Skip to content
2000
image of Ferritin Hinders Ferroptosis in Non-Tumorous Diseases: Regulatory Mechanisms and Potential Consequences

Abstract

Ferritin, as an iron storage protein, has the potential to inhibit ferroptosis by reducing excess intracellular free iron concentrations and lipid reactive oxygen species (ROS). An insufficient amount of ferritin is one of the conditions that can lead to ferroptosis through the Fenton reaction mediated by ferrous iron. Consequently, upregulation of ferritin at the transcriptional or posttranscriptional level may inhibit ferroptosis. In this review, we have discussed the essential role of ferritin in ferroptosis and the regulatory mechanism of ferroptosis in ferritin-deficient individuals. The description of the regulatory factors governing ferritin and its properties in regulating ferroptosis as underlying mechanisms for the pathologies of diseases will allow potential therapeutic approaches to be developed.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037315874240826112422
2024-09-04
2024-11-22
Loading full text...

Full text loading...

References

  1. Bogdan A.R. Miyazawa M. Hashimoto K. Tsuji Y. Regulators of iron homeostasis: New players in metabolism, cell death, and disease. Trends Biochem. Sci. 2016 41 3 274 286 10.1016/j.tibs.2015.11.012 26725301
    [Google Scholar]
  2. Bradley J.M. Le Brun N.E. Moore G.R. Ferritins: Furnishing proteins with iron. J. Biol. Inorg. Chem. 2016 21 1 13 28 10.1007/s00775‑016‑1336‑0 26825805
    [Google Scholar]
  3. Dixon S.J. Lemberg K.M. Lamprecht M.R. Skouta R. Zaitsev E.M. Gleason C.E. Patel D.N. Bauer A.J. Cantley A.M. Yang W.S. Morrison B. III Stockwell B.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012 149 5 1060 1072 10.1016/j.cell.2012.03.042 22632970
    [Google Scholar]
  4. Mumbauer S. Pascual J. Kolotuev I. Hamaratoglu F. Ferritin heavy chain protects the developing wing from reactive oxygen species and ferroptosis. PLoS Genet. 2019 15 9 e1008396 10.1371/journal.pgen.1008396 31568497
    [Google Scholar]
  5. Zeng X. An H. Yu F. Wang K. Zheng L. Zhou W. Bao Y. Yang J. Shen N. Huang D. Benefits of iron chelators in the treatment of Parkinson’s disease. Neurochem. Res. 2021 46 5 1239 1251 10.1007/s11064‑021‑03262‑9 33646533
    [Google Scholar]
  6. Zhang Z. Yao Z. Wang L. Ding H. Shao J. Chen A. Zhang F. Zheng S. Activation of ferritinophagy is required for the RNA-binding protein ELAVL1/HuR to regulate ferroptosis in hepatic stellate cells. Autophagy 2018 14 12 2083 2103 10.1080/15548627.2018.1503146 30081711
    [Google Scholar]
  7. Zhang Z. Guo M. Li Y. Shen M. Kong D. Shao J. Ding H. Tan S. Chen A. Zhang F. Zheng S. RNA-binding protein ZFP36/TTP protects against ferroptosis by regulating autophagy signaling pathway in hepatic stellate cells. Autophagy 2020 16 8 1482 1505 10.1080/15548627.2019.1687985 31679460
    [Google Scholar]
  8. Fang X. Cai Z. Wang H. Han D. Cheng Q. Zhang P. Gao F. Yu Y. Song Z. Wu Q. An P. Huang S. Pan J. Chen H.Z. Chen J. Linkermann A. Min J. Wang F. Loss of cardiac ferritin H facilitates cardiomyopathy via Slc7a11-mediated ferroptosis. Circ. Res. 2020 127 4 486 501 10.1161/CIRCRESAHA.120.316509 32349646
    [Google Scholar]
  9. Li X. Zou Y. Fu Y.Y. Xing J. Wang K.Y. Wan P.Z. Zhai X.Y. A-lipoic acid alleviates folic acid-induced renal damage through inhibition of ferroptosis. Front. Physiol. 2021 12 680544 10.3389/fphys.2021.680544 34630132
    [Google Scholar]
  10. Ni S. Yuan Y. Qian Z. Zhong Z. Lv T. Kuang Y. Yu B. Hypoxia inhibits RANKL-induced ferritinophagy and protects osteoclasts from ferroptosis. Free Radic. Biol. Med. 2021 169 271 282 10.1016/j.freeradbiomed.2021.04.027 33895289
    [Google Scholar]
  11. Yang R.Z. Xu W.N. Zheng H.L. Zheng X.F. Li B. Jiang L.S. Jiang S.D. Involvement of oxidative stress‐induced annulus fibrosus cell and nucleus pulposus cell ferroptosis in intervertebral disc degeneration pathogenesis. J. Cell. Physiol. 2021 236 4 2725 2739 10.1002/jcp.30039 32892384
    [Google Scholar]
  12. Yoshida M. Minagawa S. Araya J. Sakamoto T. Hara H. Tsubouchi K. Hosaka Y. Ichikawa A. Saito N. Kadota T. Sato N. Kurita Y. Kobayashi K. Ito S. Utsumi H. Wakui H. Numata T. Kaneko Y. Mori S. Asano H. Yamashita M. Odaka M. Morikawa T. Nakayama K. Iwamoto T. Imai H. Kuwano K. Involvement of cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis. Nat. Commun. 2019 10 1 3145 10.1038/s41467‑019‑10991‑7 31316058
    [Google Scholar]
  13. Islam Q.T. Sayers D.E. Theil E.C. Gorun S.M. A comparison of an undecairon(III) complex with the ferritin iron core. J. Inorg. Biochem. 1989 36 1 51 62 10.1016/0162‑0134(89)80012‑1 2746221
    [Google Scholar]
  14. Rui T. Wang H. Li Q. Cheng Y. Gao Y. Fang X. Ma X. Chen G. Gao C. Gu Z. Song S. Zhang J. Wang C. Wang Z. Wang T. Zhang M. Min J. Chen X. Tao L. Wang F. Luo C. Deletion of ferritin H in neurons counteracts the protective effect of melatonin against traumatic brain injury‐induced ferroptosis. J. Pineal Res. 2021 70 2 e12704 10.1111/jpi.12704 33206394
    [Google Scholar]
  15. Tian Y. Lu J. Hao X. Li H. Zhang G. Liu X. Li X. Zhao C. Kuang W. Chen D. Zhu M. FTH1 inhibits ferroptosis through ferritinophagy in the 6-OHDA model of Parkinson’s disease. Neurotherapeutics 2020 17 4 1796 1812 10.1007/s13311‑020‑00929‑z 32959272
    [Google Scholar]
  16. Levi S. Corsi B. Bosisio M. Invernizzi R. Volz A. Sanford D. Arosio P. Drysdale J. A human mitochondrial ferritin encoded by an intronless gene. J. Biol. Chem. 2001 276 27 24437 24440 10.1074/jbc.C100141200 11323407
    [Google Scholar]
