Skip to content
2000
Volume 26, Issue 2
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

Diet has emerged as a pivotal factor in the current time for diet-induced obesity (DIO). A diet overloaded with fats and carbohydrates and unhealthy dietary habits contribute to the development of DIO through several mechanisms. The prominent ones include the transition of normal gut microbiota to obese microbiota, under-expression of AMPK, and abnormally high levels of adipogenesis. DIO is the root of many diseases. The present review deals with various aspects of DIO and its target proteins that can be specifically used for its treatment. Also, the currently available treatment strategies have been explored. It was found that the expression of five proteins, namely, PPARγ, FTO, CDK4, 14-3-3 ζ protein, and Galectin-1, is upregulated in DIO. They can be used as potential targets for drug-designing studies. Thus, with these targets, the treatment strategy for DIO using natural bioactive compounds can be a safer alternative to medications and bariatric surgeries.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037329528240827180820
2024-09-02
2025-01-22
Loading full text...

Full text loading...

References

  1. KhateebS. AlbalawiA. AlkhedaideA. Diosgenin modulates oxidative stress and inflammation in high-fat diet-induced obesity in mice.Diabetes Metab. Syndr. Obes.2022151589159610.2147/DMSO.S35567735637860
    [Google Scholar]
  2. LiuZ. DuanZ. ZhangD. XiaoP. ZhangT. XuH. WangC.H. RaoG.W. GanJ. HuangY. YangC.G. DongZ. Structure–activity relationships and antileukemia effects of the tricyclic benzoic acid fto inhibitors.J. Med. Chem.20226515106381065410.1021/acs.jmedchem.2c0084835793358
    [Google Scholar]
  3. PepeR.B. LottenbergA.M. FujiwaraC.T. BeyrutiM. CintraD.E. MachadoR.M. RodriguesA. JensenN.S. CaldasA.P. FernandesA.E. RossoniC. MattosF. MotarelliJ.H. BressanJ. SaldanhaJ. BedaL.M. LavradorM.S. Del BoscoM. CruzP. CorreiaP.E. MaximinoP. PereiraS. FariaS.L. PiovacariS.M. Position statement on nutrition therapy for overweight and obesity: nutrition department of the Brazilian association for the study of obesity and metabolic syndrome (ABESO—2022).Diabetol. Metab. Syndr.202315112410.1186/s13098‑023‑01037‑637296485
    [Google Scholar]
  4. WangG. DiBariJ. BindE. SteffensA.M. MukherjeeJ. AzuineR.E. SinghG.K. HongX. JiY. JiH. PearsonC. ZuckermanB.S. ChengT.L. WangX. Association between maternal exposure to lead, maternal folate status, and intergenerational risk of childhood overweight and obesity.JAMA Netw. Open2019210e191234310.1001/jamanetworkopen.2019.1234331577354
    [Google Scholar]
  5. QuZ. ZhouJ. GuoP. WangJ. WangP. LiuL. WuM. WangP. LiuN. Association between environmental lead/cadmium co-exposure in drinking water and soil and type 2 diabetes mellitus/obesity in Southern China.Front. Public Health20221094192210.3389/fpubh.2022.94192236159247
    [Google Scholar]
  6. WangC-Y. LiaoJ.K. A mouse model of diet-induced obesity and insulin resistance.Meth. Molec. Bio.2012821421433
    [Google Scholar]
  7. OyindasolaK.O. Diet and Obesity.Psychology and Pathophysiological Outcomes of Eating.IntechOpen202110.5772/intechopen.98326
    [Google Scholar]
  8. van SonJ. KoekkoekL.L. La FleurS.E. SerlieM.J. NieuwdorpM. The role of the gut microbiota in the gut–brain axis in obesity: mechanisms and future implications.Int. J. Mol. Sci.2021226299310.3390/ijms2206299333804250
    [Google Scholar]
  9. DionysopoulouS. CharmandariE. BargiotaA. VlahosN.F. MastorakosG. ValsamakisG. The role of hypothalamic inflammation in diet-induced obesity and its association with cognitive and mood disorders.Nutrients202113249810.3390/nu1302049833546219
    [Google Scholar]
