Skip to content
2000
Volume 26, Issue 2
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

Klotho, an anti-aging protein, plays a vital role in diverse biological functions, such as regulating calcium and vitamin D levels, preventing chronic fibrosis, acting as an antioxidant and anti-inflammatory agent, safeguarding against cardiovascular and neurodegenerative conditions, as well as exerting anti-apoptotic, anti-senescence effects. Additionally, it contributes to metabolic processes associated with diabetes and exhibits anti-cancer properties. This protein is commonly expressed in organs, such as kidneys, brain, pancreas, parathyroid glands, ovaries, and testes. Recent research has highlighted its significance in human fertility. This narrative review provides insight into the involvement of Klotho protein in male and female fertility, as well as its potential role in managing human infertility in the future.

In this study, a search was conducted on literature spanning from November 1997 to June 2024 across multiple databases, including PUBMED, SCOPUS, and Google Scholar, focusing on Klotho proteins. The search utilized keywords, such as “discovery of Klotho proteins,” “Biological functions of Klotho,” “Klotho in female fertility,” “Klotho and PCOS,” “Klotho and cryopreservation,” and “Klotho in male infertility.” Inclusion criteria comprised full-length original or review articles, as well as abstracts, discussing the role of Klotho protein in human fertility, published in English in various peer-reviewed journals. Exclusion criteria involved articles published in languages other than English. Hence, due to its anti-aging characteristics, Klotho protein presents potential roles in male and female fertility and holds promising prospects for reproductive medicine. Further, it holds the potential to become a valuable asset in addressing infertility concerns for both males and females.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037329291240827113808
2024-09-02
2025-01-22
Loading full text...

Full text loading...

References

  1. Kuro-oM. MatsumuraY. AizawaH. KawaguchiH. SugaT. UtsugiT. OhyamaY. KurabayashiM. KanameT. KumeE. IwasakiH. IidaA. Shiraki-IidaT. NishikawaS. NagaiR. NabeshimaY. Mutation of the mouse klotho gene leads to a syndrome resembling ageing.Nature19973906655455110.1038/362859363890
    [Google Scholar]
  2. KimJ.H. HwangK.H. ParkK.S. KongI.D. ChaS.K. Biological role of anti-aging protein klotho.J. Lifestyle Med.2015511610.15280/jlm.2015.5.1.126528423
    [Google Scholar]
  3. Kuro-oM. The Klotho proteins in health and disease.Nat. Rev. Nephrol.2019151274410.1038/s41581‑018‑0078‑330455427
    [Google Scholar]
  4. ItoS. FujimoriT. HayashizakiY. NabeshimaY. Identification of a novel mouse membrane-bound family 1 glycosidase-like protein, which carries an atypical active site structure.Biochim. Biophys. Acta Gene Struct. Expr.20021576334134510.1016/S0167‑4781(02)00281‑612084582
    [Google Scholar]
  5. XuY. SunZ. Molecular basis of Klotho: From gene to function in aging.Endocr. Rev.201536217419310.1210/er.2013‑107925695404
    [Google Scholar]
  6. MatsumuraY. AizawaH. Shiraki-IidaT. NagaiR. Kuro-oM. NabeshimaY. Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein.Biochem. Biophys. Res. Commun.1998242362663010.1006/bbrc.1997.80199464267
    [Google Scholar]
  7. PlaceT.L. McGinnisL.K. Klotho: spinning up some new hype for decreased ovarian reserve research?Fertil. Steril.20201146117410.1016/j.fertnstert.2020.08.143433041052
    [Google Scholar]
  8. OlejnikA. FranczakA. Krzywonos-ZawadzkaA. Kałużna-OleksyM. Bil-LulaI. The biological role of klotho protein in the development of cardiovascular diseases.BioMed Res. Int.2018201811710.1155/2018/517194530671457