  17. Drysdale J. Arosio P. Invernizzi R. Cazzola M. Volz A. Corsi B. Biasiotto G. Levi S. Mitochondrial ferritin: A new player in iron metabolism. Blood Cells Mol. Dis. 2002 29 3 376 383 10.1006/bcmd.2002.0577 12547228
    [Google Scholar]
  18. Santambrogio P. Levi S. Arosio P. Palagi L. Vecchio G. Lawson D.M. Yewdall S.J. Artymiuk P.J. Harrison P.M. Jappelli R. Evidence that a salt bridge in the light chain contributes to the physical stability difference between heavy and light human ferritins. J. Biol. Chem. 1992 267 20 14077 14083 10.1016/S0021‑9258(19)49681‑6 1629207
    [Google Scholar]
  19. Bhowmick S. D’Mello V. Caruso D. Abdul-Muneer P.M. Traumatic brain injury-induced downregulation of Nrf2 activates inflammatory response and apoptotic cell death. J. Mol. Med. (Berl.) 2019 97 12 1627 1641 10.1007/s00109‑019‑01851‑4 31758217
    [Google Scholar]
  20. Fan Z. Wirth A-K. Chen D. Wruck C.J. Rauh M. Buchfelder M. Savaskan N. Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis. Oncogenesis 2017 6 8 e371 10.1038/oncsis.2017.65 28805788
    [Google Scholar]
  21. Wang Z.Z. Xu H.C. Zhou H.X. Zhang C.K. Li B.M. He J.H. Ni P.S. Yu X.M. Liu Y.Q. Li F.H. Long-term detraining reverses the improvement of lifelong exercise on skeletal muscle ferroptosis and inflammation in aging rats: Fiber-type dependence of the Keap1/Nrf2 pathway. Biogerontology 2023 24 5 753 769 10.1007/s10522‑023‑10042‑1 37289374
    [Google Scholar]
  22. Zhao Y. Zhang R. Wang Z. Chen Z. Wang G. Guan S. Lu J. Melatonin prevents against ethanol-induced liver injury by mitigating ferroptosis via targeting brain and muscle ARNT-like 1 in mice liver and HepG2 cells. J. Agric. Food Chem. 2022 70 40 12953 12967 10.1021/acs.jafc.2c04337 36166594
    [Google Scholar]
  23. Yan N. Xu Z. Qu C. Zhang J. Dimethyl fumarate improves cognitive deficits in chronic cerebral hypoperfusion rats by alleviating inflammation, oxidative stress, and ferroptosis via NRF2/ARE/NF-κB signal pathway. Int. Immunopharmacol. 2021 98 107844 10.1016/j.intimp.2021.107844 34153667
    [Google Scholar]
  24. Sun X. Ou Z. Chen R. Niu X. Chen D. Kang R. Tang D. Activation of the p62‐Keap1‐NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology 2016 63 1 173 184 10.1002/hep.28251 26403645
    [Google Scholar]
  25. Zhao Y. Lu J. Mao A. Zhang R. Guan S. Autophagy inhibition plays a protective role in ferroptosis induced by alcohol via the p62–Keap1–Nrf2 pathway. J. Agric. Food Chem. 2021 69 33 9671 9683 10.1021/acs.jafc.1c03751 34388345
    [Google Scholar]
  26. Ye Z. Li C. Liu S. Liang H. Feng J. Lin D. Chen Y. Peng S. Bu L. Tao E. Jing X. Liang Y. Dl-3-n-butylphthalide activates Nrf2, inhibits ferritinophagy, and protects MES23.5 dopaminergic neurons from ferroptosis. Chem. Biol. Interact. 2023 382 110604 10.1016/j.cbi.2023.110604 37315914
    [Google Scholar]
  27. Feng Q. Yang Y. Qiao Y. Zheng Y. Yu X. Liu F. Wang H. Zheng B. Pan S. Ren K. Liu D. Liu Z. Quercetin ameliorates diabetic kidney injury by inhibiting ferroptosis via activating Nrf2/HO-1 signaling pathway. Am. J. Chin. Med. 2023 51 4 997 1018 10.1142/S0192415X23500465 37046368
    [Google Scholar]
  28. Qaisiya M. Coda Zabetta C.D. Bellarosa C. Tiribelli C. Bilirubin mediated oxidative stress involves antioxidant response activation via Nrf2 pathway. Cell. Signal. 2014 26 3 512 520 10.1016/j.cellsig.2013.11.029 24308969
    [Google Scholar]
  29. Yang C. Wu A. Tan L. Tang D. Chen W. Lai X. Gu K. Chen J. Chen D. Tang Q. Epigallocatechin-3-gallate alleviates liver oxidative damage caused by iron overload in mice through inhibiting ferroptosis. Nutrients 2023 15 8 1993 10.3390/nu15081993 37111212
    [Google Scholar]
  30. Ye L. Xu Y. Wang L. Zhang C. Hu P. Tong S. Liu Z. Tian D. Downregulation of CYP2E1 is associated with poor prognosis and tumor progression of gliomas. Cancer Med. 2021 10 22 8100 8113 10.1002/cam4.4320 34612013
    [Google Scholar]
  31. Liu Z. Lv X. Song E. Song Y. Fostered Nrf2 expression antagonizes iron overload and glutathione depletion to promote resistance of neuron-like cells to ferroptosis. Toxicol. Appl. Pharmacol. 2020 407 115241 10.1016/j.taap.2020.115241 32937103
    [Google Scholar]
  32. Caggiano R. Cattaneo F. Moltedo O. Esposito G. Perrino C. Trimarco B. Ammendola R. Faraonio R. miR‐128 is implicated in stress responses by targeting MAFG in skeletal muscle cells. Oxid. Med. Cell. Longev. 2017 2017 1 9308310 10.1155/2017/9308310 29138682
    [Google Scholar]
  33. Itoh K. Chiba T. Takahashi S. Ishii T. Igarashi K. Katoh Y. Oyake T. Hayashi N. Satoh K. Hatayama I. Yamamoto M. Nabeshima Y. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 1997 236 2 313 322 10.1006/bbrc.1997.6943 9240432
    [Google Scholar]
  34. Huang B.W. Ray P.D. Iwasaki K. Tsuji Y. Transcriptional regulation of the human ferritin gene by coordinated regulation of Nrf2 and protein arginine methyltransferases PRMT1 and PRMT4. FASEB J. 2013 27 9 3763 3774 10.1096/fj.12‑226043 23699174
    [Google Scholar]
  35. Wang J. Zhao J. Cui X. Mysona B.A. Navneet S. Saul A. Ahuja M. Lambert N. Gazaryan I.G. Thomas B. Bollinger K.E. Smith S.B. The molecular chaperone sigma 1 receptor mediates rescue of retinal cone photoreceptor cells via modulation of NRF2. Free Radic. Biol. Med. 2019 134 604 616 10.1016/j.freeradbiomed.2019.02.001 30743048
    [Google Scholar]
  36. Bai T. Lei P. Zhou H. Liang R. Zhu R. Wang W. Zhou L. Sun Y. Sigma‐1 receptor protects against ferroptosis in hepatocellular carcinoma cells. J. Cell. Mol. Med. 2019 23 11 7349 7359 10.1111/jcmm.14594 31507082
    [Google Scholar]
