Skip to content
2000
Volume 26, Issue 2
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

Ferritin, as an iron storage protein, has the potential to inhibit ferroptosis by reducing excess intracellular free iron concentrations and lipid reactive oxygen species (ROS). An insufficient amount of ferritin is one of the conditions that can lead to ferroptosis through the Fenton reaction mediated by ferrous iron. Consequently, upregulation of ferritin at the transcriptional or posttranscriptional level may inhibit ferroptosis. In this review, we have discussed the essential role of ferritin in ferroptosis and the regulatory mechanism of ferroptosis in ferritin-deficient individuals. The description of the regulatory factors governing ferritin and its properties in regulating ferroptosis as underlying mechanisms for the pathologies of diseases will allow potential therapeutic approaches to be developed.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037315874240826112422
2024-09-02
2025-01-22
Loading full text...

Full text loading...

References

  1. BogdanA.R. MiyazawaM. HashimotoK. TsujiY. Regulators of iron homeostasis: New players in metabolism, cell death, and disease.Trends Biochem. Sci.201641327428610.1016/j.tibs.2015.11.01226725301
    [Google Scholar]
  2. BradleyJ.M. Le BrunN.E. MooreG.R. Ferritins: Furnishing proteins with iron.J. Biol. Inorg. Chem.2016211132810.1007/s00775‑016‑1336‑026825805
    [Google Scholar]
  3. DixonS.J. LembergK.M. LamprechtM.R. SkoutaR. ZaitsevE.M. GleasonC.E. PatelD.N. BauerA.J. CantleyA.M. YangW.S. MorrisonB.III StockwellB.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death.Cell201214951060107210.1016/j.cell.2012.03.04222632970
    [Google Scholar]
  4. MumbauerS. PascualJ. KolotuevI. HamaratogluF. Ferritin heavy chain protects the developing wing from reactive oxygen species and ferroptosis.PLoS Genet.2019159e100839610.1371/journal.pgen.100839631568497
    [Google Scholar]
  5. ZengX. AnH. YuF. WangK. ZhengL. ZhouW. BaoY. YangJ. ShenN. HuangD. Benefits of iron chelators in the treatment of Parkinson’s disease.Neurochem. Res.20214651239125110.1007/s11064‑021‑03262‑933646533
    [Google Scholar]
  6. ZhangZ. YaoZ. WangL. DingH. ShaoJ. ChenA. ZhangF. ZhengS. Activation of ferritinophagy is required for the RNA-binding protein ELAVL1/HuR to regulate ferroptosis in hepatic stellate cells.Autophagy201814122083210310.1080/15548627.2018.150314630081711
    [Google Scholar]
  7. ZhangZ. GuoM. LiY. ShenM. KongD. ShaoJ. DingH. TanS. ChenA. ZhangF. ZhengS. RNA-binding protein ZFP36/TTP protects against ferroptosis by regulating autophagy signaling pathway in hepatic stellate cells.Autophagy20201681482150510.1080/15548627.2019.168798531679460
    [Google Scholar]
  8. FangX. CaiZ. WangH. HanD. ChengQ. ZhangP. GaoF. YuY. SongZ. WuQ. AnP. HuangS. PanJ. ChenH.Z. ChenJ. LinkermannA. MinJ. WangF. Loss of cardiac ferritin H facilitates cardiomyopathy via Slc7a11-mediated ferroptosis.Circ. Res.2020127448650110.1161/CIRCRESAHA.120.31650932349646
    [Google Scholar]
  9. LiX. ZouY. FuY.Y. XingJ. WangK.Y. WanP.Z. ZhaiX.Y. A-lipoic acid alleviates folic acid-induced renal damage through inhibition of ferroptosis.Front. Physiol.20211268054410.3389/fphys.2021.68054434630132
    [Google Scholar]
  10. NiS. YuanY. QianZ. ZhongZ. LvT. KuangY. YuB. Hypoxia inhibits RANKL-induced ferritinophagy and protects osteoclasts from ferroptosis.Free Radic. Biol. Med.202116927128210.1016/j.freeradbiomed.2021.04.02733895289
    [Google Scholar]
  11. YangR.Z. XuW.N. ZhengH.L. ZhengX.F. LiB. JiangL.S. JiangS.D. Involvement of oxidative stress-induced annulus fibrosus cell and nucleus pulposus cell ferroptosis in intervertebral disc degeneration pathogenesis.J. Cell. Physiol.202123642725273910.1002/jcp.3003932892384
    [Google Scholar]
  12. YoshidaM. MinagawaS. ArayaJ. SakamotoT. HaraH. TsubouchiK. HosakaY. IchikawaA. SaitoN. KadotaT. SatoN. KuritaY. KobayashiK. ItoS. UtsumiH. WakuiH. NumataT. KanekoY. MoriS. AsanoH. YamashitaM. OdakaM. MorikawaT. NakayamaK. IwamotoT. ImaiH. KuwanoK. Involvement of cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis.Nat. Commun.2019101314510.1038/s41467‑019‑10991‑731316058
    [Google Scholar]
  13. IslamQ.T. SayersD.E. TheilE.C. GorunS.M. A comparison of an undecairon(III) complex with the ferritin iron core.J. Inorg. Biochem.1989361516210.1016/0162‑0134(89)80012‑12746221
    [Google Scholar]
  14. RuiT. WangH. LiQ. ChengY. GaoY. FangX. MaX. ChenG. GaoC. GuZ. SongS. ZhangJ. WangC. WangZ. WangT. ZhangM. MinJ. ChenX. TaoL. WangF. LuoC. Deletion of ferritin H in neurons counteracts the protective effect of melatonin against traumatic brain injury-induced ferroptosis.J. Pineal Res.2021702e1270410.1111/jpi.1270433206394
    [Google Scholar]
