Skip to content
2000
image of Insight of Intestinal Fatty Acid Binding Protein as a Potential Biomarker in the Biology of Epithelial Damage of Gastrointestinal Membrane

Abstract

The diagnosis of intestinal injury remains a challenge as it is rare in occurrence and transpires in multiple traumatized patients. The deferred finding of injury of intestines upsurges multiple risks such as septicemia, numerous organ failures as well as mortality. In this review, we corroborate with the goals of proposing surrogate biomarkers that consent to the measurement of the permeability of intestines more effortlessly. The expression of intestinal fatty acid binding protein (I-FABP) is exclusive in the intestine and has beenreported to release extracellularly upon damage caused to tissues. This work focuses on evaluating the legitimacy of I-FABP as an initial biomarker to distinguish abdominal damage predominantly from an injury to the intestine.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037311290240930054913
2025-01-01
2025-01-22
Loading full text...

Full text loading...

References

  1. Kaikaus R.M. Bass N.M. Ockner R.K. Functions of fatty acid binding proteins. Experientia 1990 46 6 617 630 10.1007/BF01939701 2193826
    [Google Scholar]
  2. Agakidou E. Agakidis C. Gika H. Sarafidis K. Emerging biomarkers for prediction and early diagnosis of necrotizing enterocolitis in the era of metabolomics and proteomics. Front Pediatr. 2020 8 602255 10.3389/fped.2020.602255 33425815
    [Google Scholar]
  3. Alhadi H.A. Fox K.A.A. Do we need additional markers of myocyte necrosis: the potential value of heart fatty-acid-binding protein. QJM 2004 97 4 187 198 10.1093/qjmed/hch037 15028848
    [Google Scholar]
  4. Wang D. Zhao L. Liao Z. Bi Q. Meng X. Duan M. Ma Q. Wei Y. Cao L. Liang M. Xu H. Tissue distribution and nutritional regulation of fatty acid-binding proteins (fabps) in two marine teleosts, turbot (Scophthalmus maximus), and tiger puffer (Takifugu rubripes). Aquacult. Nutr. 2022 2022 1 1 14 10.1155/2022/8761851
    [Google Scholar]
  5. Kayser H. 4.8 - Lipocalins and structurally related ligand-binding proteins. Comprehensive Molecular Insect Science. Gilbert L.I. Amsterdam Elsevier 2005 267 306 10.1016/B0‑44‑451924‑6/00056‑9
    [Google Scholar]
  6. Xu B. Chen L. Zhan Y. Marquez K.N.S. Zhuo L. Qi S. Zhu J. He Y. Chen X. Zhang H. Shen Y. Chen G. Gu J. Guo Y. Liu S. Xie T. The biological functions and regulatory mechanisms of fatty acid binding protein 5 in various diseases. Front. Cell Dev. Biol. 2022 10 857919 10.3389/fcell.2022.857919 35445019
    [Google Scholar]
  7. Gaffar S. Aathirah A.S. Fatty-acid-binding proteins: From lipid transporters to disease biomarkers. Biomolecules 2023 13 12 1753 10.3390/biom13121753 38136624
    [Google Scholar]
  8. Vogel Hertzel A. Bernlohr D.A. The mammalian fatty acid-binding protein multigene family: Molecular and genetic insights into function. Trends Endocrinol. Metab. 2000 11 5 175 180 10.1016/S1043‑2760(00)00257‑5 10856918
    [Google Scholar]
  9. Hotamisligil G.S. Bernlohr D.A. Metabolic functions of FABPs—mechanisms and therapeutic implications. Nat. Rev. Endocrinol. 2015 11 10 592 605 10.1038/nrendo.2015.122 26260145
    [Google Scholar]