  37. Bai T. Wang S. Zhao Y. Zhu R. Wang W. Sun Y. Haloperidol, a sigma receptor 1 antagonist, promotes ferroptosis in hepatocellular carcinoma cells. Biochem. Biophys. Res. Commun. 2017 491 4 919 925 10.1016/j.bbrc.2017.07.136 28756230
    [Google Scholar]
  38. Ohira M. Seki N. Nagase T. Ishikawa K. Nomura N. Ohara O. Characterization of a human homolog (BACH1) of the mouse Bach1 gene encoding a BTB-basic leucine zipper transcription factor and its mapping to chromosome 21q22.1. Genomics 1998 47 2 300 306 10.1006/geno.1997.5080 9479503
    [Google Scholar]
  39. Yu Z. He H. Chen Y. Ji Q. Sun M. A novel ferroptosis related gene signature is associated with prognosis in patients with ovarian serous cystadenocarcinoma. Sci. Rep. 2021 11 1 11486 10.1038/s41598‑021‑90126‑5 34075060
    [Google Scholar]
  40. Nishizawa H. Matsumoto M. Shindo T. Saigusa D. Kato H. Suzuki K. Sato M. Ishii Y. Shimokawa H. Igarashi K. Ferroptosis is controlled by the coordinated transcriptional regulation of glutathione and labile iron metabolism by the transcription factor BACH1. J. Biol. Chem. 2020 295 1 69 82 10.1074/jbc.RA119.009548 31740582
    [Google Scholar]
  41. Sun J. Brand M. Zenke Y. Tashiro S. Groudine M. Igarashi K. Heme regulates the dynamic exchange of Bach1 and NF-E2-related factors in the Maf transcription factor network. Proc. Natl. Acad. Sci. USA 2004 101 6 1461 1466 10.1073/pnas.0308083100 14747657
    [Google Scholar]
  42. Sun J. Hoshino H. Takaku K. Nakajima O. Muto A. Suzuki H. Tashiro S. Takahashi S. Shibahara S. Alam J. Taketo M.M. Yamamoto M. Igarashi K. Hemoprotein Bach1 regulates enhancer availability of heme oxygenase-1 gene. EMBO J. 2002 21 19 5216 5224 10.1093/emboj/cdf516 12356737
    [Google Scholar]
  43. Zhang X. Yu K. Ma L. Qian Z. Tian X. Miao Y. Niu Y. Xu X. Guo S. Yang Y. Wang Z. Xue X. Gu C. Fang W. Sun J. Yu Y. Wang J. Endogenous glutamate determines ferroptosis sensitivity via ADCY10-dependent YAP suppression in lung adenocarcinoma. Theranostics 2021 11 12 5650 5674 10.7150/thno.55482 33897873
    [Google Scholar]
  44. Zhang J. Zheng Y. Wang Y. Wang J. Sang A. Song X. Li X. YAP1 alleviates sepsis-induced acute lung injury via inhibiting ferritinophagy-mediated ferroptosis. Front. Immunol. 2022 13 884362 10.3389/fimmu.2022.884362 35979359
    [Google Scholar]
  45. Qi X. Song A. Ma M. Wang P. Zhang X. Lu C. Zhang J. Zheng S. Jin H. Curcumol inhibits ferritinophagy to restrain hepatocyte senescence through YAP/NCOA4 in non‐alcoholic fatty liver disease. Cell Prolif. 2021 54 9 e13107 10.1111/cpr.13107 34346124
    [Google Scholar]
  46. Liang C. Zhu D. Xia W. Hong Z. Wang Q.S. Sun Y. Yang Y.C. Han S.Q. Tang L.L. Lou J. Wu M.M. Zhang Z.R. Inhibition of YAP by lenvatinib in endothelial cells increases blood pressure through ferroptosis. Biochim. Biophys. Acta Mol. Basis Dis. 2023 1869 1 166586 10.1016/j.bbadis.2022.166586 36374802
    [Google Scholar]
  47. Zhang X. Sun F. Qiao Y. Zheng W. Liu Y. Chen Y. Wu Q. Liu X. Zhu G. Chen Y. Yu Y. Pan Q. Wang J. TFCP2 is required for yap-dependent transcription to stimulate liver malignancy. Cell Rep. 2017 21 5 1227 1239 10.1016/j.celrep.2017.10.017 29091762
    [Google Scholar]
  48. Niu X. Han P. Liu J. Chen Z. Ma X. Zhang T. Li B. Ma X. Regulation of Hippo/YAP signaling pathway ameliorates cochlear hair cell injury by regulating ferroptosis. Tissue Cell 2023 82 102051 10.1016/j.tice.2023.102051 36889225
    [Google Scholar]
  49. Andrews G.K. Regulation of metallothionein gene expression by oxidative stress and metal ions. Biochem. Pharmacol. 2000 59 1 95 104 10.1016/S0006‑2952(99)00301‑9 10605938
    [Google Scholar]
  50. Chen P.H. Wu J. Ding C.K.C. Lin C.C. Pan S. Bossa N. Xu Y. Yang W.H. Mathey-Prevot B. Chi J.T. Kinome screen of ferroptosis reveals a novel role of ATM in regulating iron metabolism. Cell Death Differ. 2020 27 3 1008 1022 10.1038/s41418‑019‑0393‑7 31320750
    [Google Scholar]
  51. Li S. Wang M. Wang Y. Guo Y. Tao X. Wang X. Cao Y. Tian S. Li Q. p53-mediated ferroptosis is required for 1-methyl-4-phenylpyridinium-induced senescence of PC12 cells. Toxicol. In Vitro 2021 73 105146 10.1016/j.tiv.2021.105146 33737050
    [Google Scholar]
  52. Li M. Zhang J. Jiang L. Wang W. Feng X. Liu M. Yang D. Neuroprotective effects of morroniside from Cornus officinalis sieb. Et zucc against Parkinson’s disease via inhibiting oxidative stress and ferroptosis. BMC Complement Med Ther 2023 23 1 218 10.1186/s12906‑023‑03967‑0 37393274
    [Google Scholar]
  53. Liu L. Yang S. Wang H. α‐Lipoic acid alleviates ferroptosis in the MPP + ‐induced PC12 cells via activating the PI3K/Akt/Nrf2 pathway. Cell Biol. Int. 2021 45 2 422 431 10.1002/cbin.11505 33241887
    [Google Scholar]
  54. Tang X. Li Z. Yu Z. Li J. Zhang J. Wan N. Zhang J. Cao J. Effect of curcumin on lung epithelial injury and ferroptosis induced by cigarette smoke. Hum. Exp. Toxicol. 2021 40 S753 S762 10.1177/09603271211059497 34787501
    [Google Scholar]
  55. Ma S. Henson E.S. Chen Y. Gibson S.B. Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis. 2016 7 7 e2307 10.1038/cddis.2016.208 27441659
    [Google Scholar]
  56. Shimizu M. Inoue N. Kuroda M. Irabu H. Takakura M. Kaneda H. Sugimoto N. Ohta K. Yachie A. Serum ferritin as an indicator of the development of encephalopathy in enterohemorrhagic Escherichia coli-induced hemolytic uremic syndrome. Clin. Exp. Nephrol. 2017 21 6 1083 1087 10.1007/s10157‑017‑1391‑z 28283851
    [Google Scholar]
  57. Yang M. Lu Z. Li F. Shi F. Zhan F. Zhao L. Li Y. Li J. Lin L. Qin Z. Escherichia coli induced ferroptosis in red blood cells of grass carp (Ctenopharyngodon idella ). Fish Shellfish Immunol. 2021 112 159 167 10.1016/j.fsi.2020.09.036 33017637
    [Google Scholar]