  15. TianY. LuJ. HaoX. LiH. ZhangG. LiuX. LiX. ZhaoC. KuangW. ChenD. ZhuM. FTH1 inhibits ferroptosis through ferritinophagy in the 6-OHDA model of Parkinson’s disease.Neurotherapeutics20201741796181210.1007/s13311‑020‑00929‑z32959272
    [Google Scholar]
  16. LeviS. CorsiB. BosisioM. InvernizziR. VolzA. SanfordD. ArosioP. DrysdaleJ. A human mitochondrial ferritin encoded by an intronless gene.J. Biol. Chem.200127627244372444010.1074/jbc.C10014120011323407
    [Google Scholar]
  17. DrysdaleJ. ArosioP. InvernizziR. CazzolaM. VolzA. CorsiB. BiasiottoG. LeviS. Mitochondrial ferritin: A new player in iron metabolism.Blood Cells Mol. Dis.200229337638310.1006/bcmd.2002.057712547228
    [Google Scholar]
  18. SantambrogioP. LeviS. ArosioP. PalagiL. VecchioG. LawsonD.M. YewdallS.J. ArtymiukP.J. HarrisonP.M. JappelliR. Evidence that a salt bridge in the light chain contributes to the physical stability difference between heavy and light human ferritins.J. Biol. Chem.199226720140771408310.1016/S0021‑9258(19)49681‑61629207
    [Google Scholar]
  19. BhowmickS. D’MelloV. CarusoD. Abdul-MuneerP.M. Traumatic brain injury-induced downregulation of Nrf2 activates inflammatory response and apoptotic cell death.J. Mol. Med. (Berl.)201997121627164110.1007/s00109‑019‑01851‑431758217
    [Google Scholar]
  20. FanZ. WirthA-K. ChenD. WruckC.J. RauhM. BuchfelderM. SavaskanN. Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis.Oncogenesis201768e37110.1038/oncsis.2017.6528805788
    [Google Scholar]
  21. WangZ.Z. XuH.C. ZhouH.X. ZhangC.K. LiB.M. HeJ.H. NiP.S. YuX.M. LiuY.Q. LiF.H. Long-term detraining reverses the improvement of lifelong exercise on skeletal muscle ferroptosis and inflammation in aging rats: Fiber-type dependence of the Keap1/Nrf2 pathway.Biogerontology202324575376910.1007/s10522‑023‑10042‑137289374
    [Google Scholar]
  22. ZhaoY. ZhangR. WangZ. ChenZ. WangG. GuanS. LuJ. Melatonin prevents against ethanol-induced liver injury by mitigating ferroptosis via targeting brain and muscle ARNT-like 1 in mice liver and HepG2 cells.J. Agric. Food Chem.20227040129531296710.1021/acs.jafc.2c0433736166594
    [Google Scholar]
  23. YanN. XuZ. QuC. ZhangJ. Dimethyl fumarate improves cognitive deficits in chronic cerebral hypoperfusion rats by alleviating inflammation, oxidative stress, and ferroptosis via NRF2/ARE/NF-κB signal pathway.Int. Immunopharmacol.20219810784410.1016/j.intimp.2021.10784434153667
    [Google Scholar]
  24. SunX. OuZ. ChenR. NiuX. ChenD. KangR. TangD. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells.Hepatology201663117318410.1002/hep.2825126403645
    [Google Scholar]
  25. ZhaoY. LuJ. MaoA. ZhangR. GuanS. Autophagy inhibition plays a protective role in ferroptosis induced by alcohol via the p62–Keap1–Nrf2 pathway.J. Agric. Food Chem.202169339671968310.1021/acs.jafc.1c0375134388345
    [Google Scholar]
  26. YeZ. LiC. LiuS. LiangH. FengJ. LinD. ChenY. PengS. BuL. TaoE. JingX. LiangY. Dl-3-n-butylphthalide activates Nrf2, inhibits ferritinophagy, and protects MES23.5 dopaminergic neurons from ferroptosis.Chem. Biol. Interact.202338211060410.1016/j.cbi.2023.11060437315914
    [Google Scholar]
  27. FengQ. YangY. QiaoY. ZhengY. YuX. LiuF. WangH. ZhengB. PanS. RenK. LiuD. LiuZ. Quercetin ameliorates diabetic kidney injury by inhibiting ferroptosis via activating Nrf2/HO-1 signaling pathway.Am. J. Chin. Med.2023514997101810.1142/S0192415X2350046537046368
    [Google Scholar]
  28. QaisiyaM. Coda ZabettaC.D. BellarosaC. TiribelliC. Bilirubin mediated oxidative stress involves antioxidant response activation via Nrf2 pathway.Cell. Signal.201426351252010.1016/j.cellsig.2013.11.02924308969
    [Google Scholar]
  29. YangC. WuA. TanL. TangD. ChenW. LaiX. GuK. ChenJ. ChenD. TangQ. Epigallocatechin-3-gallate alleviates liver oxidative damage caused by iron overload in mice through inhibiting ferroptosis.Nutrients2023158199310.3390/nu1508199337111212
    [Google Scholar]
  30. YeL. XuY. WangL. ZhangC. HuP. TongS. LiuZ. TianD. Downregulation of CYP2E1 is associated with poor prognosis and tumor progression of gliomas.Cancer Med.202110228100811310.1002/cam4.432034612013
    [Google Scholar]
  31. LiuZ. LvX. SongE. SongY. Fostered Nrf2 expression antagonizes iron overload and glutathione depletion to promote resistance of neuron-like cells to ferroptosis.Toxicol. Appl. Pharmacol.202040711524110.1016/j.taap.2020.11524132937103
    [Google Scholar]
  32. CaggianoR. CattaneoF. MoltedoO. EspositoG. PerrinoC. TrimarcoB. AmmendolaR. FaraonioR. miR-128 is implicated in stress responses by targeting MAFG in skeletal muscle cells.Oxid. Med. Cell. Longev.201720171930831010.1155/2017/930831029138682
    [Google Scholar]
  33. ItohK. ChibaT. TakahashiS. IshiiT. IgarashiK. KatohY. OyakeT. HayashiN. SatohK. HatayamaI. YamamotoM. NabeshimaY. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements.Biochem. Biophys. Res. Commun.1997236231332210.1006/bbrc.1997.69439240432