  10. WaferR. TandonP. MinchinJ.E. The role of peroxisome proliferator-activated receptor gamma (pparg) in adipogenesis: Applying knowledge from the fish aquaculture industry to biomedical research.Front. Endocrinol.2017810210.3389/fendo.2017.0010228588550
    [Google Scholar]
  11. Vidal-PuigA. Jimenez-LiñanM. LowellB.B. HamannA. HuE. SpiegelmanB. FlierJ.S. MollerD.E. Regulation of PPAR gamma gene expression by nutrition and obesity in rodents.J. Clin. Invest.199697112553256110.1172/JCI1187038647948
    [Google Scholar]
  12. McCannM.R. RatneswaranA. The role of PPARγ in childhood obesity-induced fractures.Genes Nutr.20191413110.1186/s12263‑019‑0653‑731798753
    [Google Scholar]
  13. AsuquoE.A. NwodoO.F. AssumptaA.C. OrizuU.N. OziamaraO.N. SolomonO.A. FTO gene expression in diet-induced obesity is downregulated by Solanum fruit supplementation.Open Life Sci.202217164165810.1515/biol‑2022‑006735800074
    [Google Scholar]
  14. ChurchC. MoirL. McMurrayF. GirardC. BanksG.T. TeboulL. WellsS. BrüningJ.C. NolanP.M. AshcroftF.M. CoxR.D. Overexpression of Fto leads to increased food intake and results in obesity.Nat. Genet.201042121086109210.1038/ng.71321076408
    [Google Scholar]
  15. IqbalN.J. LuZ. LiuS.M. SchwartzG.J. ChuaS. ZhuL. Cyclin-dependent kinase 4 is a preclinical target for diet-induced obesity.JCI Insight2018317e12300010.1172/jci.insight.12300030185666
    [Google Scholar]
  16. Benot-DominguezR. CiminiA. BaroneD. GiordanoA. PentimalliF. The emerging role of cyclin-dependent kinase inhibitors in treating diet-induced obesity: New opportunities for breast and ovarian cancers?Cancers20221411270910.3390/cancers1411270935681689
    [Google Scholar]
  17. AbellaA. DubusP. MalumbresM. RaneS.G. KiyokawaH. SicardA. VignonF. LanginD. BarbacidM. FajasL. Cdk4 promotes adipogenesis through PPARγ activation.Cell Metab.20052423924910.1016/j.cmet.2005.09.00316213226
    [Google Scholar]
  18. LimG.E. JohnsonJ.D. 14-3-3ζ: A numbers game in adipocyte function?Adipocyte20165223223710.1080/21623945.2015.112091327386155
    [Google Scholar]
  19. BaekJ.H. KimD.H. LeeJ. KimS.J. ChunK.H. Galectin-1 accelerates high-fat diet-induced obesity by activation of peroxisome proliferator-activated receptor gamma (PPARγ) in mice.Cell Death Dis.20211216610.1038/s41419‑020‑03367‑z33431823
    [Google Scholar]
  20. BrashierD.B. SharmaA.K. DahiyaN. SinghS.K. KhadkaA. Lorcaserin: A novel antiobesity drug.J. Pharmacol. Pharmacother.20145217517810.4103/0976‑500X.13015824799830
    [Google Scholar]
  21. KangJ.G. ParkC.Y. Anti-obesity drugs: A review about their effects and safety.Diabet. Metab. J.2012361132510.4093/dmj.2012.36.1.1322363917
    [Google Scholar]
  22. KleinS. RomijnJ.A. Obesity.Williams Textbook of Endocrinology.Elsevier20161633165910.1016/B978‑0‑323‑29738‑7.00036‑8
    [Google Scholar]
  23. TchangB. G. ArasM. KumarR. B. AronneL. J. Pharmacologic Treatment of Overweight and Obesity in AdultsSouth Dartmouth2021
    [Google Scholar]
  24. CoronaS.P. GeneraliD. Abemaciclib: A CDK4/6 inhibitor for the treatment of HR+/HER2- advanced breast cancer.Drug Des. Devel. Ther.20181232133010.2147/DDDT.S13778329497278
    [Google Scholar]
  25. BraalC.L. JongbloedE.M. WiltingS.M. MathijssenR.H. KoolenS.L. JagerA. Inhibiting CDK4/6 in breast cancer with palbociclib, ribociclib, and abemaciclib: similarities and differences.Drugs202181331733110.1007/s40265‑020‑01461‑233369721
    [Google Scholar]
  26. BramanteC.T. RaatzS. BombergE.M. OberleM.M. RyderJ.R. Cardiovascular risks and benefits of medications used for weight loss.Front. Endocrinol.20201088310.3389/fendo.2019.0088332010059
    [Google Scholar]