    [Google Scholar]
  9. ZouD. WuW. HeY. MaS. GaoJ. The role of klotho in chronic kidney disease.BMC Nephrol.201819128510.1186/s12882‑018‑1094‑z30348110
    [Google Scholar]
  10. HuM.C. ShiM. GillingsN. FloresB. TakahashiM. Kuro-oM. MoeO.W. Recombinant α-Klotho may be prophylactic and therapeutic for acute to chronic kidney disease progression and uremic cardiomyopathy.Kidney Int.20179151104111410.1016/j.kint.2016.10.03428131398
    [Google Scholar]
  11. HuM.C. ShiizakiK. Kuro-oM. MoeO.W. Fibroblast growth factor 23 and Klotho: physiology and pathophysiology of an endocrine network of mineral metabolism.Annu. Rev. Physiol.201375150353310.1146/annurev‑physiol‑030212‑18372723398153
    [Google Scholar]
  12. JiangJ. LiuQ. MaoY. WangN. LinW. LiL. LiangJ. ChenG. HuangH. WenJ. Klotho reduces the risk of osteoporosis in postmenopausal women: A cross-sectional study of the National Health and Nutrition Examination Survey (NHANES).BMC Endocr. Disord.202323115110.1186/s12902‑023‑01380‑937452417
    [Google Scholar]
  13. Prud’hommeG.J. KurtM. WangQ. Pathobiology of the Klotho Antiaging Protein and Therapeutic Considerations.Frontiers in Aging2022393133110.3389/fragi.2022.93133135903083
    [Google Scholar]
  14. UrakawaI. YamazakiY. ShimadaT. IijimaK. HasegawaH. OkawaK. FujitaT. FukumotoS. YamashitaT. Klotho converts canonical FGF receptor into a specific receptor for FGF23.Nature2006444712077077410.1038/nature0531517086194
    [Google Scholar]
  15. Ben-DovI.Z. GalitzerH. Lavi-MoshayoffV. GoetzR. Kuro-oM. MohammadiM. SirkisR. Naveh-ManyT. SilverJ. The parathyroid is a target organ for FGF23 in rats.J. Clin. Invest.2007117124003400810.1172/JCI3240917992255
    [Google Scholar]
  16. LimK. GroenA. MolostvovG. LuT. LilleyK.S. SneadD. JamesS. WilkinsonI.B. TingS. HsiaoL.L. HiemstraT.F. ZehnderD. α-klotho expression in human tissues.J. Clin. Endocrinol. Metab.201510010E1308E131810.1210/jc.2015‑180026280509
    [Google Scholar]
  17. DesjardinsL. LiabeufS. RenardC. LengletA. LemkeH.D. ChoukrounG. DruekeT.B. MassyZ.A. European Uremic Toxin (EUTox) Work Group FGF23 is independently associated with vascular calcification but not bone mineral density in patients at various CKD stages.Osteoporos. Int.20122372017202510.1007/s00198‑011‑1838‑022109743
    [Google Scholar]
  18. ZhouX. ChenK. LeiH. SunZ. Klotho gene deficiency causes salt-sensitive hypertension via monocyte chemotactic protein-1/CC chemokine receptor 2-mediated inflammation.J. Am. Soc. Nephrol.201526112113210.1681/ASN.201310103324904083
    [Google Scholar]
  19. CitterioL. Delli CarpiniS. LupoliS. BrioniE. SimoniniM. FontanaS. ZagatoL. MessaggioE. BarlassinaC. CusiD. ManuntaP. LanzaniC. Klotho gene in human salt-sensitive hypertension.Clin. J. Am. Soc. Nephrol.202015337538310.2215/CJN.0862071931992575
    [Google Scholar]
  20. TanakaS. OkusaM.D. Crosstalk between the nervous system and the kidney.Kidney Int.202097346647610.1016/j.kint.2019.10.03232001065
    [Google Scholar]
  21. LandryT. ShooksterD. HuangH. Circulating α-klotho regulates metabolism via distinct central and peripheral mechanisms.Metabolism202112115481910.1016/j.metabol.2021.15481934153302
    [Google Scholar]
  22. Donate-CorreaJ. Martín-NúñezE. DelgadoN.P. de FuentesM.M. ArduanA.O. Mora-FernándezC. Navarro GonzálezJ.F. Implications of Fibroblast growth factor/Klotho system in glucose metabolism and diabetes.Cytokine Growth Factor Rev.201628717710.1016/j.cytogfr.2015.12.00326706229
    [Google Scholar]
  23. TangA. ZhangY. WuL. LinY. LvL. ZhaoL. XuB. HuangY. LiM. Klotho’s impact on diabetic nephropathy and its emerging connection to diabetic retinopathy.Front. Endocrinol.202314118016910.3389/fendo.2023.118016937143722
    [Google Scholar]