    [Google Scholar]
  34. HuangB.W. RayP.D. IwasakiK. TsujiY. Transcriptional regulation of the human ferritin gene by coordinated regulation of Nrf2 and protein arginine methyltransferases PRMT1 and PRMT4.FASEB J.20132793763377410.1096/fj.12‑22604323699174
    [Google Scholar]
  35. WangJ. ZhaoJ. CuiX. MysonaB.A. NavneetS. SaulA. AhujaM. LambertN. GazaryanI.G. ThomasB. BollingerK.E. SmithS.B. The molecular chaperone sigma 1 receptor mediates rescue of retinal cone photoreceptor cells via modulation of NRF2.Free Radic. Biol. Med.201913460461610.1016/j.freeradbiomed.2019.02.00130743048
    [Google Scholar]
  36. BaiT. LeiP. ZhouH. LiangR. ZhuR. WangW. ZhouL. SunY. Sigma-1 receptor protects against ferroptosis in hepatocellular carcinoma cells.J. Cell. Mol. Med.201923117349735910.1111/jcmm.1459431507082
    [Google Scholar]
  37. BaiT. WangS. ZhaoY. ZhuR. WangW. SunY. Haloperidol, a sigma receptor 1 antagonist, promotes ferroptosis in hepatocellular carcinoma cells.Biochem. Biophys. Res. Commun.2017491491992510.1016/j.bbrc.2017.07.13628756230
    [Google Scholar]
  38. OhiraM. SekiN. NagaseT. IshikawaK. NomuraN. OharaO. Characterization of a human homolog (BACH1) of the mouse Bach1 gene encoding a BTB-basic leucine zipper transcription factor and its mapping to chromosome 21q22.1.Genomics199847230030610.1006/geno.1997.50809479503
    [Google Scholar]
  39. YuZ. HeH. ChenY. JiQ. SunM. A novel ferroptosis related gene signature is associated with prognosis in patients with ovarian serous cystadenocarcinoma.Sci. Rep.20211111148610.1038/s41598‑021‑90126‑534075060
    [Google Scholar]
  40. NishizawaH. MatsumotoM. ShindoT. SaigusaD. KatoH. SuzukiK. SatoM. IshiiY. ShimokawaH. IgarashiK. Ferroptosis is controlled by the coordinated transcriptional regulation of glutathione and labile iron metabolism by the transcription factor BACH1.J. Biol. Chem.20202951698210.1074/jbc.RA119.00954831740582
    [Google Scholar]
  41. SunJ. BrandM. ZenkeY. TashiroS. GroudineM. IgarashiK. Heme regulates the dynamic exchange of Bach1 and NF-E2-related factors in the Maf transcription factor network.Proc. Natl. Acad. Sci. USA200410161461146610.1073/pnas.030808310014747657
    [Google Scholar]
  42. SunJ. HoshinoH. TakakuK. NakajimaO. MutoA. SuzukiH. TashiroS. TakahashiS. ShibaharaS. AlamJ. TaketoM.M. YamamotoM. IgarashiK. Hemoprotein Bach1 regulates enhancer availability of heme oxygenase-1 gene.EMBO J.200221195216522410.1093/emboj/cdf51612356737
    [Google Scholar]
  43. ZhangX. YuK. MaL. QianZ. TianX. MiaoY. NiuY. XuX. GuoS. YangY. WangZ. XueX. GuC. FangW. SunJ. YuY. WangJ. Endogenous glutamate determines ferroptosis sensitivity via ADCY10-dependent YAP suppression in lung adenocarcinoma.Theranostics202111125650567410.7150/thno.5548233897873
    [Google Scholar]
  44. ZhangJ. ZhengY. WangY. WangJ. SangA. SongX. LiX. YAP1 alleviates sepsis-induced acute lung injury via inhibiting ferritinophagy-mediated ferroptosis.Front. Immunol.20221388436210.3389/fimmu.2022.88436235979359
    [Google Scholar]
  45. QiX. SongA. MaM. WangP. ZhangX. LuC. ZhangJ. ZhengS. JinH. Curcumol inhibits ferritinophagy to restrain hepatocyte senescence through YAP/NCOA4 in non-alcoholic fatty liver disease.Cell Prolif.2021549e1310710.1111/cpr.1310734346124
    [Google Scholar]
  46. LiangC. ZhuD. XiaW. HongZ. WangQ.S. SunY. YangY.C. HanS.Q. TangL.L. LouJ. WuM.M. ZhangZ.R. Inhibition of YAP by lenvatinib in endothelial cells increases blood pressure through ferroptosis.Biochim. Biophys. Acta Mol. Basis Dis.20231869116658610.1016/j.bbadis.2022.16658636374802
    [Google Scholar]
  47. ZhangX. SunF. QiaoY. ZhengW. LiuY. ChenY. WuQ. LiuX. ZhuG. ChenY. YuY. PanQ. WangJ. TFCP2 is required for yap-dependent transcription to stimulate liver malignancy.Cell Rep.20172151227123910.1016/j.celrep.2017.10.01729091762
    [Google Scholar]
  48. NiuX. HanP. LiuJ. ChenZ. MaX. ZhangT. LiB. MaX. Regulation of Hippo/YAP signaling pathway ameliorates cochlear hair cell injury by regulating ferroptosis.Tissue Cell20238210205110.1016/j.tice.2023.10205136889225
    [Google Scholar]
  49. AndrewsG.K. Regulation of metallothionein gene expression by oxidative stress and metal ions.Biochem. Pharmacol.20005919510410.1016/S0006‑2952(99)00301‑910605938
    [Google Scholar]
  50. ChenP.H. WuJ. DingC.K.C. LinC.C. PanS. BossaN. XuY. YangW.H. Mathey-PrevotB. ChiJ.T. Kinome screen of ferroptosis reveals a novel role of ATM in regulating iron metabolism.Cell Death Differ.20202731008102210.1038/s41418‑019‑0393‑731320750
    [Google Scholar]
  51. LiS. WangM. WangY. GuoY. TaoX. WangX. CaoY. TianS. LiQ. p53-mediated ferroptosis is required for 1-methyl-4-phenylpyridinium-induced senescence of PC12 cells.Toxicol. In Vitro20217310514610.1016/j.tiv.2021.10514633737050