  27. LiZ. MaglioneM. TuW. MojicaW. ArterburnD. ShugarmanL.R. HiltonL. SuttorpM. SolomonV. ShekelleP.G. MortonS.C. Meta-analysis: pharmacologic treatment of obesity.Ann. Intern. Med.2005142753254610.7326/0003‑4819‑142‑7‑200504050‑0001215809465
    [Google Scholar]
  28. SharrettsJ. GalescuO. GomatamS. Andraca-CarreraE. HamppC. YanoffL. Cancer risk associated with lorcaserin — the fda’s review of the camellia-timi 61 trial.N. Engl. J. Med.2020383111000100210.1056/NEJMp200387332905671
    [Google Scholar]
  29. RugoH.S. HuoberJ. García-SáenzJ.A. MasudaN. SohnJ.H. AndreV.A. BarrigaS. CoxJ. GoetzM. Management of abemaciclib-associated adverse events in patients with hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer: safety analysis of MONARCH 2 and MONARCH 3.Oncologist2021261e53e6510.1002/onco.1353132955138
    [Google Scholar]
  30. National Institute of Diabetes and Digestive and Kidney Diseases.2020Available from: https://www.niddk.nih.gov/
  31. National Institute of Diabetes and Digestive and Kidney Diseases.2018Available from: https://www.niddk.nih.gov/
  32. PiniT. RaubenheimerD. SimpsonS.J. CreanA.J. Obesity and male reproduction; placing the western diet in context.Front. Endocrinol.20211262229210.3389/fendo.2021.62229233776921
    [Google Scholar]
  33. TaylorL.E. RamirezL.A. MusallJ.B. SullivanJ.C. Tipping the scales: Are females more at risk for obesity- and high-fat diet-induced hypertension and vascular dysfunction?Br. J. Pharmacol.2019176214226424210.1111/bph.1478331271650
    [Google Scholar]
  34. KwokS. AdamS. HoJ.H. IqbalZ. TurkingtonP. RazviS. Le RouxC.W. SoranH. SyedA.A. Obesity: A critical risk factor in the COVID -19 pandemic.Clin. Obes.2020106e1240310.1111/cob.1240332857454
    [Google Scholar]
  35. NohrE.A. WolffS. KirkegaardH. WuC. AndersenA.M. OlsenJ. BechB.H. Cause-specific stillbirth and neonatal death according to prepregnancy obesity and early gestational weight gain: a study in the danish national birth cohort.Nutrients2021135167610.3390/nu1305167634063336
    [Google Scholar]
  36. ThamK.W. AbdulG.R. CuaS.C. DeerochanawongC. FojasM. HockingS. LeeJ. NamT.Q. PathanF. SabooB. SoegondoS. SomasundaramN. YongA.M. AshkenasJ. WebsterN. OldfieldB. Obesity in South and Southeast Asia—A new consensus on care and management.Obes. Rev.2023242e1352010.1111/obr.1352036453081
    [Google Scholar]
  37. Bastías-PérezM. SerraD. HerreroL. Dietary options for rodents in the study of obesity.Nutrients20201211323410.3390/nu1211323433105762
    [Google Scholar]
  38. AtakanM.M. KoşarŞ.N. GüzelY. TinH.T. YanX. The role of exercise, diet, and cytokines in preventing obesity and improving adipose tissue.Nutrients2021135145910.3390/nu1305145933922998
    [Google Scholar]
  39. RakhraV. GalappaththyS.L. BulchandaniS. CabandugamaP.K. Obesity and the western diet: //////how we got here.Missouri Med.2020117653653833311784
    [Google Scholar]
  40. Brand-MillerJ.C. HoltS.H. PawlakD.B. McMillanJ. Glycemic index and obesity.Am. J. Clin. Nutr.2002761281S285S10.1093/ajcn/76/1.281S12081852
    [Google Scholar]
  41. OliveiraD.T. FernandesI.C. SousaG.G. SantosT.A.P. PaivaN.C. CarneiroC.M. EvangelistaE.A. BarbozaN.R. Guerra-SáR. High-sugar diet leads to obesity and metabolic diseases in ad libitum -fed rats irrespective of caloric intake.Arch. Endocrinol. Metab.2020641718110.20945/2359‑399700000019932187264
    [Google Scholar]
  42. AbdelR.G.F. Anti-obesity potential of natural products.Egypt. J. Chem.2022651032935810.21608/ejchem.2022.118996.5354
    [Google Scholar]
  43. PatiS. IrfanW. JameelA. AhmedS. ShahidR.K. Obesity and cancer: A current overview of epidemiology, pathogenesis, outcomes, and management.Cancers202315248510.3390/cancers1502048536672434
    [Google Scholar]