  10. Smathers R.L. Petersen D.R. The human fatty acid-binding protein family: Evolutionary divergences and functions. Hum. Genomics 2011 5 3 170 191 10.1186/1479‑7364‑5‑3‑170 21504868
    [Google Scholar]
  11. Chmurzyńska A. The multigene family of fatty acid-binding proteins (FABPs): Function, structure and polymorphism. J. Appl. Genet. 2006 47 1 39 48 10.1007/BF03194597 16424607
    [Google Scholar]
  12. Storch J. Thumser A.E. Tissue-specific functions in the fatty acid-binding protein family. J. Biol. Chem. 2010 285 43 32679 32683 10.1074/jbc.R110.135210 20716527
    [Google Scholar]
  13. Gajda A.M. Storch J. Enterocyte fatty acid-binding proteins (FABPs): Different functions of liver and intestinal FABPs in the intestine. Prostaglandins Leukot. Essent. Fatty Acids 2015 93 9 16 10.1016/j.plefa.2014.10.001 25458898
    [Google Scholar]
  14. FABP2 fatty acid binding protein 2. 2024 Available from: https://www.ncbi.nlm.nih.gov/gene/2169
  15. Larifla L. Rambhojan C. Joannes M.O. Maimaitiming-Madani S. Donnet J.P. Marianne-Pépin T. Chout R. Roussel R. Foucan L. Gene Polymorphisms of FABP2, ADIPOQ and ANP and risk of hypertriglyceridemia and metabolic syndrome in afro-caribbeans. PLoS One 2016 11 9 e0163421 10.1371/journal.pone.0163421 27684940
    [Google Scholar]
  16. Funaoka H. Kanda T. Fujii H. Intestinal fatty acid-binding protein (I-FABP) as a new biomarker for intestinal diseases. Jpn J Clin Pathol 2010 58 2 162 168
    [Google Scholar]
  17. Voth M. Lustenberger T. Relja B. Marzi I. Is I-FABP not only a marker for the detection abdominal injury but also of hemorrhagic shock in severely injured trauma patients? World J. Emerg. Surg. 2019 14 1 49 10.1186/s13017‑019‑0267‑9 31832083
    [Google Scholar]
  18. de Groot M. Wodzig K.W. Simoons M.L. Glatz J.F. Hermens W.T. Measurement of myocardial infarct size from plasma fatty acid-binding protein or myoglobin, using individually estimated clearance rates. Cardiovasc. Res. 1999 44 2 315 324 10.1016/S0008‑6363(99)00199‑6 10690308
    [Google Scholar]
  19. Pelsers M.M.A.L. Namiot Z. Kisielewski W. Namiot A. Januszkiewicz M. Hermens W.T. Glatz J.F.C. Intestinal-type and liver-type fatty acid-binding protein in the intestine. Tissue distribution and clinical utility. Clin. Biochem. 2003 36 7 529 535 10.1016/S0009‑9120(03)00096‑1 14563446
    [Google Scholar]
  20. Qiu C.J. Ye X.Z. Yu X.J. Peng X.R. Li T.H. Association between FABP 2 Ala54Thr polymorphisms and type 2 diabetes mellitus risk: A huge review and meta‐analysis. J. Cell. Mol. Med. 2014 18 12 2530 2535 10.1111/jcmm.12385 25388378
    [Google Scholar]
  21. Agellon L.B. Importance of fatty acid binding proteins in cellular function and organismal metabolism. J. Cell. Mol. Med. 2024 28 5 e17703 10.1111/jcmm.17703 36876733
    [Google Scholar]
  22. Huang X. Zhou Y. Sun Y. Wang Q. Intestinal fatty acid binding protein: A rising therapeutic target in lipid metabolism. Prog. Lipid Res. 2022 87 101178 10.1016/j.plipres.2022.101178 35780915
    [Google Scholar]
  23. Auinger A. Helwig U. Rubin D. Herrmann J. Jahreis G. Pfeuffer M. de Vrese M. Foelsch U.R. Schreiber S. Doering F. Schrezenmeir J. Human intestinal fatty acid binding protein 2 expression is associated with fat intake and polymorphisms. J. Nutr. 2010 140 8 1411 1417 10.3945/jn.109.118034 20534879
    [Google Scholar]