    [Google Scholar]
  52. LiM. ZhangJ. JiangL. WangW. FengX. LiuM. YangD. Neuroprotective effects of morroniside from Cornus officinalis sieb. Et zucc against Parkinson’s disease via inhibiting oxidative stress and ferroptosis.BMC Complement. Med. Ther.202323121810.1186/s12906‑023‑03967‑037393274
    [Google Scholar]
  53. LiuL. YangS. WangH. α-Lipoic acid alleviates ferroptosis in the MPP + -induced PC12 cells via activating the PI3K/Akt/Nrf2 pathway.Cell Biol. Int.202145242243110.1002/cbin.1150533241887
    [Google Scholar]
  54. TangX. LiZ. YuZ. LiJ. ZhangJ. WanN. ZhangJ. CaoJ. Effect of curcumin on lung epithelial injury and ferroptosis induced by cigarette smoke.Hum. Exp. Toxicol.202140S753S76210.1177/0960327121105949734787501
    [Google Scholar]
  55. MaS. HensonE.S. ChenY. GibsonS.B. Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells.Cell Death Dis.201677e230710.1038/cddis.2016.20827441659
    [Google Scholar]
  56. ShimizuM. InoueN. KurodaM. IrabuH. TakakuraM. KanedaH. SugimotoN. OhtaK. YachieA. Serum ferritin as an indicator of the development of encephalopathy in enterohemorrhagic Escherichia coli-induced hemolytic uremic syndrome.Clin. Exp. Nephrol.20172161083108710.1007/s10157‑017‑1391‑z28283851
    [Google Scholar]
  57. YangM. LuZ. LiF. ShiF. ZhanF. ZhaoL. LiY. LiJ. LinL. QinZ. Escherichia coli induced ferroptosis in red blood cells of grass carp (Ctenopharyngodon idella ).Fish Shellfish Immunol.202111215916710.1016/j.fsi.2020.09.03633017637
    [Google Scholar]
  58. DasS.K. DesAulniersJ. DyckJ.R.B. KassiriZ. OuditG.Y. Resveratrol mediates therapeutic hepatic effects in acquired and genetic murine models of iron-overload.Liver Int.201636224625710.1111/liv.1289326077449
    [Google Scholar]
  59. LiT. TanY. OuyangS. HeJ. LiuL. Resveratrol protects against myocardial ischemia-reperfusion injury via attenuating ferroptosis.Gene202280814596810.1016/j.gene.2021.14596834530090
    [Google Scholar]
  60. IwasakiK. MiwaY. HanedaM. KuzuyaT. OgawaH. OnishiA. KobayashiT. AMP-activated protein kinase as a promoting factor, but complement and thrombin as limiting factors for acquisition of cytoprotection: Implications for induction of accommodation.Transpl. Int.201326111138114810.1111/tri.1218624047401
    [Google Scholar]
  61. LeeY.J. LimS.S. BaekB.J. AnJ.M. NamH.S. WooK.M. ChoM.K. KimS.H. LeeS.H. Nickel(II)-induced nasal epithelial toxicity and oxidative mitochondrial damage.Environ. Toxicol. Pharmacol.201642768410.1016/j.etap.2016.01.00526809061
    [Google Scholar]
  62. ChenH. DavidsonT. SingletonS. GarrickM.D. CostaM. Nickel decreases cellular iron level and converts cytosolic aconitase to iron-regulatory protein 1 in A549 cells.Toxicol. Appl. Pharmacol.2005206327528710.1016/j.taap.2004.11.01116039939
    [Google Scholar]
  63. WeiL. ZuoZ. YangZ. YinH. YangY. FangJ. CuiH. DuZ. OuyangP. ChenX. ChenJ. GengY. ZhuY. ChenZ. HuangC. WangF. GuoH. Mitochondria damage and ferroptosis involved in Ni-induced hepatotoxicity in mice.Toxicology202246615306810.1016/j.tox.2021.15306834921910
    [Google Scholar]
  64. LiG. LiX. DongJ. HanY. Electroacupuncture ameliorates cerebral ischemic injury by inhibiting ferroptosis.Front. Neurol.20211261904310.3389/fneur.2021.61904333763013
    [Google Scholar]
  65. LuJ. LiuX. TianY. LiH. RenZ. LiangS. ZhangG. ZhaoC. LiX. WangT. ChenD. KuangW. ZhuM. Moxibustion exerts a neuroprotective effect through antiferroptosis in Parkinson’s disease.Evid. Based Complement. Alternat. Med.2019201911010.1155/2019/273549231467572
    [Google Scholar]
  66. GrayN.K. HentzeM.W. Iron regulatory protein prevents binding of the 43S translation pre-initiation complex to ferritin and eALAS mRNAs.EMBO J.199413163882389110.1002/j.1460‑2075.1994.tb06699.x8070415
    [Google Scholar]
  67. RouaultT.A. HentzeM.W. CaughmanS.W. HarfordJ.B. KlausnerR.D. Binding of a cytosolic protein to the iron-responsive element of human ferritin messenger RNA.Science198824148701207121010.1126/science.34134843413484
    [Google Scholar]
  68. HentzeM.W. CaughmanS.W. RouaultT.A. BarriocanalJ.G. DancisA. HarfordJ.B. KlausnerR.D. Identification of the iron-responsive element for the translational regulation of human ferritin mRNA.Science198723848331570157310.1126/science.36859963685996
    [Google Scholar]
  69. PiccinelliP. SamuelssonT. Evolution of the iron-responsive element.RNA200713795296610.1261/rna.46480717513696
    [Google Scholar]
  70. ChenG.Q. BenthaniF.A. WuJ. LiangD. BianZ.X. JiangX. Artemisinin compounds sensitize cancer cells to ferroptosis by regulating iron homeostasis.Cell Death Differ.202027124225410.1038/s41418‑019‑0352‑331114026
    [Google Scholar]
  71. DevS. KumariS. SinghN. Kumar BalS. SethP. MukhopadhyayC.K. Role of extracellular Hydrogen peroxide in regulation of iron homeostasis genes in neuronal cells: Implication in iron accumulation.Free Radic. Biol. Med.201586788910.1016/j.freeradbiomed.2015.05.02526006106