  44. MurphyE.A. VelazquezK.T. HerbertK.M. Influence of high-fat diet on gut microbiota.Curr. Opin. Clin. Nutr. Metab. Care201518551552010.1097/MCO.000000000000020926154278
    [Google Scholar]
  45. CoughlanK.A. ValentineR.J. RudermanN.B. SahaA.K. Nutrient excess in AMPK downregulation and insulin resistance.J. Endocrinol. Diabetes Obes.201311100826120590
    [Google Scholar]
  46. WangQ. SunJ. LiuM. ZhouY. ZhangL. LiY. The new role of amp-activated protein kinase in regulating fat metabolism and energy expenditure in adipose tissue.Biomolecules20211112175710.3390/biom1112175734944402
    [Google Scholar]
  47. StrableM.S. NtambiJ.M. Genetic control of de novo lipogenesis: role in diet-induced obesity.Crit. Rev. Biochem. Mol. Biol.201045319921410.3109/1040923100366750020218765
    [Google Scholar]
  48. LewandowskiP.A. Cameron-SmithD. JacksonC.J. KultysE.R. CollierG.R. The role of lipogenesis in the development of obesity and diabetes in Israeli sand rats (Psammomys obesus).J. Nutr.1998128111984198810.1093/jn/128.11.19849808653
    [Google Scholar]
  49. JakabJ. MiškićB. MikšićŠ. JuranićB. ĆosićV. SchwarzD. VčevA. Adipogenesis as a potential anti-obesity target: a review of pharmacological treatment and natural products.Diabetes Metab. Syndr. Obes.202114678310.2147/DMSO.S28118633447066
    [Google Scholar]
  50. StienstraR. DuvalC. MüllerM. KerstenS. PPARs, obesity, and inflammation.PPAR Res.200711010.1155/2007/9597417389767
    [Google Scholar]
  51. BattineniG. SagaroG.G. ChintalapudiN. AmentaF. TomassoniD. TayebatiS.K. Impact of obesity-induced inflammation on cardiovascular diseases (CVD).Int. J. Mol. Sci.2021229479810.3390/ijms2209479833946540
    [Google Scholar]
  52. ChadtA. ScherneckS. JoostH.-G. Al-HasaniH. Molecular links between obesity and diabetes.DiabesityMDText.com, IncSouth Dartmouth2018
    [Google Scholar]
  53. RohE. YooH.J. The role of adipose tissue lipolysis in diet-induced obesity: Focus on vimentin.Diabetes Metab. J.2021451434510.4093/dmj.2020.029333508908
    [Google Scholar]
  54. AhmadianM. DuncanR.E. JaworskiK. Sarkadi-NagyE. Sook SulH. Triacylglycerol metabolism in adipose tissue.Future Lipidol.20072222923710.2217/17460875.2.2.22919194515
    [Google Scholar]
  55. ZhouY. HamblyB.D. McLachlanC.S. FTO associations with obesity and telomere length.J. Biomed. Sci.20172416510.1186/s12929‑017‑0372‑628859657
    [Google Scholar]
  56. SousaL.G.O. MarshallA.G. NormanJ.E. FuquaJ.D. LiraV.A. RutledgeJ.C. BodineS.C. The effects of diet composition and chronic obesity on muscle growth and function.J. Appl. Physiol.2021130112413810.1152/japplphysiol.00156.202033211595
    [Google Scholar]
  57. HallJ.E. do CarmoJ.M. da SilvaA.A. WangZ. HallM.E. Obesity, kidney dysfunction and hypertension: mechanistic links.Nat. Rev. Nephrol.201915636738510.1038/s41581‑019‑0145‑431015582
    [Google Scholar]
  58. RenJ. WuN.N. WangS. SowersJ.R. ZhangY. Obesity cardiomyopathy: evidence, mechanisms, and therapeutic implications.Physiol. Rev.202110141745180710.1152/physrev.00030.202033949876
    [Google Scholar]
  59. HartleyA. AhmadI. The role of PPARγ in prostate cancer development and progression.Br. J. Cancer2023128694094510.1038/s41416‑022‑02096‑836510001
    [Google Scholar]
  60. SunJ. YuL. QuX. HuangT. The role of peroxisome proliferator-activated receptors in the tumor microenvironment, tumor cell metabolism, and anticancer therapy.Front. Pharmacol.202314118479410.3389/fphar.2023.118479437251321
    [Google Scholar]
  61. AzzamS.K. AlsafarH. SajiniA.A. FTO m6A demethylase in obesity and cancer: Implications and underlying molecular mechanisms.Int. J. Mol. Sci.2022237380010.3390/ijms2307380035409166
    [Google Scholar]