  58. Das S.K. DesAulniers J. Dyck J.R.B. Kassiri Z. Oudit G.Y. Resveratrol mediates therapeutic hepatic effects in acquired and genetic murine models of iron‐overload. Liver Int. 2016 36 2 246 257 10.1111/liv.12893 26077449
    [Google Scholar]
  59. Li T. Tan Y. Ouyang S. He J. Liu L. Resveratrol protects against myocardial ischemia-reperfusion injury via attenuating ferroptosis. Gene 2022 808 145968 10.1016/j.gene.2021.145968 34530090
    [Google Scholar]
  60. Iwasaki K. Miwa Y. Haneda M. Kuzuya T. Ogawa H. Onishi A. Kobayashi T. AMP-activated protein kinase as a promoting factor, but complement and thrombin as limiting factors for acquisition of cytoprotection: Implications for induction of accommodation. Transpl. Int. 2013 26 11 1138 1148 10.1111/tri.12186 24047401
    [Google Scholar]
  61. Lee Y.J. Lim S.S. Baek B.J. An J.M. Nam H.S. Woo K.M. Cho M.K. Kim S.H. Lee S.H. Nickel(II)-induced nasal epithelial toxicity and oxidative mitochondrial damage. Environ. Toxicol. Pharmacol. 2016 42 76 84 10.1016/j.etap.2016.01.005 26809061
    [Google Scholar]
  62. Chen H. Davidson T. Singleton S. Garrick M.D. Costa M. Nickel decreases cellular iron level and converts cytosolic aconitase to iron-regulatory protein 1 in A549 cells. Toxicol. Appl. Pharmacol. 2005 206 3 275 287 10.1016/j.taap.2004.11.011 16039939
    [Google Scholar]
  63. Wei L. Zuo Z. Yang Z. Yin H. Yang Y. Fang J. Cui H. Du Z. Ouyang P. Chen X. Chen J. Geng Y. Zhu Y. Chen Z. Huang C. Wang F. Guo H. Mitochondria damage and ferroptosis involved in Ni-induced hepatotoxicity in mice. Toxicology 2022 466 153068 10.1016/j.tox.2021.153068 34921910
    [Google Scholar]
  64. Li G. Li X. Dong J. Han Y. Electroacupuncture ameliorates cerebral ischemic injury by inhibiting ferroptosis. Front. Neurol. 2021 12 619043 10.3389/fneur.2021.619043 33763013
    [Google Scholar]
  65. Lu J. Liu X. Tian Y. Li H. Ren Z. Liang S. Zhang G. Zhao C. Li X. Wang T. Chen D. Kuang W. Zhu M. Moxibustion exerts a neuroprotective effect through antiferroptosis in Parkinson’s disease. Evid. Based Complement. Alternat. Med. 2019 2019 1 10 10.1155/2019/2735492 31467572
    [Google Scholar]
  66. Gray N.K. Hentze M.W. Iron regulatory protein prevents binding of the 43S translation pre-initiation complex to ferritin and eALAS mRNAs. EMBO J. 1994 13 16 3882 3891 10.1002/j.1460‑2075.1994.tb06699.x 8070415
    [Google Scholar]
  67. Rouault T.A. Hentze M.W. Caughman S.W. Harford J.B. Klausner R.D. Binding of a cytosolic protein to the iron-responsive element of human ferritin messenger RNA. Science 1988 241 4870 1207 1210 10.1126/science.3413484 3413484
    [Google Scholar]
  68. Hentze M.W. Caughman S.W. Rouault T.A. Barriocanal J.G. Dancis A. Harford J.B. Klausner R.D. Identification of the iron-responsive element for the translational regulation of human ferritin mRNA. Science 1987 238 4833 1570 1573 10.1126/science.3685996 3685996
    [Google Scholar]
  69. Piccinelli P. Samuelsson T. Evolution of the iron-responsive element. RNA 2007 13 7 952 966 10.1261/rna.464807 17513696
    [Google Scholar]
  70. Chen G.Q. Benthani F.A. Wu J. Liang D. Bian Z.X. Jiang X. Artemisinin compounds sensitize cancer cells to ferroptosis by regulating iron homeostasis. Cell Death Differ. 2020 27 1 242 254 10.1038/s41418‑019‑0352‑3 31114026
    [Google Scholar]
  71. Dev S. Kumari S. Singh N. Kumar Bal S. Seth P. Mukhopadhyay C.K. Role of extracellular Hydrogen peroxide in regulation of iron homeostasis genes in neuronal cells: Implication in iron accumulation. Free Radic. Biol. Med. 2015 86 78 89 10.1016/j.freeradbiomed.2015.05.025 26006106
    [Google Scholar]
  72. Rogers J.T. Venkataramani V. Washburn C. Liu Y. Tummala V. Jiang H. Smith A. Cahill C.M. A role for amyloid precursor protein translation to restore iron homeostasis and ameliorate lead (Pb) neurotoxicity. J. Neurochem. 2016 138 3 479 494 10.1111/jnc.13671 27206843
    [Google Scholar]
  73. Wingert R.A. Galloway J.L. Barut B. Foott H. Fraenkel P. Axe J.L. Weber G.J. Dooley K. Davidson A.J. Schmidt B. Paw B.H. Shaw G.C. Kingsley P. Palis J. Schubert H. Chen O. Kaplan J. Zon L.I. Deficiency of glutaredoxin 5 reveals Fe–S clusters are required for vertebrate haem synthesis. Nature 2005 436 7053 1035 1039 10.1038/nature03887 16110529
    [Google Scholar]
  74. Camaschella C. Campanella A. De Falco L. Boschetto L. Merlini R. Silvestri L. Levi S. Iolascon A. The human counterpart of zebrafish shiraz shows sideroblastic-like microcytic anemia and iron overload. Blood 2007 110 4 1353 1358 10.1182/blood‑2007‑02‑072520 17485548
    [Google Scholar]
  75. Lee J. You J.H. Shin D. Roh J.L. Inhibition of glutaredoxin 5 predisposes cisplatin-resistant head and neck cancer cells to ferroptosis. Theranostics 2020 10 17 7775 7786 10.7150/thno.46903 32685019
    [Google Scholar]
  76. Florek M. Bauer N. Janich P. Wilsch-Braeuninger M. Fargeas C.A. Marzesco A.M. Ehninger G. Thiele C. Huttner W.B. Corbeil D. Prominin-2 is a cholesterol-binding protein associated with apical and basolateral plasmalemmal protrusions in polarized epithelial cells and released into urine. Cell Tissue Res. 2007 328 1 31 47 10.1007/s00441‑006‑0324‑z 17109118
    [Google Scholar]
  77. Brown C.W. Amante J.J. Chhoy P. Elaimy A.L. Liu H. Zhu L.J. Baer C.E. Dixon S.J. Mercurio A.M. Prominin2 drives ferroptosis resistance by stimulating iron export. Dev. Cell 2019 51 5 575 586.e4 10.1016/j.devcel.2019.10.007 31735663
    [Google Scholar]
  78. Brown C.W. Chhoy P. Mukhopadhyay D. Karner E.R. Mercurio A.M. Targeting prominin2 transcription to overcome ferroptosis resistance in cancer. EMBO Mol. Med. 2021 13 8 e13792 10.15252/emmm.202013792 34223704
