. Struct. Mol. Biol. 2004 11 8 721 729 10.1038/nsmb802 15258569
    [Google Scholar]
  67. Gilmore S.A. Schelle M.W. Holsclaw C.M. Leigh C.D. Jain M. Cox J.S. Leary J.A. Bertozzi C.R. Sulfolipid-1 biosynthesis restricts Mycobacterium tuberculosis growth in human macrophages. ACS Chem. Biol. 2012 7 5 863 870 10.1021/cb200311s 22360425
    [Google Scholar]
  68. Lin F.L. van Halbeek H. Bertozzi C.R. Synthesis of mono- and dideoxygenated α,α-trehalose analogs. Carbohydr. Res. 2007 342 14 2014 2030 10.1016/j.carres.2007.05.009 17559818
    [Google Scholar]
  69. Bhave D.P. Muse W.B. III Carroll K.S. Drug targets in mycobacterial sulfur metabolism. Infect. Disord. Drug Targets 2007 7 2 140 158 10.2174/187152607781001772 17970225
    [Google Scholar]
  70. Burns K.E. Cerda-Maira F.A. Wang T. Li H. Bishai W.R. Darwin K.H. “Depupylation” of prokaryotic ubiquitin-like protein from mycobacterial proteasome substrates. Mol. Cell 2010 39 5 821 827 10.1016/j.molcel.2010.07.019 20705495
    [Google Scholar]
  71. Delley C.L. Müller A.U. Ziemski M. Weber-Ban E. Prokaryotic ubiquitin-like protein and its ligase/deligase enyzmes. J. Mol. Biol. 2017 429 22 3486 3499 10.1016/j.jmb.2017.04.020 28478282
    [Google Scholar]
  72. Peng Z. Chen L. Zhang H. Serum proteomic analysis of Mycobacterium tuberculosis antigens for discriminating active tuberculosis from latent infection. J. Int. Med. Res. 2020 48 3 10.1177/0300060520910042 32216499
    [Google Scholar]
  73. Salmaso V. Moro S. Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: An overview. Front. Pharmacol. 2018 9 923 10.3389/fphar.2018.00923 30186166
    [Google Scholar]
  74. Magdeldin S. Enany S. Yoshida Y. Xu B. Zhang Y. Zureena Z. Lokamani I. Yaoita E. Yamamoto T. Basics and recent advances of two dimensional- polyacrylamide gel electrophoresis. Clin. Proteomics 2014 11 1 16 10.1186/1559‑0275‑11‑16 24735559
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037334796240927055243
Loading
/content/journals/cpps/10.2174/0113892037334796240927055243
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test