    [Google Scholar]
  72. RogersJ.T. VenkataramaniV. WashburnC. LiuY. TummalaV. JiangH. SmithA. CahillC.M. A role for amyloid precursor protein translation to restore iron homeostasis and ameliorate lead (Pb) neurotoxicity.J. Neurochem.2016138347949410.1111/jnc.1367127206843
    [Google Scholar]
  73. WingertR.A. GallowayJ.L. BarutB. FoottH. FraenkelP. AxeJ.L. WeberG.J. DooleyK. DavidsonA.J. SchmidtB. PawB.H. ShawG.C. KingsleyP. PalisJ. SchubertH. ChenO. KaplanJ. ZonL.I. Deficiency of glutaredoxin 5 reveals Fe–S clusters are required for vertebrate haem synthesis.Nature200543670531035103910.1038/nature0388716110529
    [Google Scholar]
  74. CamaschellaC. CampanellaA. De FalcoL. BoschettoL. MerliniR. SilvestriL. LeviS. IolasconA. The human counterpart of zebrafish shiraz shows sideroblastic-like microcytic anemia and iron overload.Blood200711041353135810.1182/blood‑2007‑02‑07252017485548
    [Google Scholar]
  75. LeeJ. YouJ.H. ShinD. RohJ.L. Inhibition of glutaredoxin 5 predisposes cisplatin-resistant head and neck cancer cells to ferroptosis.Theranostics202010177775778610.7150/thno.4690332685019
    [Google Scholar]
  76. FlorekM. BauerN. JanichP. Wilsch-BraeuningerM. FargeasC.A. MarzescoA.M. EhningerG. ThieleC. HuttnerW.B. CorbeilD. Prominin-2 is a cholesterol-binding protein associated with apical and basolateral plasmalemmal protrusions in polarized epithelial cells and released into urine.Cell Tissue Res.20073281314710.1007/s00441‑006‑0324‑z17109118
    [Google Scholar]
  77. BrownC.W. AmanteJ.J. ChhoyP. ElaimyA.L. LiuH. ZhuL.J. BaerC.E. DixonS.J. MercurioA.M. Prominin2 drives ferroptosis resistance by stimulating iron export.Dev. Cell2019515575586.e410.1016/j.devcel.2019.10.00731735663
    [Google Scholar]
  78. BrownC.W. ChhoyP. MukhopadhyayD. KarnerE.R. MercurioA.M. Targeting prominin2 transcription to overcome ferroptosis resistance in cancer.EMBO Mol. Med.2021138e1379210.15252/emmm.20201379234223704
    [Google Scholar]
  79. LiX. SiW. LiZ. TianY. LiuX. YeS. HuangZ. JiY. ZhaoC. HaoX. ChenD. ZhuM. miR‑335 promotes ferroptosis by targeting ferritin heavy chain 1 in in vivo and in vitro models of Parkinson’s disease.Int. J. Mol. Med.20214746110.3892/ijmm.2021.489433649797
    [Google Scholar]
  80. ShpylevaS.I. TryndyakV.P. KovalchukO. Starlard-DavenportA. ChekhunV.F. BelandF.A. PogribnyI.P. Role of ferritin alterations in human breast cancer cells.Breast Cancer Res. Treat.20111261637110.1007/s10549‑010‑0849‑420390345
    [Google Scholar]
  81. ChekhunS.V. LukyanovaN.Y. ShvetsY.V. BurlakaA.P. BuchinskaL.G. Significance of ferritin expression in formation of malignant phenotype of human breast cancer cells.Exp. Oncol.201436317918325265351
    [Google Scholar]
  82. GaoM. MonianP. PanQ. ZhangW. XiangJ. JiangX. Ferroptosis is an autophagic cell death process.Cell Res.20162691021103210.1038/cr.2016.9527514700
    [Google Scholar]
  83. Santana-CodinaN. ManciasJ.D. The role of NCOA4-mediated ferritinophagy in health and disease.Pharmaceuticals (Basel)201811411410.3390/ph1104011430360520
    [Google Scholar]
  84. MasaldanS. ClatworthyS.A.S. GamellC. MeggyesyP.M. RigopoulosA.T. HauptS. HauptY. DenoyerD. AdlardP.A. BushA.I. CaterM.A. Iron accumulation in senescent cells is coupled with impaired ferritinophagy and inhibition of ferroptosis.Redox Biol.20181410011510.1016/j.redox.2017.08.01528888202
    [Google Scholar]
  85. HouW. XieY. SongX. SunX. LotzeM.T. ZehH.J.III KangR. TangD. Autophagy promotes ferroptosis by degradation of ferritin.Autophagy20161281425142810.1080/15548627.2016.118736627245739
    [Google Scholar]
  86. ParkE. ChungS.W. ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation.Cell Death Dis.2019101182210.1038/s41419‑019‑2064‑531659150
    [Google Scholar]
  87. Cardot-RuffinoV. ChauvetV. CaligarisC. Bertrand-ChapelA. ChuvinN. PommierR.M. ValcourtU. VincentD. MartelS. AiresS. KaniewskiB. DubusP. CassierP. SentisS. BartholinL. Generation of an Fsp1 (fibroblast-specific protein 1)-Flpo transgenic mouse strain.Genesis2020585e2335910.1002/dvg.2335932191380
    [Google Scholar]
  88. WeiS. QiuT. YaoX. WangN. JiangL. JiaX. TaoY. WangZ. PeiP. ZhangJ. ZhuY. YangG. LiuX. LiuS. SunX. Arsenic induces pancreatic dysfunction and ferroptosis via mitochondrial ROS-autophagy-lysosomal pathway.J. Hazard. Mater.202038412139010.1016/j.jhazmat.2019.12139031735470
    [Google Scholar]
  89. ManciasJ.D. Pontano VaitesL. NissimS. BiancurD.E. KimA.J. WangX. LiuY. GoesslingW. KimmelmanA.C. HarperJ.W. Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated by iron dependent HERC2-mediated proteolysis.eLife20154e1030810.7554/eLife.1030826436293
    [Google Scholar]