  62. BakerS.J. PoulikakosP.I. IrieH.Y. ParekhS. ReddyE.P. CDK4: a master regulator of the cell cycle and its role in cancer.Genes Cancer202213214510.18632/genesandcancer.22136051751
    [Google Scholar]
  63. WuA. WuB. GuoJ. LuoW. WuD. YangH. ZhenY. YuX. WangH. ZhouY. LiuZ. FangW. YangZ. Elevated expression of CDK4 in lung cancer.J. Transl. Med.2011913810.1186/1479‑5876‑9‑3821477379
    [Google Scholar]
  64. FadakaA.O. SamanthaS.N.R. BakareO.O. KleinA. MadieheA.M. MeyerM. Expression of cyclin-dependent kinases and their clinical significance with immune infiltrates could predict prognosis in colorectal cancer.Biotechnol. Rep.202129e00602e0060210.1016/j.btre.2021.e0060233732631
    [Google Scholar]
  65. PenningtonK.L. ChanT.Y. TorresM.P. AndersenJ.L. The dynamic and stress-adaptive signaling hub of 14-3-3: emerging mechanisms of regulation and context-dependent protein–protein interactions.Oncogene201837425587560410.1038/s41388‑018‑0348‑329915393
    [Google Scholar]
  66. CousinJ. CloningerM. The role of galectin-1 in cancer progression, and synthetic multivalent systems for the study of Galectin-1.Int. J. Mol. Sci.2016179156610.3390/ijms1709156627649167
    [Google Scholar]
  67. YamauchiT. WakiH. KamonJ. MurakamiK. MotojimaK. KomedaK. MikiH. KubotaN. TerauchiY. TsuchidaA. Tsuboyama-KasaokaN. YamauchiN. IdeT. HoriW. KatoS. FukayamaM. AkanumaY. EzakiO. ItaiA. NagaiR. KimuraS. TobeK. KagechikaH. ShudoK. KadowakiT. Inhibition of RXR and PPARγ ameliorates diet-induced obesity and type 2 diabetes.J. Clin. Invest.200110871001101310.1172/JCI1286411581301
    [Google Scholar]
  68. LiD. ZhangF. ZhangX. XueC. NamwanjeM. FanL. ReillyM.P. HuF. QiangL. Distinct functions of PPARγ isoforms in regulating adipocyte plasticity.Biochem. Biophys. Res. Commun.20164811-213213810.1016/j.bbrc.2016.10.15227818196
    [Google Scholar]
  69. HallJ.A. RamachandranD. RohH.C. DiSpiritoJ.R. BelchiorT. ZushinP.J.H. PalmerC. HongS. MinaA.I. LiuB. DengZ. AryalP. JacobsC. TenenD. BrownC.W. CharlesJ.F. ShulmanG.I. KahnB.B. TsaiL.T. RosenE.D. SpiegelmanB.M. BanksA.S. Obesity-linked PPARγ S273 phosphorylation promotes insulin resistance through growth differentiation factor 3.Cell Metab.2020324665675.e610.1016/j.cmet.2020.08.01632941798
    [Google Scholar]
  70. DiasM.M. BatistaF.A. TittanegroT.H. de OliveiraA.G. Le MaireA. TorresF.R. FilhoH.V. SilveiraL.R. FigueiraA.C. PPARγ S273 phosphorylation modifies the dynamics of coregulator proteins recruitment.Front. Endocrinol.20201156125610.3389/fendo.2020.56125633329381
    [Google Scholar]
  71. WeiJ. BhattacharyyaS. JainM. VargaJ. Regulation of matrix remodeling by peroxisome proliferator-activated receptor-γ: a novel link between metabolism and fibrogenesis.Open Rheumatol. J.20126110311510.2174/187431290120601010322802908
    [Google Scholar]
  72. ColleluoriG. VillarealD.T. Aging, obesity, sarcopenia and the effect of diet and exercise intervention.Exp. Gerontol.202115511156111156110.1016/j.exger.2021.11156134562568
    [Google Scholar]
  73. FuruhashiM. SaitohS. ShimamotoK. MiuraT. Fatty acid-binding protein 4 (FABP4): Pathophysiological insights and potent clinical biomarker of metabolic and cardiovascular diseases.Clin. Med. Insights Cardiol.201483233310.4137/CMC.S17067
    [Google Scholar]
  74. Rodríguez-CalvoR. GironaJ. AlegretJ.M. BosquetA. IbarretxeD. MasanaL. Role of the fatty acid-binding protein 4 in heart failure and cardiovascular disease.J. Endocrinol.20172333R173R18410.1530/JOE‑17‑003128420707
    [Google Scholar]
  75. CaiL. WangZ. JiA. MeyerJ.M. van der WesthuyzenD.R. Scavenger receptor CD36 expression contributes to adipose tissue inflammation and cell death in diet-induced obesity.PLoS One201275e3678510.1371/journal.pone.003678522615812
    [Google Scholar]