  24. Lau E. Marques C. Pestana D. Santoalha M. Carvalho D. Freitas P. Calhau C. The role of I-FABP as a biomarker of intestinal barrier dysfunction driven by gut microbiota changes in obesity. Nutr. Metab. 2016 13 1 31 10.1186/s12986‑016‑0089‑7 27134637
    [Google Scholar]
  25. Baier L.J. Sacchettini J.C. Knowler W.C. Eads J. Paolisso G. Tataranni P.A. Mochizuki H. Bennett P.H. Bogardus C. Prochazka M. An amino acid substitution in the human intestinal fatty acid binding protein is associated with increased fatty acid binding, increased fat oxidation, and insulin resistance. J. Clin. Invest. 1995 95 3 1281 1287 10.1172/JCI117778 7883976
    [Google Scholar]
  26. Furuhashi M. Hotamisligil G.S. Fatty acid-binding proteins: Role in metabolic diseases and potential as drug targets. Nat. Rev. Drug Discov. 2008 7 6 489 503 10.1038/nrd2589 18511927
    [Google Scholar]
  27. Storch J. Corsico B. The multifunctional family of mammalian fatty acid–binding proteins. Annu. Rev. Nutr. 2023 43 1 25 54 10.1146/annurev‑nutr‑062220‑112240 37207357
    [Google Scholar]
  28. Kokesova A. Coufal S. Frybova B. Kverka M. Rygl M. The intestinal fatty acid-binding protein as a marker for intestinal damage in gastroschisis. PLoS One 2019 14 1 e0210797 10.1371/journal.pone.0210797 30640955
    [Google Scholar]
  29. Pouli S. Kozana A. Papakitsou I. Daskalogiannaki M. Raissaki M. Gastrointestinal perforation: Clinical and MDCT clues for identification of aetiology. Insights Imaging 2020 11 1 31 10.1186/s13244‑019‑0823‑6 32086627
    [Google Scholar]
  30. Yang Y. Oral drug absorption: Evaluation and prediction. Developing Solid Oral Dosage Forms. Chapter 12 2nd ed Qiu Y. Boston Academic Press 2017 331 354 10.1016/B978‑0‑12‑802447‑8.00012‑1
    [Google Scholar]
  31. Vancamelbeke M. Vermeire S. The intestinal barrier: A fundamental role in health and disease. Expert Rev. Gastroenterol. Hepatol. 2017 11 9 821 834 10.1080/17474124.2017.1343143 28650209
    [Google Scholar]
  32. Subramanian S. Geng H. Tan X.D. Cell death of intestinal epithelial cells in intestinal diseases. Sheng Li Xue Bao 2020 72 3 308 324 32572429
    [Google Scholar]
  33. MohanKumar K. Killingsworth C.R. Britt McILwain R. Timpa J.G. Jagadeeswaran R. Namachivayam K. Kurundkar A.R. Kelly D.R. Garzon S.A. Maheshwari A. Intestinal epithelial apoptosis initiates gut mucosal injury during extracorporeal membrane oxygenation in the newborn piglet. Lab. Invest. 2014 94 2 150 160 10.1038/labinvest.2013.149 24365747
    [Google Scholar]
  34. Langell J.T. Mulvihill S.J. Gastrointestinal perforation and the acute abdomen. Med. Clin. North Am. 2008 92 3 599 625, viii-ix 10.1016/j.mcna.2007.12.004 18387378
    [Google Scholar]
  35. Grootjans J. Thuijls G. Verdam F. Derikx J.P. Lenaerts K. Buurman W.A. Non-invasive assessment of barrier integrity and function of the human gut. World J. Gastrointest. Surg. 2010 2 3 61 69 10.4240/wjgs.v2.i3.61 21160852
    [Google Scholar]
  36. Hafner J. Intestinal perforation. StatPearls StatPearls Publishing Treasure Island (FL) 2022
    [Google Scholar]
  37. Black C.J. Drossman D.A. Talley N.J. Ruddy J. Ford A.C. Functional gastrointestinal disorders: Advances in understanding and management. Lancet 2020 396 10263 1664 1674 10.1016/S0140‑6736(20)32115‑2 33049221
    [Google Scholar]