  90. HayashimaK. KimuraI. KatohH. Role of ferritinophagy in cystine deprivation-induced cell death in glioblastoma cells.Biochem. Biophys. Res. Commun.2021539566310.1016/j.bbrc.2020.12.07533421769
    [Google Scholar]
  91. GryzikM. AspertiM. DenardoA. ArosioP. PoliM. NCOA4-mediated ferritinophagy promotes ferroptosis induced by erastin, but not by RSL3 in HeLa cells.Biochim. Biophys. Acta Mol. Cell Res.20211868211891310.1016/j.bbamcr.2020.11891333245979
    [Google Scholar]
  92. JhelumP. Santos-NogueiraE. TeoW. HaumontA. LenoëlI. StysP.K. DavidS. Ferroptosis mediates cuprizone-induced loss of oligodendrocytes and demyelination.J. Neurosci.202040489327934110.1523/JNEUROSCI.1749‑20.202033106352
    [Google Scholar]
  93. QinX. ZhangJ. WangB. XuG. YangX. ZouZ. YuC. Ferritinophagy is involved in the zinc oxide nanoparticles-induced ferroptosis of vascular endothelial cells.Autophagy202117124266428510.1080/15548627.2021.191101633843441
    [Google Scholar]
  94. LinP.L. TangH.H. WuS.Y. ShawN.S. SuC.L. Saponin formosanin C-induced ferritinophagy and ferroptosis in human hepatocellular carcinoma cells.Antioxidants20209868210.3390/antiox908068232751249
    [Google Scholar]
  95. TsaiY. XiaC. SunZ. The Inhibitory effect of 6-gingerol on ubiquitin-specific peptidase 14 enhances autophagy-dependent ferroptosis and anti-tumor in vivo and in vitro. Front. Pharmacol.20201159855510.3389/fphar.2020.59855533281606
    [Google Scholar]
  96. ZhangY. KongY. MaY. NiS. WikerholmenT. XiK. ZhaoF. ZhaoZ. WangJ. HuangB. ChenA. YaoZ. HanM. FengZ. HuY. ThorsenF. WangJ. LiX. Loss of COPZ1 induces NCOA4 mediated autophagy and ferroptosis in glioblastoma cell lines.Oncogene20214081425143910.1038/s41388‑020‑01622‑333420375
    [Google Scholar]
  97. BauckmanK.A. MysorekarI.U. Ferritinophagy drives uropathogenic Escherichia coli persistence in bladder epithelial cells.Autophagy201612585086310.1080/15548627.2016.116017627002654
    [Google Scholar]
  98. RabinovitchR.C. SamborskaB. FaubertB. MaE.H. GravelS.P. AndrzejewskiS. RaissiT.C. PauseA. St-PierreJ. JonesR.G. AMPK maintains cellular metabolic homeostasis through regulation of mitochondrial reactive oxygen species.Cell Rep.20172111910.1016/j.celrep.2017.09.02628978464
    [Google Scholar]
  99. KimJ. KunduM. ViolletB. GuanK.L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1.Nat. Cell Biol.201113213214110.1038/ncb215221258367
    [Google Scholar]
  100. DuJ. WangT. LiY. ZhouY. WangX. YuX. RenX. AnY. WuY. SunW. FanW. ZhuQ. WangY. TongX. DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin.Free Radic. Biol. Med.201913135636910.1016/j.freeradbiomed.2018.12.01130557609
    [Google Scholar]
  101. ChenY. LiN. WangH. WangN. PengH. WangJ. LiY. LiuM. LiH. ZhangY. WangZ. RETRACTED: Amentoflavone suppresses cell proliferation and induces cell death through triggering autophagy-dependent ferroptosis in human glioma.Life Sci.202024711742510.1016/j.lfs.2020.11742532057904
    [Google Scholar]
  102. ZhuH.Y. HuangZ.X. ChenG.Q. ShengF. ZhengY.S. Typhaneoside prevents acute myeloid leukemia (AML) through suppressing proliferation and inducing ferroptosis associated with autophagy.Biochem. Biophys. Res. Commun.201951641265127110.1016/j.bbrc.2019.06.07031301767
    [Google Scholar]
  103. KiharaA. KabeyaY. OhsumiY. YoshimoriT. Beclin–phosphatidylinositol 3-kinase complex functions at the trans -Golgi network.EMBO Rep.20012433033510.1093/embo‑reports/kve06111306555
    [Google Scholar]
  104. RongY. FanJ. JiC. WangZ. GeX. WangJ. YeW. YinG. CaiW. LiuW. USP11 regulates autophagy-dependent ferroptosis after spinal cord ischemia-reperfusion injury by deubiquitinating Beclin 1.Cell Death Differ.202134839355
    [Google Scholar]
  105. JinS. TianS. ChenY. ZhangC. XieW. XiaX. CuiJ. WangR.F. USP19 modulates autophagy and antiviral immune responses by deubiquitinating Beclin-1.EMBO J.201635886688010.15252/embj.20159359626988033
    [Google Scholar]
  106. FujitaN. ItohT. OmoriH. FukudaM. NodaT. YoshimoriT. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy.Mol. Biol. Cell20081952092210010.1091/mbc.e07‑12‑125718321988
    [Google Scholar]
  107. LystadA.H. CarlssonS.R. de la BallinaL.R. KauffmanK.J. NagS. YoshimoriT. MeliaT.J. SimonsenA. Distinct functions of ATG16L1 isoforms in membrane binding and LC3B lipidation in autophagy-related processes.Nat. Cell Biol.201921337238310.1038/s41556‑019‑0274‑930778222
    [Google Scholar]
  108. HermannA. KitzlerH.H. PollackT. BiskupS. KrügerS. FunkeC. TerrileC. HaackT.B. A case of beta-propeller protein-associated neurodegeneration due to a heterozygous deletion of WDR45.Tremor Other Hyperkinet. Mov. (N. Y.)20177046510.5334/tohm.36029082105
    [Google Scholar]