    [Google Scholar]
  79. Li X. Si W. Li Z. Tian Y. Liu X. Ye S. Huang Z. Ji Y. Zhao C. Hao X. Chen D. Zhu M. miR‑335 promotes ferroptosis by targeting ferritin heavy chain 1 in in vivo and in vitro models of Parkinson’s disease. Int. J. Mol. Med. 2021 47 4 61 10.3892/ijmm.2021.4894 33649797
    [Google Scholar]
  80. Shpyleva S.I. Tryndyak V.P. Kovalchuk O. Starlard-Davenport A. Chekhun V.F. Beland F.A. Pogribny I.P. Role of ferritin alterations in human breast cancer cells. Breast Cancer Res. Treat. 2011 126 1 63 71 10.1007/s10549‑010‑0849‑4 20390345
    [Google Scholar]
  81. Chekhun S.V. Lukyanova N.Y. Shvets Y.V. Burlaka A.P. Buchinska L.G. Significance of ferritin expression in formation of malignant phenotype of human breast cancer cells. Exp. Oncol. 2014 36 3 179 183 25265351
    [Google Scholar]
  82. Gao M. Monian P. Pan Q. Zhang W. Xiang J. Jiang X. Ferroptosis is an autophagic cell death process. Cell Res. 2016 26 9 1021 1032 10.1038/cr.2016.95 27514700
    [Google Scholar]
  83. Santana-Codina N. Mancias J.D. The role of NCOA4-mediated ferritinophagy in health and disease. Pharmaceuticals (Basel) 2018 11 4 114 10.3390/ph11040114 30360520
    [Google Scholar]
  84. Masaldan S. Clatworthy S.A.S. Gamell C. Meggyesy P.M. Rigopoulos A.T. Haupt S. Haupt Y. Denoyer D. Adlard P.A. Bush A.I. Cater M.A. Iron accumulation in senescent cells is coupled with impaired ferritinophagy and inhibition of ferroptosis. Redox Biol. 2018 14 100 115 10.1016/j.redox.2017.08.015 28888202
    [Google Scholar]
  85. Hou W. Xie Y. Song X. Sun X. Lotze M.T. Zeh H.J. III Kang R. Tang D. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 2016 12 8 1425 1428 10.1080/15548627.2016.1187366 27245739
    [Google Scholar]
  86. Park E. Chung S.W. ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation. Cell Death Dis. 2019 10 11 822 10.1038/s41419‑019‑2064‑5 31659150
    [Google Scholar]
  87. Cardot-Ruffino V. Chauvet V. Caligaris C. Bertrand-Chapel A. Chuvin N. Pommier R.M. Valcourt U. Vincent D. Martel S. Aires S. Kaniewski B. Dubus P. Cassier P. Sentis S. Bartholin L. Generation of an Fsp1 (fibroblast‐specific protein 1)‐Flpo transgenic mouse strain. Genesis 2020 58 5 e23359 10.1002/dvg.23359 32191380
    [Google Scholar]
  88. Wei S. Qiu T. Yao X. Wang N. Jiang L. Jia X. Tao Y. Wang Z. Pei P. Zhang J. Zhu Y. Yang G. Liu X. Liu S. Sun X. Arsenic induces pancreatic dysfunction and ferroptosis via mitochondrial ROS-autophagy-lysosomal pathway. J. Hazard. Mater. 2020 384 121390 10.1016/j.jhazmat.2019.121390 31735470
    [Google Scholar]
  89. Mancias J.D. Pontano Vaites L. Nissim S. Biancur D.E. Kim A.J. Wang X. Liu Y. Goessling W. Kimmelman A.C. Harper J.W. Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated by iron dependent HERC2-mediated proteolysis. eLife 2015 4 e10308 10.7554/eLife.10308 26436293
    [Google Scholar]
  90. Hayashima K. Kimura I. Katoh H. Role of ferritinophagy in cystine deprivation-induced cell death in glioblastoma cells. Biochem. Biophys. Res. Commun. 2021 539 56 63 10.1016/j.bbrc.2020.12.075 33421769
    [Google Scholar]
  91. Gryzik M. Asperti M. Denardo A. Arosio P. Poli M. NCOA4-mediated ferritinophagy promotes ferroptosis induced by erastin, but not by RSL3 in HeLa cells. Biochim. Biophys. Acta Mol. Cell Res. 2021 1868 2 118913 10.1016/j.bbamcr.2020.118913 33245979
    [Google Scholar]
  92. Jhelum P. Santos-Nogueira E. Teo W. Haumont A. Lenoël I. Stys P.K. David S. Ferroptosis mediates cuprizone-induced loss of oligodendrocytes and demyelination. J. Neurosci. 2020 40 48 9327 9341 10.1523/JNEUROSCI.1749‑20.2020 33106352
    [Google Scholar]
  93. Qin X. Zhang J. Wang B. Xu G. Yang X. Zou Z. Yu C. Ferritinophagy is involved in the zinc oxide nanoparticles-induced ferroptosis of vascular endothelial cells. Autophagy 2021 17 12 4266 4285 10.1080/15548627.2021.1911016 33843441
    [Google Scholar]
  94. Lin P.L. Tang H.H. Wu S.Y. Shaw N.S. Su C.L. Saponin formosanin C-induced ferritinophagy and ferroptosis in human hepatocellular carcinoma cells. Antioxidants 2020 9 8 682 10.3390/antiox9080682 32751249
    [Google Scholar]
  95. Tsai Y. Xia C. Sun Z. The Inhibitory effect of 6-gingerol on ubiquitin-specific peptidase 14 enhances autophagy-dependent ferroptosis and anti-tumor in vivo and in vitro. Front. Pharmacol. 2020 11 598555 10.3389/fphar.2020.598555 33281606
    [Google Scholar]
  96. Zhang Y. Kong Y. Ma Y. Ni S. Wikerholmen T. Xi K. Zhao F. Zhao Z. Wang J. Huang B. Chen A. Yao Z. Han M. Feng Z. Hu Y. Thorsen F. Wang J. Li X. Loss of COPZ1 induces NCOA4 mediated autophagy and ferroptosis in glioblastoma cell lines. Oncogene 2021 40 8 1425 1439 10.1038/s41388‑020‑01622‑3 33420375
    [Google Scholar]
  97. Bauckman K.A. Mysorekar I.U. Ferritinophagy drives uropathogenic Escherichia coli persistence in bladder epithelial cells. Autophagy 2016 12 5 850 863 10.1080/15548627.2016.1160176 27002654
    [Google Scholar]
  98. Rabinovitch R.C. Samborska B. Faubert B. Ma E.H. Gravel S.P. Andrzejewski S. Raissi T.C. Pause A. St-Pierre J. Jones R.G. AMPK maintains cellular metabolic homeostasis through regulation of mitochondrial reactive oxygen species. Cell Rep. 2017 21 1 1 9 10.1016/j.celrep.2017.09.026 28978464
    [Google Scholar]
  99. Kim J. Kundu M. Viollet B. Guan K.L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 2011 13 2 132 141 10.1038/ncb2152 21258367
    [Google Scholar]
  100. Du J. Wang T. Li Y. Zhou Y. Wang X. Yu X. Ren X. An Y. Wu Y. Sun W. Fan W. Zhu Q. Wang Y. Tong X. DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin. Free Radic. Biol. Med. 2019 131 356 369 10.1016/j.freeradbiomed.2018.12.011 30557609