  38. Ford A.C. Mahadeva S. Carbone M.F. Lacy B.E. Talley N.J. Functional dyspepsia. Lancet 2020 396 10263 1689 1702 10.1016/S0140‑6736(20)30469‑4 33049222
    [Google Scholar]
  39. Fox M.R. Kahrilas P.J. Roman S. Gyawali C.P. Scott S.M. Rao S.S. Keller J. Camilleri M. International Working Group for Disorders of Gastrointestinal Motility and Function Clinical measurement of gastrointestinal motility and function: Who, when and which test? Nat. Rev. Gastroenterol. Hepatol. 2018 15 9 568 579 10.1038/s41575‑018‑0030‑9 29872118
    [Google Scholar]
  40. DuPont H.L. Acute infectious diarrhea in immunocompetent adults. N. Engl. J. Med. 2014 370 16 1532 1540 10.1056/NEJMra1301069 24738670
    [Google Scholar]
  41. Andersen L.W. Landow L. Baek L. Jansen E. Baker S. Association between gastric intramucosal pH and splanchnic endotoxin, antibody to endotoxin, and tumor necrosis factor-α concentrations in patients undergoing cardiopulmonary bypass. Crit. Care Med. 1993 21 2 210 217 10.1097/00003246‑199302000‑00011 8428471
    [Google Scholar]
  42. Gollin G. Marks C. Marks W.H. Intestinal fatty acid binding protein in serum and urine reflects early ischemic injury to the small bowel. Surgery 1993 113 5 545 551 8488474
    [Google Scholar]
  43. Sikora M. Stec A. Chrabaszcz M. Waskiel-Burnat A. Zaremba M. Olszewska M. Rudnicka L. Intestinal fatty acid binding protein, a biomarker of intestinal barrier, is associated with severity of psoriasis. J. Clin. Med. 2019 8 7 1021 10.3390/jcm8071021 31336842
    [Google Scholar]
  44. Uzun O. Turkmen S. Eryigit U. Mentese A. Turkyilmaz S. Turedi S. Karahan S.C. Gunduz A. Can intestinal fatty acid binding protein (I-FABP) be a marker in the diagnosis of abdominal pathology? Turk. J. Emerg. Med. 2014 14 3 99 103 10.5505/1304.7361.2014.15679 27355087
    [Google Scholar]
  45. Wang Y. Ding L. Yang J. Liu L. Dong L. Intestinal fatty acid-binding protein, a biomarker of intestinal barrier dysfunction, increases with the progression of type 2 diabetes. PeerJ 2021 9 e10800 10.7717/peerj.10800 33604184
    [Google Scholar]
  46. Vollrath J.T. Klingebiel F. Bläsius F. Greven J. Bolierakis E. Nowak A.J. Simic M. Hildebrand F. Marzi I. Relja B. I-FABP as a potential marker for intestinal barrier loss in porcine polytrauma. J. Clin. Med. 2022 11 15 4599 10.3390/jcm11154599 35956214
    [Google Scholar]
  47. Kanda T. Tsukahara A. Ueki K. Sakai Y. Tani T. Nishimura A. Yamazaki T. Tamiya Y. Tada T. Hirota M. Hasegawa J. Funaoka H. Fujii H. Hatakeyama K. Diagnosis of ischemic small bowel disease by measurement of serum intestinal fatty acid-binding protein in patients with acute abdomen: A multicenter, observer-blinded validation study. J. Gastroenterol. 2011 46 4 492 500 10.1007/s00535‑011‑0373‑2 21298292
    [Google Scholar]
  48. Azer S.A. Intestinal Perforation. Emedicine 2006 April 12
    [Google Scholar]
  49. Horowitz J. Kukora J.S. Ritchie W.P. Jr All perforated ulcers are not alike. Ann. Surg. 1989 209 6 693 697 10.1097/00000658‑198906000‑00006 2730181
    [Google Scholar]
  50. Adriaanse M.P.M. Tack G.J. Passos V.L. Damoiseaux J.G.M.C. Schreurs M.W.J. van Wijck K. Riedl R.G. Masclee A.A.M. Buurman W.A. Mulder C.J.J. Vreugdenhil A.C.E. Serum I‐ FABP as marker for enterocyte damage in coeliac disease and its relation to villous atrophy and circulating autoantibodies. Aliment. Pharmacol. Ther. 2013 37 4 482 490 10.1111/apt.12194 23289539