  109. HaackT.B. HogarthP. KruerM.C. GregoryA. WielandT. SchwarzmayrT. GrafE. SanfordL. MeyerE. KaraE. CunoS.M. HarikS.I. DanduV.H. NardocciN. ZorziG. DunawayT. TarnopolskyM. SkinnerS. FruchtS. HanspalE. Schrander-StumpelC. HéronD. MignotC. GaravagliaB. BhatiaK. HardyJ. StromT.M. BoddaertN. HouldenH.H. KurianM.A. MeitingerT. ProkischH. HayflickS.J. Exome sequencing reveals de novo WDR45 mutations causing a phenotypically distinct, X-linked dominant form of NBIA.Am. J. Hum. Genet.20129161144114910.1016/j.ajhg.2012.10.01923176820
    [Google Scholar]
  110. DiawS.H. GanosC. ZittelS. Plötze-MartinK. KulikovskajaL. VosM. WestenbergerA. RakovicA. LohmannK. Dulovic-MahlowM. Mutant WDR45 leads to altered ferritinophagy and ferroptosis in β-propeller Protein-associated neurodegeneration.Int. J. Mol. Sci.20222317952410.3390/ijms2317952436076926
    [Google Scholar]
  111. AringL. ChoiE.K. KoperaH. LaniganT. IwaseS. KlionskyD.J. SeoY.A. A neurodegeneration gene, WDR45, links impaired ferritinophagy to iron accumulation.J. Neurochem.2022160335637510.1111/jnc.1554834837396
    [Google Scholar]
  112. ZhaoY. LiJ. GuoW. LiH. LeiL. Periodontitis-level butyrate-induced ferroptosis in periodontal ligament fibroblasts by activation of ferritinophagy.Cell Death Discov.20206111910.1038/s41420‑020‑00356‑133298848
    [Google Scholar]
  113. DasN.K. JainC. SankarA. SchwartzA.J. Santana-CodinaN. SolankiS. ZhangZ. MaX. ParimiS. RuiL. ManciasJ.D. ShahY.M. Modulation of the HIF2α-NCOA4 axis in enterocytes attenuates iron loading in a mouse model of hemochromatosis.Blood2022139162547255210.1182/blood.202101345234990508
    [Google Scholar]
  114. ZhouX. ZhengY. SunW. ZhangZ. LiuJ. YangW. YuanW. YiY. WangJ. LiuJ. D-mannose alleviates osteoarthritis progression by inhibiting chondrocyte ferroptosis in a HIF-2α-dependent manner.Cell Prolif.20215411e1313410.1111/cpr.1313434561933
    [Google Scholar]
  115. LiZ.J. DaiH.Q. HuangX.W. FengJ. DengJ.H. WangZ.X. YangX.M. LiuY.J. WuY. ChenP.H. ShiH. WangJG. ZhouJ. LuGD. Artesunate synergizes with sorafenib to induce ferroptosis in hepatocellular carcinoma.Acta Pharmacol. Sin.202032699265
    [Google Scholar]
  116. SardielloM. PalmieriM. di RonzaA. MedinaD.L. ValenzaM. GennarinoV.A. Di MaltaC. DonaudyF. EmbrioneV. PolishchukR.S. BanfiS. ParentiG. CattaneoE. BallabioA. A gene network regulating lysosomal biogenesis and function.Science2009325593947347710.1126/science.117444719556463
    [Google Scholar]
  117. WangZ.X. MaJ. LiX.Y. WuY. ShiH. ChenY. LuG. ShenH.M. LuG.D. ZhouJ. Quercetin induces p53-independent cancer cell death through lysosome activation by the transcription factor EB and reactive oxygen species-dependent ferroptosis.Br. J. Pharmacol.202117851133114810.1111/bph.1535033347603
    [Google Scholar]
  118. AnandhanA. DodsonM. ShakyaA. ChenJ. LiuP. WeiY. TanH. WangQ. JiangZ. YangK. GarciaJ.G.N. ChambersS.K. ChapmanE. OoiA. Yang-HartwichY. StockwellB.R. ZhangD.D. NRF2 controls iron homeostasis and ferroptosis through HERC2 and VAMP8.Sci. Adv.202395eade958510.1126/sciadv.ade958536724221
    [Google Scholar]
  119. YiJ. WuS. TanS. QinY. WangX. JiangJ. LiuH. WuB. Berberine alleviates liver fibrosis through inducing ferrous redox to activate ROS-mediated hepatic stellate cells ferroptosis.Cell Death Discov.20217137410.1038/s41420‑021‑00768‑734864819
    [Google Scholar]
  120. SunX. ZhangX. HuH. LuY. ChenJ. YasudaK. WangH. Berberine inhibits hepatic stellate cell proliferation and prevents experimental liver fibrosis.Biol. Pharm. Bull.20093291533153710.1248/bpb.32.153319721228
    [Google Scholar]
  121. WangP. CuiY. RenQ. YanB. ZhaoY. YuP. GaoG. ShiH. ChangS. ChangY.Z. Mitochondrial ferritin attenuates cerebral ischaemia/reperfusion injury by inhibiting ferroptosis.Cell Death Dis.202112544710.1038/s41419‑021‑03725‑533953171
    [Google Scholar]
  122. WangX. MaH. SunJ. ZhengT. ZhaoP. LiH. YangM. Mitochondrial ferritin deficiency promotes osteoblastic ferroptosis via mitophagy in type 2 diabetic osteoporosis.Biol. Trace Elem. Res.202133594527
    [Google Scholar]
  123. FuhrmannD.C. MondorfA. BeifußJ. JungM. BrüneB. Hypoxia inhibits ferritinophagy, increases mitochondrial ferritin, and protects from ferroptosis.Redox Biol.20203610167010.1016/j.redox.2020.10167032810738
    [Google Scholar]
  124. SongL.M. XiaoZ.X. ZhangN. YuX.Q. CuiW. XieJ.X. XuH.M. Apoferritin improves motor deficits in MPTP-treated mice by regulating brain iron metabolism and ferroptosis.iScience202124510243110.1016/j.isci.2021.10243133997705
    [Google Scholar]
  125. HuangZ. SiW. LiX. YeS. LiuX. JiY. HaoX. ChenD. ZhuM. Moxibustion protects dopaminergic neurons in Parkinson’s disease through antiferroptosis.Evid. Based Complement. Alternat. Med.2021202111110.1155/2021/666824934122606
    [Google Scholar]
  126. AshrafA. JeandriensJ. ParkesH.G. SoP.W. Iron dyshomeostasis, lipid peroxidation and perturbed expression of cystine/glutamate antiporter in Alzheimer’s disease: Evidence of ferroptosis.Redox Biol.20203210149410.1016/j.redox.2020.10149432199332