    [Google Scholar]
  101. Chen Y. Li N. Wang H. Wang N. Peng H. Wang J. Li Y. Liu M. Li H. Zhang Y. Wang Z. RETRACTED: Amentoflavone suppresses cell proliferation and induces cell death through triggering autophagy-dependent ferroptosis in human glioma. Life Sci. 2020 247 117425 10.1016/j.lfs.2020.117425 32057904
    [Google Scholar]
  102. Zhu H.Y. Huang Z.X. Chen G.Q. Sheng F. Zheng Y.S. Typhaneoside prevents acute myeloid leukemia (AML) through suppressing proliferation and inducing ferroptosis associated with autophagy. Biochem. Biophys. Res. Commun. 2019 516 4 1265 1271 10.1016/j.bbrc.2019.06.070 31301767
    [Google Scholar]
  103. Kihara A. Kabeya Y. Ohsumi Y. Yoshimori T. Beclin–phosphatidylinositol 3‐kinase complex functions at the trans ‐Golgi network. EMBO Rep. 2001 2 4 330 335 10.1093/embo‑reports/kve061 11306555
    [Google Scholar]
  104. Rong Y. Fan J. Ji C. Wang Z. Ge X. Wang J. Ye W. Yin G. Cai W. Liu W. USP11 regulates autophagy-dependent ferroptosis after spinal cord ischemia-reperfusion injury by deubiquitinating Beclin 1. Cell Death Differ. 2021 34839355
    [Google Scholar]
  105. Jin S. Tian S. Chen Y. Zhang C. Xie W. Xia X. Cui J. Wang R.F. USP19 modulates autophagy and antiviral immune responses by deubiquitinating Beclin-1. EMBO J. 2016 35 8 866 880 10.15252/embj.201593596 26988033
    [Google Scholar]
  106. Fujita N. Itoh T. Omori H. Fukuda M. Noda T. Yoshimori T. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol. Biol. Cell 2008 19 5 2092 2100 10.1091/mbc.e07‑12‑1257 18321988
    [Google Scholar]
  107. Lystad A.H. Carlsson S.R. de la Ballina L.R. Kauffman K.J. Nag S. Yoshimori T. Melia T.J. Simonsen A. Distinct functions of ATG16L1 isoforms in membrane binding and LC3B lipidation in autophagy-related processes. Nat. Cell Biol. 2019 21 3 372 383 10.1038/s41556‑019‑0274‑9 30778222
    [Google Scholar]
  108. Hermann A. Kitzler H.H. Pollack T. Biskup S. Krüger S. Funke C. Terrile C. Haack T.B. A case of beta-propeller protein-associated neurodegeneration due to a heterozygous deletion of WDR45. Tremor Other Hyperkinet. Mov. (N. Y.) 2017 7 0 465 10.5334/tohm.360 29082105
    [Google Scholar]
  109. Haack T.B. Hogarth P. Kruer M.C. Gregory A. Wieland T. Schwarzmayr T. Graf E. Sanford L. Meyer E. Kara E. Cuno S.M. Harik S.I. Dandu V.H. Nardocci N. Zorzi G. Dunaway T. Tarnopolsky M. Skinner S. Frucht S. Hanspal E. Schrander-Stumpel C. Héron D. Mignot C. Garavaglia B. Bhatia K. Hardy J. Strom T.M. Boddaert N. Houlden H.H. Kurian M.A. Meitinger T. Prokisch H. Hayflick S.J. Exome sequencing reveals de novo WDR45 mutations causing a phenotypically distinct, X-linked dominant form of NBIA. Am. J. Hum. Genet. 2012 91 6 1144 1149 10.1016/j.ajhg.2012.10.019 23176820
    [Google Scholar]
  110. Diaw S.H. Ganos C. Zittel S. Plötze-Martin K. Kulikovskaja L. Vos M. Westenberger A. Rakovic A. Lohmann K. Dulovic-Mahlow M. Mutant WDR45 leads to altered ferritinophagy and ferroptosis in β-propeller Protein-associated neurodegeneration. Int. J. Mol. Sci. 2022 23 17 9524 10.3390/ijms23179524 36076926
    [Google Scholar]
  111. Aring L. Choi E.K. Kopera H. Lanigan T. Iwase S. Klionsky D.J. Seo Y.A. A neurodegeneration gene, WDR45, links impaired ferritinophagy to iron accumulation. J. Neurochem. 2022 160 3 356 375 10.1111/jnc.15548 34837396
    [Google Scholar]
  112. Zhao Y. Li J. Guo W. Li H. Lei L. Periodontitis-level butyrate-induced ferroptosis in periodontal ligament fibroblasts by activation of ferritinophagy. Cell Death Discov. 2020 6 1 119 10.1038/s41420‑020‑00356‑1 33298848
    [Google Scholar]
  113. Das N.K. Jain C. Sankar A. Schwartz A.J. Santana-Codina N. Solanki S. Zhang Z. Ma X. Parimi S. Rui L. Mancias J.D. Shah Y.M. Modulation of the HIF2α-NCOA4 axis in enterocytes attenuates iron loading in a mouse model of hemochromatosis. Blood 2022 139 16 2547 2552 10.1182/blood.2021013452 34990508
    [Google Scholar]
  114. Zhou X. Zheng Y. Sun W. Zhang Z. Liu J. Yang W. Yuan W. Yi Y. Wang J. Liu J. D‐mannose alleviates osteoarthritis progression by inhibiting chondrocyte ferroptosis in a HIF‐2α‐dependent manner. Cell Prolif. 2021 54 11 e13134 10.1111/cpr.13134 34561933
    [Google Scholar]
  115. Li Z.J. Dai H.Q. Huang X.W. Feng J. Deng J.H. Wang Z.X. Yang X.M. Liu Y.J. Wu Y. Chen P.H. Shi H. Wang JG. Zhou J. Lu GD. Artesunate synergizes with sorafenib to induce ferroptosis in hepatocellular carcinoma. Acta Pharmacol. Sin. 2020 32699265
    [Google Scholar]
  116. Sardiello M. Palmieri M. di Ronza A. Medina D.L. Valenza M. Gennarino V.A. Di Malta C. Donaudy F. Embrione V. Polishchuk R.S. Banfi S. Parenti G. Cattaneo E. Ballabio A. A gene network regulating lysosomal biogenesis and function. Science 2009 325 5939 473 477 10.1126/science.1174447 19556463
    [Google Scholar]
  117. Wang Z.X. Ma J. Li X.Y. Wu Y. Shi H. Chen Y. Lu G. Shen H.M. Lu G.D. Zhou J. Quercetin induces p53‐independent cancer cell death through lysosome activation by the transcription factor EB and reactive oxygen species‐dependent ferroptosis. Br. J. Pharmacol. 2021 178 5 1133 1148 10.1111/bph.15350 33347603
    [Google Scholar]
  118. Anandhan A. Dodson M. Shakya A. Chen J. Liu P. Wei Y. Tan H. Wang Q. Jiang Z. Yang K. Garcia J.G.N. Chambers S.K. Chapman E. Ooi A. Yang-Hartwich Y. Stockwell B.R. Zhang D.D. NRF2 controls iron homeostasis and ferroptosis through HERC2 and VAMP8. Sci. Adv. 2023 9 5 eade9585 10.1126/sciadv.ade9585 36724221
    [Google Scholar]
  119. Yi J. Wu S. Tan S. Qin Y. Wang X. Jiang J. Liu H. Wu B. Berberine alleviates liver fibrosis through inducing ferrous redox to activate ROS-mediated hepatic stellate cells ferroptosis. Cell Death Discov. 2021 7 1 374 10.1038/s41420‑021‑00768‑7 34864819