    [Google Scholar]
  51. Gandini A. De Maayer T. Munien C. Bertrand K. Cairns R. Mayne A. Gededzha M.P. Mayne E.S. Intestinal fatty acid binding protein (I-FABP) and CXC3L1 evaluation as biomarkers for patients at high-risk for coeliac disease in Johannesburg, South Africa. Cytokine 2022 157 155945 10.1016/j.cyto.2022.155945 35841826
    [Google Scholar]
  52. Sarikaya M. Ergül B. Doğan Z. Filik L. Can M. Arslan L. Intestinal fatty acid binding protein (I-FABP) as a promising test for Crohn’s disease: A preliminary study. Clin. Lab. 2015 61 01+02/2015 87 91 10.7754/Clin.Lab.2014.140518 25807642
    [Google Scholar]
  53. Logan M. MacKinder M. Clark C.M. Kountouri A. Jere M. Ijaz U.Z. Hansen R. McGrogan P. Russell R.K. Gerasimidis K. Intestinal fatty acid binding protein is a disease biomarker in paediatric coeliac disease and Crohn’s disease. BMC Gastroenterol. 2022 22 1 260 10.1186/s12876‑022‑02334‑6 35606704
    [Google Scholar]
  54. Sun D.L. Cen Y.Y. Li S.M. Li W.M. Lu Q.P. Xu P.Y. Accuracy of the serum intestinal fatty-acid-binding protein for diagnosis of acute intestinal ischemia: A meta-analysis. Sci. Rep. 2016 6 1 34371 10.1038/srep34371 27681959
    [Google Scholar]
  55. Shaaban A.I.E. Alfqy O.A.E. Shaaban H.M.K. A-Maqsoud Y.H. Assar E.H. Potential role of serum intestinal fatty acid-binding protein as a marker for early prediction and diagnosis of necrotizing enterocolitis in preterm neonates. J. Indian Assoc. Pediatr. Surg. 2021 26 6 393 400 10.4103/jiaps.JIAPS_218_20 34912135
    [Google Scholar]
  56. Yang G. Wang Y. Jiang X. Diagnostic value of intestinal fatty-acid-binding protein in necrotizing enterocolitis: A systematic review and meta-analysis. Indian J. Pediatr. 2016 83 12-13 1410 1419 10.1007/s12098‑016‑2144‑9 27272048
    [Google Scholar]
  57. Dragoni G. Innocenti T. Galli A. Biomarkers of inflammation in inflammatory bowel disease: how long before abandoning single-marker approaches? Dig. Dis. 2021 39 3 190 203 10.1159/000511641 32942275
    [Google Scholar]
  58. Seethaler B. Basrai M. Neyrinck A.M. Nazare J.A. Walter J. Delzenne N.M. Bischoff S.C. Biomarkers for assessment of intestinal permeability in clinical practice. Am. J. Physiol. Gastrointest. Liver Physiol. 2021 321 1 G11 G17 10.1152/ajpgi.00113.2021 34009040
    [Google Scholar]
  59. Yao Y.M. Yu Y. Wu Y. Lu L.R. Sheng Z.Y. Plasma D (-)-lactate as a new marker for diagnosis of acute intestinal injury following ischemia-reperfusion. World J. Gastroenterol. 1997 3 4 225 227 10.3748/wjg.v3.i4.225 27053870
    [Google Scholar]
  60. Voth M. Duchene M. Auner B. Lustenberger T. Relja B. Marzi I. I-FABP is a novel marker for the detection of intestinal injury in severely injured trauma patients. World J. Surg. 2017 41 12 3120 3127 10.1007/s00268‑017‑4124‑2 28721572
    [Google Scholar]
  61. Khadaroo R.G. Fortis S. Salim S.Y. Streutker C. Churchill T.A. Zhang H. I-FABP as biomarker for the early diagnosis of acute mesenteric ischemia and resultant lung injury. PLoS One 2014 9 12 e115242 10.1371/journal.pone.0115242 25541714
    [Google Scholar]
  62. Wu C. Zhu X. Ren H. Tan F. Liu X. Intestinal fatty acid-binding protein as a biomarker for the diagnosis of strangulated intestinal obstruction: A meta-analysis. Open Med. 2021 16 1 264 273 10.1515/med‑2021‑0214 33623822