  24. GuH. JiangW. YouN. HuangX. LiY. PengX. DongR. WangZ. ZhuY. WuK. LiJ. ZhengL. Soluble klotho improves hepatic glucose and lipid homeostasis in type 2 diabetes.Mol. Ther. Methods Clin. Dev.20201881182310.1016/j.omtm.2020.08.00232953932
    [Google Scholar]
  25. Martín-NúñezE. Donate-CorreaJ. Muros-de-FuentesM. Mora-FernándezC. Navarro-GonzálezJ.F. Implications of Klotho in vascular health and disease.World J. Cardiol.20146121262126910.4330/wjc.v6.i12.126225548616
    [Google Scholar]
  26. KogaS. IkedaS. AkashiR. YonekuraT. KawanoH. MaemuraK. Serum soluble Klotho is inversely related to coronary artery calcification assessed by intravascular ultrasound in patients with stable coronary artery disease.J. Cardiol.202177658358910.1016/j.jjcc.2020.11.01433303310
    [Google Scholar]
  27. Martín-NúñezE. Donate-CorreaJ. FerriC. López-CastilloÁ. Delgado-MolinosA. Hernández-CarballoC. Pérez-DelgadoN. Rodríguez-RamosS. Cerro-LópezP. TaguaV.G. Mora-FernándezC. Navarro-GonzálezJ.F. Association between serum levels of Klotho and inflammatory cytokines in cardiovascular disease: A case-control study.Aging20201221952196410.18632/aging.10273431986490
    [Google Scholar]
  28. XiaW. ZhangA. JiaZ. GuJ. ChenH. Klotho contributes to pravastatin effect on suppressing IL-6 production in endothelial cells.Mediators Inflamm.20161610.1155/2016/219321027034587
    [Google Scholar]
  29. MotaJ. LimaA.M.M. GomesJ.I.S. Souza de AndradeM. BritoH.O. SilvaM.M.A.L. Faustino-RochaA.I. OliveiraP.A. LopesF.F. Gil da CostaR.M. Klotho in cancer: Potential diagnostic and prognostic applications.Diagnostics20231321335710.3390/diagnostics1321335737958253
    [Google Scholar]
  30. QiaoY. LiuF. PengY. WangP. MaB. LiL. SiC. WangX. ZhangM. SongF. Association of serum Klotho levels with cancer and cancer mortality: Evidence from National Health and Nutrition Examination Survey.Cancer Med.20231221922193410.1002/cam4.502735841322
    [Google Scholar]
  31. SachdevaA. GougeJ. KontovounisiosC. NikolaouS. AshworthA. LimK. ChongI. Klotho and the treatment of human malignancies.Cancers2020126166510.3390/cancers1206166532585905
    [Google Scholar]
  32. LigumskyH. Merenbakh-LaminK. Keren-KhadmyN. WolfI. RubinekT. The role of α-klotho in human cancer: molecular and clinical aspects.Oncogene202241404487449710.1038/s41388‑022‑02440‑536038662
    [Google Scholar]
  33. LiX.X. HuangL.Y. PengJ.J. LiangL. ShiD.B. ZhengH.T. CaiS.J. Klotho suppresses growth and invasion of colon cancer cells through inhibition of IGF1R-mediated PI3K/AKT pathway.Int. J. Oncol.201445261161810.3892/ijo.2014.243024818842
    [Google Scholar]
  34. WangL. WangX. WangX. JieP. LuH. ZhangS. LinX. LamE.K. CuiY. YuJ. JinH. Klotho is silenced through promoter hypermethylation in gastric cancer.Am. J. Cancer Res.20111111111921969138
    [Google Scholar]
  35. TangX. FanZ. WangY. JiG. WangM. LinJ. HuangS. Expression of klotho and β-catenin in esophageal squamous cell carcinoma, and their clinicopathological and prognostic significance.Dis. Esophagus201629320721410.1111/dote.1228925287007
    [Google Scholar]
  36. JiangB. GuY. ChenY. Identification of novel predictive markers for the prognosis of pancreatic ductal adenocarcinoma.Cancer Invest.201432621822510.3109/07357907.2014.90558624745611
    [Google Scholar]
  37. TangX. WangY. FanZ. JiG. WangM. LinJ. HuangS. MeltzerS.J. Klotho: A tumor suppressor and modulator of the Wnt/β-catenin pathway in human hepatocellular carcinoma.Lab. Invest.201696219720510.1038/labinvest.2015.8626237271
    [Google Scholar]
  38. WolfI. Levanon-CohenS. BoseS. LigumskyH. SredniB. KanetyH. Kuro-oM. KarlanB. KaufmanB. KoefflerH.P. RubinekT. Klotho: A tumor suppressor and a modulator of the IGF-1 and FGF pathways in human breast cancer.Oncogene200827567094710510.1038/onc.2008.29218762812