    [Google Scholar]
  120. Sun X. Zhang X. Hu H. Lu Y. Chen J. Yasuda K. Wang H. Berberine inhibits hepatic stellate cell proliferation and prevents experimental liver fibrosis. Biol. Pharm. Bull. 2009 32 9 1533 1537 10.1248/bpb.32.1533 19721228
    [Google Scholar]
  121. Wang P. Cui Y. Ren Q. Yan B. Zhao Y. Yu P. Gao G. Shi H. Chang S. Chang Y.Z. Mitochondrial ferritin attenuates cerebral ischaemia/reperfusion injury by inhibiting ferroptosis. Cell Death Dis. 2021 12 5 447 10.1038/s41419‑021‑03725‑5 33953171
    [Google Scholar]
  122. Wang X. Ma H. Sun J. Zheng T. Zhao P. Li H. Yang M. Mitochondrial ferritin deficiency promotes osteoblastic ferroptosis via mitophagy in type 2 diabetic osteoporosis. Biol. Trace Elem. Res. 2021 33594527
    [Google Scholar]
  123. Fuhrmann D.C. Mondorf A. Beifuß J. Jung M. Brüne B. Hypoxia inhibits ferritinophagy, increases mitochondrial ferritin, and protects from ferroptosis. Redox Biol. 2020 36 101670 10.1016/j.redox.2020.101670 32810738
    [Google Scholar]
  124. Song L.M. Xiao Z.X. Zhang N. Yu X.Q. Cui W. Xie J.X. Xu H.M. Apoferritin improves motor deficits in MPTP-treated mice by regulating brain iron metabolism and ferroptosis. iScience 2021 24 5 102431 10.1016/j.isci.2021.102431 33997705
    [Google Scholar]
  125. Huang Z. Si W. Li X. Ye S. Liu X. Ji Y. Hao X. Chen D. Zhu M. Moxibustion protects dopaminergic neurons in Parkinson’s disease through antiferroptosis. Evid. Based Complement. Alternat. Med. 2021 2021 1 11 10.1155/2021/6668249 34122606
    [Google Scholar]
  126. Ashraf A. Jeandriens J. Parkes H.G. So P.W. Iron dyshomeostasis, lipid peroxidation and perturbed expression of cystine/glutamate antiporter in Alzheimer’s disease: Evidence of ferroptosis. Redox Biol. 2020 32 101494 10.1016/j.redox.2020.101494 32199332
    [Google Scholar]
  127. Ayton S. Faux N.G. Bush A.I. Weiner M.W. Aisen P. Petersen R. Jack C.R. Jagust W. Trojanowki J.Q. Toga A.W. Beckett L. Green R.C. Saykin A.J. Morris J. Shaw L.M. Khachaturian Z. Sorensen G. Kuller L. Raichle M. Paul S. Davies P. Fillit H. Hefti F. Holtzman D. Marcel Mesulam M. Potter W. Snyder P. Schwartz A. Montine T. Thomas R.G. Donohue M. Walter S. Gessert D. Sather T. Jiminez G. Harvey D. Bernstein M. Fox N. Thompson P. Schuff N. Borowski B. Gunter J. Senjem M. Vemuri P. Jones D. Kantarci K. Ward C. Koeppe R.A. Foster N. Reiman E.M. Chen K. Mathis C. Landau S. Cairns N.J. Householder E. Taylor-Reinwald L. Lee V. Korecka M. Figurski M. Crawford K. Neu S. Foroud T.M. Potkin S. Shen L. Faber K. Kim S. Nho K. Thal L. Buckholtz N. Albert M. Frank R. Hsiao J. Kaye J. Quinn J. Lind B. Carter R. Dolen S. Schneider L.S. Pawluczyk S. Beccera M. Teodoro L. Spann B.M. Brewer J. Vanderswag H. Fleisher A. Heidebrink J.L. Lord J.L. Mason S.S. Albers C.S. Knopman D. Johnson K. Doody R.S. Villanueva-Meyer J. Chowdhury M. Rountree S. Dang M. Stern Y. Honig L.S. Bell K.L. Ances B. Carroll M. Leon S. Mintun M.A. Schneider S. Oliver A. Marson D. Griffith R. Clark D. Geldmacher D. Brockington J. Roberson E. Grossman H. Mitsis E. deToledo-Morrell L. Shah R.C. Duara R. Varon D. Greig M.T. Roberts P. Albert M. Onyike C. D’Agostino D. II Kielb S. Galvin J.E. Cerbone B. Michel C.A. Rusinek H. de Leon M.J. Glodzik L. De Santi S. Murali Doraiswamy P. Petrella J.R. Wong T.Z. Arnold S.E. Karlawish J.H. Wolk D. Smith C.D. Jicha G. Hardy P. Sinha P. Oates E. Conrad G. Lopez O.L. Oakley M.A. Simpson D.M. Porsteinsson A.P. Goldstein B.S. Martin K. Makino K.M. Saleem Ismail M. Brand C. Mulnard R.A. Thai G. Mc-Adams-Ortiz C. Womack K. Mathews D. Quiceno M. Diaz-Arrastia R. King R. Weiner M. Martin-Cook K. DeVous M. Levey A.I. Lah J.J. Cellar J.S. Burns J.M. Anderson H.S. Swerdlow R.H. Apostolova L. Tingus K. Woo E. Silverman D.H.S. Lu P.H. Bartzokis G. Graff-Radford N.R. Parfitt F. Kendall T. Johnson H. Farlow M.R. Hake A.M. Matthews B.R. Herring S. Hunt C. van Dyck C.H. Carson R.E. MacAvoy M.G. Chertkow H. Bergman H. Hosein C. Black S. Stefanovic B. Caldwell C. Robin Hsiung G-Y. Feldman H. Mudge B. Assaly M. Kertesz A. Rogers J. Bernick C. Munic D. Kerwin D. Mesulam M-M. Lipowski K. Wu C-K. Johnson N. Sadowsky C. Martinez W. Villena T. Scott Turner R. Johnson K. Reynolds B. Sperling R.A. Johnson K.A. Marshall G. Frey M. Lane B. Rosen A. Tinklenberg J. Sabbagh M.N. Belden C.M. Jacobson S.A. Sirrel S.A. Kowall N. Killiany R. Budson A.E. Norbash A. Johnson P.L. Allard J. Lerner A. Ogrocki P. Hudson L. Fletcher E. Carmichael O. Olichney J. DeCarli C. Kittur S. Borrie M. Lee T-Y. Bartha R. Johnson S. Asthana S. Carlsson C.M. Potkin S.G. Preda A. Nguyen D. Tariot P. Reeder S. Bates V. Capote H. Rainka M. Scharre D.W. Kataki M. Adeli A. Zimmerman E.A. Celmins D. Brown A.D. Pearlson G.D. Blank K. Anderson K. Santulli R.B. Kitzmiller T.J. Schwartz E.S. Sink K.M. Williamson J.D. Garg P. Watkins F. Ott B.R. Querfurth H. Tremont G. Salloway S. Malloy P. Correia S. Rosen H.J. Miller B.L. Mintzer J. Spicer K. Bachman D. Finger E. Pasternak S. Rachinsky I. Drost D. Pomara N. Hernando R. Sarrael A. Schultz S.K. Boles Ponto L.L. Shim H. Elizabeth Smith K. Relkin N. Chaing G. Raudin L. Smith A. Fargher K. Ashok Raj B. Neylan T. Grafman J. Davis M. Morrison R. Hayes J. Finley S. Friedl K. Fleischman D. Arfanakis K. James O. Massoglia D. Jay Fruehling J. Harding S. Peskind E.R. Petrie E.C. Li G. Yesavage J.A. Taylor J.L. Furst A.J. Ferritin levels in the cerebrospinal fluid predict Alzheimer’s disease outcomes and are regulated by APOE. Nat. Commun. 2015 6 1 6760 10.1038/ncomms7760 25988319