    [Google Scholar]
  63. Yeniocak S. Saraç F. Yazıcıoğlu M. Karabulut N. Ünal A. Yücetaş E. Koldaş M. Akkoç İ. Ekici M. Evrin T. The diagnostic values of ischemia-modified albumin in patients with acute abdominal pain and its role in differentiating acute abdomen. Emerg. Med. Int. 2020 2020 1 7 10.1155/2020/7925975 32509350
    [Google Scholar]
  64. Khurana S. Corbally M.T. Manning F. Armenise T. Kierce B. Kilty C. Glutathione S-transferase: A potential new marker of intestinal ischemia. J. Pediatr. Surg. 2002 37 11 1543 1548 10.1053/jpsu.2002.36181 12407536
    [Google Scholar]
  65. Maric S. Restin T. Muff J. Camargo S. Guglielmetti L. Holland-Cunz S. Crenn P. Vuille-dit-Bille R. Citrulline, biomarker of enterocyte functional mass and dietary supplement. Metabolism, transport, and current evidence for clinical use. Nutrients 2021 13 8 2794 10.3390/nu13082794 34444954
    [Google Scholar]
  66. Kartaram S. Mensink M. Teunis M. Schoen E. Witte G. Janssen Duijghuijsen L. Verschuren M. Mohrmann K. M’Rabet L. Knipping K. Wittink H. van Helvoort A. Garssen J. Witkamp R. Pieters R. van Norren K. Plasma citrulline concentration, a marker for intestinal functionality, reflects exercise intensity in healthy young men. Clin. Nutr. 2019 38 5 2251 2258 10.1016/j.clnu.2018.09.029 30340895
    [Google Scholar]
  67. Schellekens D.H.S.M. Reisinger K.W. Lenaerts K. Hadfoune M. Olde Damink S.W. Buurman W.A. Dejong C.H.C. Derikx J.P.M. SM22 a plasma biomarker for human transmural intestinal ischemia. Ann. Surg. 2018 268 1 120 126 10.1097/SLA.0000000000002278 28525410
    [Google Scholar]
  68. Montagnana M. Danese E. Lippi G. Biochemical markers of acute intestinal ischemia: Possibilities and limitations. Ann. Transl. Med. 2018 6 17 341 10.21037/atm.2018.07.22 30306080
    [Google Scholar]
  69. Ruscelli P. Renzi C. Polistena A. Sanguinetti A. Avenia N. Popivanov G. Cirocchi R. Lancia M. Gioia S. Tabola R. Clinical signs of retroperitoneal abscess from colonic perforation. Medicine 2018 97 45 e13176 10.1097/MD.0000000000013176 30407351
    [Google Scholar]
  70. Jones M.W. Kashyap S. Zabbo C.P. Bowel Perforation. Treasure Island, FL StatPearls Publishing 2021
    [Google Scholar]
  71. Whitehouse J.S. Weigelt J.A. Diagnostic peritoneal lavage: A review of indications, technique, and interpretation. Scand. J. Trauma Resusc. Emerg. Med. 2009 17 1 13 10.1186/1757‑7241‑17‑13 19267941
    [Google Scholar]
  72. Kittaka H. Akimoto H. Takeshita H. Funaoka H. Hazui H. Okamoto M. Kobata H. Ohishi Y. Usefulness of intestinal fatty acid-binding protein in predicting strangulated small bowel obstruction. PLoS One 2014 9 6 e99915 10.1371/journal.pone.0099915 24926782
    [Google Scholar]
  73. Norouzinia M. Chaleshi V. Alizadeh A.H.M. Zali M.R. Biomarkers in inflammatory bowel diseases: Insight into diagnosis, prognosis and treatment. Gastroenterol. Hepatol. Bed Bench 2017 10 3 155 167 29118930
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037311290240930054913
Loading
/content/journals/cpps/10.2174/0113892037311290240930054913
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: I-FABP ; intestinal membrane ; epithelial injury ; protein biomarker
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test