  76. JakobssonA. JörgensenJ.A. JacobssonA. Differential regulation of fatty acid elongation enzymes in brown adipocytes implies a unique role for Elovl3 during increased fatty acid oxidation.Am. J. Physiol. Endocrinol. Metab.20052894E517E52610.1152/ajpendo.00045.200515855229
    [Google Scholar]
  77. JonesJ.R. BarrickC. KimK.A. LindnerJ. BlondeauB. FujimotoY. ShiotaM. KestersonR.A. KahnB.B. MagnusonM.A. Deletion of PPARγ in adipose tissues of mice protects against high fat diet-induced obesity and insulin resistance.Proc. Natl. Acad. Sci. USA2005102176207621210.1073/pnas.030674310215833818
    [Google Scholar]
  78. LehrkeM. LazarM.A. The many faces of PPARgamma.Cell2005123699399910.1016/j.cell.2005.11.02616360030
    [Google Scholar]
  79. Medina-GomezG. GrayS. Vidal-PuigA. Adipogenesis and lipotoxicity: role of peroxisome proliferator-activated receptor γ (PPARγ) and PPARγcoactivator-1 (PGC1).Public Health Nutr.20071010A1132113710.1017/S136898000700061417903321
    [Google Scholar]
  80. LanN. LuY. ZhangY. PuS. XiH. NieX. LiuJ. YuanW. FTO – A common genetic basis for obesity and cancer.Front. Genet.20201155913810.3389/fgene.2020.55913833304380
    [Google Scholar]
  81. HanZ. NiuT. ChangJ. LeiX. ZhaoM. WangQ. ChengW. WangJ. FengY. ChaiJ. Crystal structure of the FTO protein reveals basis for its substrate specificity.Nature201046472921205120910.1038/nature0892120376003
    [Google Scholar]
  82. MizunoT.M. Fat mass and obesity associated (fto) gene and hepatic glucose and lipid metabolism.Nutrients20181011160010.3390/nu1011160030388740
    [Google Scholar]
  83. HuangC. ChenW. WangX. Studies on the fat mass and obesity-associated (FTO) gene and its impact on obesity-associated diseases.Genes Dis.20231062351236510.1016/j.gendis.2022.04.01437554175
    [Google Scholar]
  84. BourbourF. PourtaheriA. AbbasiK. HasanpourA.N. GholamalizadehM. HajipourA. AbdollahiS. BagheriS.E. AhmadzadehM. DoaeiS. HaghighianA. Interactions dietary components with expression level of breast cancer-related genes.Egypt. J. Med. Hum. Genet.202223116510.1186/s43042‑022‑00375‑w
    [Google Scholar]
  85. FischerJ. KochL. EmmerlingC. VierkottenJ. PetersT. BrüningJ.C. RütherU. Inactivation of the FTO gene protects from obesity.Nature2009458724089489810.1038/nature0784819234441
    [Google Scholar]
  86. WåhlénK. SjölinE. HoffstedtJ. The common rs9939609 gene variant of the fat mass- and obesity-associated gene FTO is related to fat cell lipolysis.J. Lipid Res.200849360761110.1194/jlr.M700448‑JLR20018048838
    [Google Scholar]
  87. KarraE. ChandaranaK. BatterhamR.L. The role of peptide YY in appetite regulation and obesity.J. Physiol.20095871192510.1113/jphysiol.2008.16426919064614
    [Google Scholar]
  88. WuR. GuoG. BiZ. LiuY. ZhaoY. ChenN. WangF. WangY. WangX. M6 a methylation modulates adipogenesis through JAK2-STAT3-C/EBPβ signaling.Biochim. Biophys. Acta. Gene Regul. Mech.20191862879680610.1016/j.bbagrm.2019.06.00831295563
    [Google Scholar]
  89. WangX. WuR. LiuY. ZhaoY. BiZ. YaoY. LiuQ. ShiH. WangF. WangY. M6 a MRNA methylation controls autophagy and adipogenesis by targeting Atg5 and Atg7.Autophagy20201671221123510.1080/15548627.2019.165961731451060
    [Google Scholar]
  90. ZhangY. GoldmanS. BaergaR. ZhaoY. KomatsuM. JinS. Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis.Proc. Natl. Acad. Sci. USA200910647198601986510.1073/pnas.090604810619910529
    [Google Scholar]
  91. GulatiP. CheungM.K. AntrobusR. ChurchC.D. HardingH.P. TungY.C. RimmingtonD. MaM. RonD. LehnerP.J. AshcroftF.M. CoxR.D. CollA.P. O’RahillyS. YeoG.S. Role for the obesity-related FTO gene in the cellular sensing of amino acids.Proc. Natl. Acad. Sci. USA201311072557256210.1073/pnas.122279611023359686