    [Google Scholar]
  39. GiganteM. LucarelliG. DivellaC. NettiG.S. PontrelliP. CafieroC. GrandalianoG. CastellanoG. RutiglianoM. StalloneG. BettocchiC. DitonnoP. GesualdoL. BattagliaM. RanieriE. Soluble serum αklotho is a potential predictive marker of disease progression in clear cell renal cell carcinoma.Medicine20159445e191710.1097/MD.000000000000191726559258
    [Google Scholar]
  40. YanY. WangY. XiongY. LinX. ZhouP. ChenZ. Reduced Klotho expression contributes to poor survival rates in human patients with ovarian cancer, and overexpression of Klotho inhibits the progression of ovarian cancer partly via the inhibition of systemic inflammation in nude mice.Mol. Med. Rep.20171541777178510.3892/mmr.2017.617228259911
    [Google Scholar]
  41. WangY.Y. LinY.H. WuV.C. LinY.H. HuangC.Y. KuW.C. SunC.Y. Decreased klotho expression causes accelerated decline of male fecundity through oxidative injury in murine testis.Antioxidants2023129167110.3390/antiox1209167137759974
    [Google Scholar]
  42. KimB. YoonH. KimT. LeeS. Role of klotho as a modulator of oxidative stress associated with ovarian tissue cryopreservation.Int. J. Mol. Sci.202122241354710.3390/ijms22241354734948343
    [Google Scholar]
  43. ToyamaR. FujimoriT. NabeshimaY. ItohY. TsujiY. OsamuraR.Y. NabeshimaY.I. Impaired regulation of gonadotropins leads to the atrophy of the female reproductive system in klotho-deficient mice.Endocrinology2006147112012910.1210/en.2005‑042916179415
    [Google Scholar]
  44. OliverR. PillarisettyL.S. Anatomy, abdomen and pelvis, ovary corpus luteum.StatPearls.Treasure Island, FLStatPearls Publishing2024
    [Google Scholar]
  45. AgarwalA. Aponte-MelladoA. PremkumarB.J. ShamanA. GuptaS. The effects of oxidative stress on female reproduction: A review.Reprod. Biol. Endocrinol.20121014910.1186/1477‑7827‑10‑4922748101
    [Google Scholar]
  46. XuX. HaoY. ZhongQ. HangJ. ZhaoY. QiaoJ. Low Klotho level related to aging is associated with diminished ovarian reserve.Fertil. Steril.202011461250125510.1016/j.fertnstert.2020.06.03533153705
    [Google Scholar]
  47. TakemuraT. OkabeM. Serum α-klotho concentrations during preimplantation can predict aging or quality of human oocytes and clinical pregnancy rates.Springerplus2016515310.1186/s40064‑016‑1706‑726835233
    [Google Scholar]
  48. LiuT. LiuY. HuangY. ChenJ. YuZ. ChenC. LaiL. miR-15b induces premature ovarian failure in mice via inhibition of α-Klotho expression in ovarian granulosa cells.Free Radic. Biol. Med.201914138339210.1016/j.freeradbiomed.2019.07.01031310795
    [Google Scholar]
  49. IdreesM. KumarV. KhanA.M. JooM.D. LeeK.W. SohnS.H. KongI.K. Cycloastragenol activation of telomerase improves β-Klotho protein level and attenuates age-related malfunctioning in ovarian tissues.Mech. Ageing Dev.202320911175610.1016/j.mad.2022.11175636462538
    [Google Scholar]
  50. SongY. YeW. XieT. YangY. LuoX. ZhouL. Klotho is a prognostic indicator of oocytes qualities in polycystic ovary syndrome.Research Square202210.21203/rs.3.rs‑1579305/v1
    [Google Scholar]
  51. YeW. XiaS. XieT. YeH. YangY. SunY. CaiJ. LuoX. ZhouL. SongY. Klotho accelerates the progression of polycystic ovary syndrome through promoting granulosa cell apoptosis and inflammation.Biol. Reprod.2024ioae094Epub ahead of print10.1093/biolre/ioae09438874314
    [Google Scholar]
  52. RodriguesJ.K. NavarroP.A. ZelinskiM.B. StoufferR.L. XuJ. Direct actions of androgens on the survival, growth and secretion of steroids and anti-Mullerian hormone by individual macaque follicles during three-dimensional culture.Hum. Reprod.201530366467410.1093/humrep/deu33525567619
    [Google Scholar]