    [Google Scholar]
  128. Peng W. Zhu Z. Yang Y. Hou J. Lu J. Chen C. Liu F. Pi R. N2L, a novel lipoic acid-niacin dimer, attenuates ferroptosis and decreases lipid peroxidation in HT22 cells. Brain Res. Bull. 2021 174 250 259 10.1016/j.brainresbull.2021.06.014 34171402
    [Google Scholar]
  129. Xiong Q. Li X. Li W. Chen G. Xiao H. Li P. Wu C. WDR45 mutation impairs the autophagic degradation of transferrin receptor and promotes ferroptosis. Front. Mol. Biosci. 2021 8 645831 10.3389/fmolb.2021.645831 34012978
    [Google Scholar]
  130. Guo H. Zhu L. Tang P. Chen D. Li Y. Li J. Bao C. Carthamin yellow improves cerebral ischemia‑reperfusion injury by attenuating inflammation and ferroptosis in rats. Int. J. Mol. Med. 2021 47 4 52 10.3892/ijmm.2021.4885 33576458
    [Google Scholar]
  131. Bai T. Li M. Liu Y. Qiao Z. Wang Z. Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell. Free Radic. Biol. Med. 2020 160 92 102 10.1016/j.freeradbiomed.2020.07.026 32768568
    [Google Scholar]
  132. Kong Z. Liu R. Cheng Y. Artesunate alleviates liver fibrosis by regulating ferroptosis signaling pathway. Biomed. Pharmacother. 2019 109 2043 2053 10.1016/j.biopha.2018.11.030 30551460
    [Google Scholar]
  133. Yang Y. Chen J. Gao Q. Shan X. Wang J. Lv Z. Study on the attenuated effect of Ginkgolide B on ferroptosis in high fat diet induced nonalcoholic fatty liver disease. Toxicology 2020 445 152599 10.1016/j.tox.2020.152599 32976958
    [Google Scholar]
  134. Tsurusaki S. Tsuchiya Y. Koumura T. Nakasone M. Sakamoto T. Matsuoka M. Imai H. Yuet-Yin Kok C. Okochi H. Nakano H. Miyajima A. Tanaka M. Hepatic ferroptosis plays an important role as the trigger for initiating inflammation in nonalcoholic steatohepatitis. Cell Death Dis. 2019 10 6 449 10.1038/s41419‑019‑1678‑y 31209199
    [Google Scholar]
  135. Gao G. Xie Z. Li E. Yuan Y. Fu Y. Wang P. Zhang X. Qiao Y. Xu J. Hölscher C. Wang H. Zhang Z. Dehydroabietic acid improves nonalcoholic fatty liver disease through activating the Keap1/Nrf2-ARE signaling pathway to reduce ferroptosis. J. Nat. Med. 2021 75 3 540 552 10.1007/s11418‑021‑01491‑4 33590347
    [Google Scholar]
  136. Tsuchiya H. Ashla A.A. Hoshikawa Y. Matsumi Y. Kanki K. Enjoji M. Momosaki S. Nakamuta M. Taketomi A. Maehara Y. Shomori K. Kurimasa A. Hisatome I. Ito H. Shiota G. Iron state in association with retinoid metabolism in non‐alcoholic fatty liver disease. Hepatol. Res. 2010 40 12 1227 1238 10.1111/j.1872‑034X.2010.00719.x 20880062
    [Google Scholar]
  137. Li N. Wang W. Zhou H. Wu Q. Duan M. Liu C. Wu H. Deng W. Shen D. Tang Q. Ferritinophagy-mediated ferroptosis is involved in sepsis-induced cardiac injury. Free Radic. Biol. Med. 2020 160 303 318 10.1016/j.freeradbiomed.2020.08.009 32846217
    [Google Scholar]
  138. Martin-Sanchez D. Ruiz-Andres O. Poveda J. Carrasco S. Cannata-Ortiz P. Sanchez-Niño M.D. Ruiz Ortega M. Egido J. Linkermann A. Ortiz A. Sanz A.B. Ferroptosis, but not necroptosis, is important in nephrotoxic folic acid–induced AKI. J. Am. Soc. Nephrol. 2017 28 1 218 229 10.1681/ASN.2015121376 27352622
    [Google Scholar]
  139. Eleftheriadis T. Pissas G. Liakopoulos V. Stefanidis I. Factors that may protect the native hibernator syrian hamster renal tubular epithelial cells from ferroptosis due to warm anoxia-reoxygenation. Biology (Basel) 2019 8 2 22 10.3390/biology8020022 30935115
    [Google Scholar]
  140. Wu Y. Zhao Y. Yang H. Wang Y. Chen Y. HMGB1 regulates ferroptosis through Nrf2 pathway in mesangial cells in response to high glucose. Biosci. Rep. 2021 41 2 BSR20202924 10.1042/BSR20202924 33565572
    [Google Scholar]
  141. Cao Z. Xue Y. Wang J. Screening diagnostic markers of osteoporosis based on ferroptosis of osteoblast and osteoclast. Aging (Albany NY) 2023 15 18 9391 9407 10.18632/aging.204945 37770229
    [Google Scholar]
  142. Ma H. Wang X. Zhang W. Li H. Zhao W. Sun J. Yang M. Melatonin suppresses ferroptosis induced by high glucose via activation of the Nrf2/HO-1 signaling pathway in type 2 diabetic osteoporosis. Oxid. Med. Cell. Longev. 2020 2020 1 18 10.1155/2020/9067610 33343809
    [Google Scholar]
  143. Yang R.Z. Xu W.N. Zheng H.L. Zheng X.F. Li B. Jiang L.S. Jiang S.D. Exosomes derived from vascular endothelial cells antagonize glucocorticoid‐induced osteoporosis by inhibiting ferritinophagy with resultant limited ferroptosis of osteoblasts. J. Cell. Physiol. 2021 236 9 6691 6705 10.1002/jcp.30331 33590921
    [Google Scholar]
  144. Song H. Li X. Zhao Z. Qian J. Wang Y. Cui J. Weng W. Cao L. Chen X. Hu Y. Su J. Reversal of osteoporotic activity by endothelial cell-secreted bone targeting and biocompatible exosomes. Nano Lett. 2019 19 5 3040 3048 10.1021/acs.nanolett.9b00287 30968694
    [Google Scholar]
  145. Chen P. Li F.M. Zhou Y.F. Qian C. Li J. Jiang L.R. Qian Z.M. Effects of alpha-lipoic acid on expression of iron transport and storage proteins in BV-2 microglia cells. Pharmacol. Rep. 2017 69 1 1 5 10.1016/j.pharep.2016.09.011 27755990
    [Google Scholar]
  146. Yepiskoposyan H. Egli D. Fergestad T. Selvaraj A. Treiber C. Multhaup G. Georgiev O. Schaffner W. Transcriptome response to heavy metal stress in drosophila reveals a new zinc transporter that confers resistance to zinc. Nucleic Acids Res. 2006 34 17 4866 4877 10.1093/nar/gkl606 16973896
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037315874240826112422
Loading
/content/journals/cpps/10.2174/0113892037315874240826112422
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: post-transcription ; ferritin ; transcription ; ferroptosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test