    [Google Scholar]
  92. WangX. HuangN. YangM. WeiD. TaiH. HanX. GongH. ZhouJ. QinJ. WeiX. ChenH. FangT. XiaoH. FTO is required for myogenesis by positively regulating mTOR-PGC-1α pathway-mediated mitochondria biogenesis.Cell Death Dis.201783e2702e270210.1038/cddis.2017.12228333151
    [Google Scholar]
  93. FerencK. PilžysT. GarbiczD. MarcinkowskiM. SkorobogatovO. DylewskaM. GajewskiZ. GrzesiukE. ZabielskiR. Intracellular and tissue specific expression of FTO protein in pig: changes with age, energy intake and metabolic status.Sci. Rep.20201011302910.1038/s41598‑020‑69856‑532747736
    [Google Scholar]
  94. TopacioB.R. ZatulovskiyE. CristeaS. XieS. TamboC.S. RubinS.M. SageJ. KõivomägiM. SkotheimJ.M. Cyclin D-Cdk4,6 drives cell-cycle progression via the retinoblastoma protein’s c-terminal helix.Mol. Cell201974475877010.1016/j.molcel.2019.03.02030982746
    [Google Scholar]
  95. DayP.J. CleasbyA. TickleI.J. O’ReillyM. CoyleJ.E. HoldingF.P. McMenaminR.L. YonJ. ChopraR. LengauerC. JhotiH. Crystal structure of human CDK4 in complex with a D-type cyclin.Proc. Natl. Acad. Sci. USA2009106114166417010.1073/pnas.080964510619237565
    [Google Scholar]
  96. BarquissauV. ZanouN. GellerS. Castillo-ArmengolJ. MarzettaF. HuberK. ZieglerD. Lopez-MejiaI. FernandezJ.B. RogerC. GuexN. PreitnerF. VanackerJ-M. FajasL. CDK4 deletion in mice prevents fat accumulation and increases endurance capacity through activation of estrogen-related receptor (err)-driven oxidative metabolism in skeletal muscle.bioRxiv20222022-0310.1101/2022.03.03.482783
    [Google Scholar]
  97. IqbalN.J. SchwartzG.J. ZhaoH. ZhuL. ChuaS.Jr Cyclin-dependent kinase 4/6 inhibitors require an arcuate-to-paraventricular hypothalamus melanocortin circuit to treat diet-induced obesity.Am. J. Physiol. Endocrinol. Metab.20213203E467E47410.1152/ajpendo.00386.202033356996
    [Google Scholar]
  98. OppongA.K. DialloK. RobillardF.I. Des RosiersC. LimG.E. Reducing 14-3-3ζ expression influences adipocyte maturity and impairs function.Am. J. Physiol. Endocrinol. Metab.20203191E117E13210.1152/ajpendo.00093.202032369418
    [Google Scholar]
  99. AitkenA. 14-3-3 proteins: A historic overview.Semin. Cancer Biol.200616316217210.1016/j.semcancer.2006.03.00516678438
    [Google Scholar]
  100. CornellB. Toyo-okaK. 14-3-3 proteins in brain development: neurogenesis, neuronal migration and neuromorphogenesis.Front. Mol. Neurosci.20171031810.3389/fnmol.2017.0031829075177
    [Google Scholar]
  101. NealC.L. YuD. 14-3-3ζ as a prognostic marker and therapeutic target for cancer.Expert Opin. Ther. Targets201014121343135410.1517/14728222.2010.53101121058923
    [Google Scholar]
  102. FanX. CuiL. ZengY. SongW. GaurU. YangM. 14-3-3 proteins are on the crossroads of cancer, aging, and age-related neurodegenerative disease.Int. J. Mol. Sci.20192014351810.3390/ijms2014351831323761
    [Google Scholar]
  103. LimG.E. AlbrechtT. PiskeM. SaraiK. LeeJ.T.C. RamshawH.S. SinhaS. GuthridgeM.A. Acker-PalmerA. LopezA.F. CleeS.M. NislowC. JohnsonJ.D. 14-3-3ζ coordinates adipogenesis of visceral fat.Nat. Commun.201561767110.1038/ncomms867126220403
    [Google Scholar]
  104. MansourA.A. KrautterF. ZhiZ. IqbalA.J. RecioC. The interplay of galectins-1, -3, and -9 in the immune-inflammatory response underlying cardiovascular and metabolic disease.Cardiovasc. Diabetol.202221125310.1186/s12933‑022‑01690‑736403025
    [Google Scholar]
  105. FrykE. SilvaV.R. JanssonP.A. Galectin-1 in obesity and type 2 diabetes.Metabolites2022121093010.3390/metabo1210093036295832
    [Google Scholar]
  106. HawsR. BradyS. DavisE. FlettyK. YuanG. GordonG. StewartM. YanovskiJ. Effect of setmelanotide, a melanocortin-4 receptor agonist, on obesity in Bardet-Biedl syndrome.Diabetes Obes. Metab.202022112133214010.1111/dom.1413332627316