  53. ZengX. ZhongQ. LiM. LiuY. longS. XieY. MoZ. Androgen increases klotho expression via the androgen receptor-mediated pathway to induce GCs apoptosis.J. Ovarian Res.20231611010.1186/s13048‑022‑01087‑w36641458
    [Google Scholar]
  54. MaoZ. FanL. YuQ. LuoS. WuX. TangJ. KangG. TangL. Abnormality of klotho signaling is involved in polycystic ovary syndrome.Reprod. Sci.201825337238310.1177/193371911771512928673204
    [Google Scholar]
  55. Rivas LeonelE.C. LucciC.M. AmorimC.A. Cryopreservation of human ovarian tissue: A review.Transfus. Med. Hemother.201946317318110.1159/00049905431244585
    [Google Scholar]
  56. CaoB. QinJ. PanB. QaziI.H. YeJ. FangY. ZhouG. Oxidative stress and oocyte cryopreservation: Recent advances in mitigation strategies involving antioxidants.Cells20221122357310.3390/cells1122357336429002
    [Google Scholar]
  57. MauchartP. VassR.A. NagyB. SulyokE. BódisJ. KovácsK. Oxidative stress in assisted reproductive techniques, with a focus on an underestimated risk factor.Curr. Issues Mol. Biol.20234521272128610.3390/cimb4502008336826028
    [Google Scholar]
  58. ShiY.Q. ZhuX.T. ZhangS.N. MaY.F. HanY.H. JiangY. ZhangY.H. Premature ovarian insufficiency: A review on the role of oxidative stress and the application of antioxidants.Front. Endocrinol.202314117248110.3389/fendo.2023.117248137600717
    [Google Scholar]
  59. KimB. LeeS.M. ParkS.J. LeeS. KimT. Role of klotho and n-acetylcysteine in oxidative stress associated with the vitrification of ovarian tissue cytoprotective function of klotho in cryopreservation.Tissue Eng. Regen. Med.202320463764610.1007/s13770‑023‑00556‑737351787
    [Google Scholar]
  60. TremellenK. Oxidative stress and male infertility—a clinical perspective.Hum. Reprod. Update200814324325810.1093/humupd/dmn00418281241
    [Google Scholar]
  61. BishtS. FaiqM. TolahunaseM. DadaR. Oxidative stress and male infertility.Nat. Rev. Urol.201714847048510.1038/nrurol.2017.6928508879
    [Google Scholar]
  62. AlahmarA. Role of oxidative stress in male infertility: An updated review.J. Hum. Reprod. Sci.201912141810.4103/jhrs.JHRS_150_1831007461
    [Google Scholar]
  63. BøllehuusH.L. KaludjerovicJ. NielsenJ.E. RehfeldA. PoulsenN.N. IdeN. SkakkebaekN.E. FrederiksenH. JuulA. LanskeB. BlombergJ.M. Influence of FGF23 and Klotho on male reproduction: Systemic vs direct effects.FASEB J.2020349124361244910.1096/fj.202000061RR32729975
    [Google Scholar]
  64. GloverF. SullivanE. MulloyE. BelladelliF. Del GiudiceF. EisenbergM.L. The relationship between klotho, testosterone, and sexual health parameters among US adult men.J. Endocrinol. Invest.202347352353310.1007/s40618‑023‑02163‑837648906
    [Google Scholar]
  65. ZhangZ. QiuS. HuangX. JinK. ZhouX. LinT. ZouX. YangQ. YangL. WeiQ. Association between testosterone and serum soluble α-klotho in U.S. males: A cross-sectional study.BMC Geriatr.202222157010.1186/s12877‑022‑03265‑335820842
    [Google Scholar]
  66. XuC. MessinaA. SommE. MiraouiH. KinnunenT. AciernoJ.Jr NiederländerN.J. BouillyJ. DwyerA.A. SidisY. CassatellaD. SykiotisG.P. QuintonR. De GeyterC. DirlewangerM. SchwitzgebelV. ColeT.R. ToogoodA.A. KirkJ.M.W. PlummerL. AlbrechtU. CrowleyW.F.Jr MohammadiM. Tena-SempereM. PrevotV. PitteloudN. KLB, encoding β-Klotho, is mutated in patients with congenital hypogonadotropic hypogonadism.EMBO Mol. Med.20179101379139710.15252/emmm.20160737628754744
    [Google Scholar]
  67. Cidade-RodriguesC. ChavesC. CunhaF. MartinhoM. AlmeidaM. KLB gene mutations - A rare cause of hypogonadotropic hypogonadism.Endocrine Abstracts20228110.1530/endoabs.81.RC4.4
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037329291240827113808
Loading
/content/journals/cpps/10.2174/0113892037329291240827113808
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test