    [Google Scholar]
  107. AngelidiA.M. BelangerM.J. KokkinosA. KoliakiC.C. MantzorosC.S. Novel noninvasive approaches to the treatment of obesity: from pharmacotherapy to gene therapy.Endocr. Rev.202243350755710.1210/endrev/bnab03435552683
    [Google Scholar]
  108. RubanA. StoenchevK. AshrafianH. TeareJ. Current treatments for obesity.Clin. Med. (Lond.)201919320521210.7861/clinmedicine.19‑3‑20531092512
    [Google Scholar]
  109. ChavdaV.P. AjabiyaJ. TeliD. BojarskaJ. ApostolopoulosV. Tirzepatide, a new era of dual-targeted treatment for diabetes and obesity: a mini-review.Molecules20222713431510.3390/molecules2713431535807558
    [Google Scholar]
  110. YerevanianA. SoukasA.A. Metformin: mechanisms in human obesity and weight loss.Curr. Obes. Rep.20198215616410.1007/s13679‑019‑00335‑330874963
    [Google Scholar]
  111. ShahM. NunesM.R. StearnsV. CDK4/6 inhibitors: Game changers in the management of hormone receptor–positive advanced breast cancer?Oncology201832521622229847850
    [Google Scholar]
  112. BurkeL.E. WangJ. Treatment strategies for overweight and obesity.J. Nurs. Scholarsh.201143436837510.1111/j.1547‑5069.2011.01424.x22018175
    [Google Scholar]
  113. JacobJ. IsaacR. Behavioral therapy for management of obesity.Indian J. Endocrinol. Metab.2012161283210.4103/2230‑8210.9118022276250
    [Google Scholar]
  114. CastelnuovoG. PietrabissaG. ManzoniG.M. CattivelliR. RossiA. NovelliM. VaralloG. MolinariE. Cognitive behavioral therapy to aid weight loss in obese patients: current perspectives.Psychol. Res. Behav. Manag.20171016517310.2147/PRBM.S11327828652832
    [Google Scholar]
  115. AlbaughV.L. AbumradN.N. Surgical treatment of obesity.F1000 Res.2018761710.12688/f1000research.13515.129904577
    [Google Scholar]
  116. LiaoJ. YinY. ZhongJ. ChenY. ChenY. WenY. CaiZ. Bariatric surgery and health outcomes: An umbrella analysis.Front. Endocrinol.202213101661310.3389/fendo.2022.101661336387921
    [Google Scholar]
  117. TakY.J. LeeS.Y. Long-term efficacy and safety of anti-obesity treatment: Where do we stand?Curr. Obes. Rep.2021101143010.1007/s13679‑020‑00422‑w33410104
    [Google Scholar]
  118. KimS. ChenJ. ChengT. GindulyteA. HeJ. HeS. LiQ. ShoemakerB.A. ThiessenP.A. YuB. ZaslavskyL. ZhangJ. BoltonE.E. PubChem 2023 update.Nucleic Acids Res.202351D1D1373D138010.1093/nar/gkac95636305812
    [Google Scholar]
  119. JooJ.I. KimD.H. ChoiJ.W. YunJ.W. Proteomic analysis for antiobesity potential of capsaicin on white adipose tissue in rats fed with a high fat diet.J. Proteome Res.2010962977298710.1021/pr901175w20359164
    [Google Scholar]
  120. CleinL.J. BenadyD.R. Case of diethylpropion addiction.BMJ19622530245645610.1136/bmj.2.5302.45613879863
    [Google Scholar]
  121. StanciuI.M. ParosanuA.I. NitipirC. An overview of the safety profile and clinical impact of cdk4/6 inhibitors in breast cancer—a systematic review of randomized phase ii and iii clinical trials.Biomolecules2023139142210.3390/biom1309142237759823
    [Google Scholar]
  122. OkayasuK. KawasakiT. KumagaiJ. MiyazakiY. Clinicoradiological course of abemaciclib-induced pneumonitis with histology findings.BMJ Case Rep.2023165e25434910.1136/bcr‑2022‑25434937130630
    [Google Scholar]
  123. SeeligerD. de GrootB.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina.J. Comput. Aided Mol. Des.201024541742210.1007/s10822‑010‑9352‑620401516
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037329528240827180820
Loading

  • Article Type:
    Review Article
Keyword(s): 14-3-3 ζ protein; CDK4; Diet-induced obesity; FTO; Galectin-1; PPARγ
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test