    [Google Scholar]
  127. AytonS. FauxN.G. BushA.I. WeinerM.W. AisenP. PetersenR. JackC.R. JagustW. TrojanowkiJ.Q. TogaA.W. BeckettL. GreenR.C. SaykinA.J. MorrisJ. ShawL.M. KhachaturianZ. SorensenG. KullerL. RaichleM. PaulS. DaviesP. FillitH. HeftiF. HoltzmanD. Marcel MesulamM. PotterW. SnyderP. SchwartzA. MontineT. ThomasR.G. DonohueM. WalterS. GessertD. SatherT. JiminezG. HarveyD. BernsteinM. FoxN. ThompsonP. SchuffN. BorowskiB. GunterJ. SenjemM. VemuriP. JonesD. KantarciK. WardC. KoeppeR.A. FosterN. ReimanE.M. ChenK. MathisC. LandauS. CairnsN.J. HouseholderE. Taylor-ReinwaldL. LeeV. KoreckaM. FigurskiM. CrawfordK. NeuS. ForoudT.M. PotkinS. ShenL. FaberK. KimS. NhoK. ThalL. BuckholtzN. AlbertM. FrankR. HsiaoJ. KayeJ. QuinnJ. LindB. CarterR. DolenS. SchneiderL.S. PawluczykS. BecceraM. TeodoroL. SpannB.M. BrewerJ. VanderswagH. FleisherA. HeidebrinkJ.L. LordJ.L. MasonS.S. AlbersC.S. KnopmanD. JohnsonK. DoodyR.S. Villanueva-MeyerJ. ChowdhuryM. RountreeS. DangM. SternY. HonigL.S. BellK.L. AncesB. CarrollM. LeonS. MintunM.A. SchneiderS. OliverA. MarsonD. GriffithR. ClarkD. GeldmacherD. BrockingtonJ. RobersonE. GrossmanH. MitsisE. deToledo-MorrellL. ShahR.C. DuaraR. VaronD. GreigM.T. RobertsP. AlbertM. OnyikeC. D’AgostinoD.II KielbS. GalvinJ.E. CerboneB. MichelC.A. RusinekH. de LeonM.J. GlodzikL. De SantiS. Murali DoraiswamyP. PetrellaJ.R. WongT.Z. ArnoldS.E. KarlawishJ.H. WolkD. SmithC.D. JichaG. HardyP. SinhaP. OatesE. ConradG. LopezO.L. OakleyM.A. SimpsonD.M. PorsteinssonA.P. GoldsteinB.S. MartinK. MakinoK.M. Saleem IsmailM. BrandC. MulnardR.A. ThaiG. Mc-Adams-OrtizC. WomackK. MathewsD. QuicenoM. Diaz-ArrastiaR. KingR. WeinerM. Martin-CookK. DeVousM. LeveyA.I. LahJ.J. CellarJ.S. BurnsJ.M. AndersonH.S. SwerdlowR.H. ApostolovaL. TingusK. WooE. SilvermanD.H.S. LuP.H. BartzokisG. Graff-RadfordN.R. ParfittF. KendallT. JohnsonH. FarlowM.R. HakeA.M. MatthewsB.R. HerringS. HuntC. van DyckC.H. CarsonR.E. MacAvoyM.G. ChertkowH. BergmanH. HoseinC. BlackS. StefanovicB. CaldwellC. Robin HsiungG-Y. FeldmanH. MudgeB. AssalyM. KerteszA. RogersJ. BernickC. MunicD. KerwinD. MesulamM-M. LipowskiK. WuC-K. JohnsonN. SadowskyC. MartinezW. VillenaT. Scott TurnerR. JohnsonK. ReynoldsB. SperlingR.A. JohnsonK.A. MarshallG. FreyM. LaneB. RosenA. TinklenbergJ. SabbaghM.N. BeldenC.M. JacobsonS.A. SirrelS.A. KowallN. KillianyR. BudsonA.E. NorbashA. JohnsonP.L. AllardJ. LernerA. OgrockiP. HudsonL. FletcherE. CarmichaelO. OlichneyJ. DeCarliC. KitturS. BorrieM. LeeT-Y. BarthaR. JohnsonS. AsthanaS. CarlssonC.M. PotkinS.G. PredaA. NguyenD. TariotP. ReederS. BatesV. CapoteH. RainkaM. ScharreD.W. KatakiM. AdeliA. ZimmermanE.A. CelminsD. BrownA.D. PearlsonG.D. BlankK. AndersonK. SantulliR.B. KitzmillerT.J. SchwartzE.S. SinkK.M. WilliamsonJ.D. GargP. WatkinsF. OttB.R. QuerfurthH. TremontG. SallowayS. MalloyP. CorreiaS. RosenH.J. MillerB.L. MintzerJ. SpicerK. BachmanD. FingerE. PasternakS. RachinskyI. DrostD. PomaraN. HernandoR. SarraelA. SchultzS.K. Boles PontoL.L. ShimH. Elizabeth SmithK. RelkinN. ChaingG. RaudinL. SmithA. FargherK. Ashok RajB. NeylanT. GrafmanJ. DavisM. MorrisonR. HayesJ. FinleyS. FriedlK. FleischmanD. ArfanakisK. JamesO. MassogliaD. Jay FruehlingJ. HardingS. PeskindE.R. PetrieE.C. LiG. YesavageJ.A. TaylorJ.L. FurstA.J. Ferritin levels in the cerebrospinal fluid predict Alzheimer’s disease outcomes and are regulated by APOE.Nat. Commun.201561676010.1038/ncomms776025988319
    [Google Scholar]
  128. PengW. ZhuZ. YangY. HouJ. LuJ. ChenC. LiuF. PiR. N2L, a novel lipoic acid-niacin dimer, attenuates ferroptosis and decreases lipid peroxidation in HT22 cells.Brain Res. Bull.202117425025910.1016/j.brainresbull.2021.06.01434171402
    [Google Scholar]
  129. XiongQ. LiX. LiW. ChenG. XiaoH. LiP. WuC. WDR45 mutation impairs the autophagic degradation of transferrin receptor and promotes ferroptosis.Front. Mol. Biosci.2021864583110.3389/fmolb.2021.64583134012978
    [Google Scholar]
  130. GuoH. ZhuL. TangP. ChenD. LiY. LiJ. BaoC. Carthamin yellow improves cerebral ischemia‑reperfusion injury by attenuating inflammation and ferroptosis in rats.Int. J. Mol. Med.20214745210.3892/ijmm.2021.488533576458
    [Google Scholar]
  131. BaiT. LiM. LiuY. QiaoZ. WangZ. Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell.Free Radic. Biol. Med.20201609210210.1016/j.freeradbiomed.2020.07.02632768568
    [Google Scholar]
  132. KongZ. LiuR. ChengY. Artesunate alleviates liver fibrosis by regulating ferroptosis signaling pathway.Biomed. Pharmacother.20191092043205310.1016/j.biopha.2018.11.03030551460
    [Google Scholar]
  133. YangY. ChenJ. GaoQ. ShanX. WangJ. LvZ. Study on the attenuated effect of Ginkgolide B on ferroptosis in high fat diet induced nonalcoholic fatty liver disease.Toxicology202044515259910.1016/j.tox.2020.15259932976958
    [Google Scholar]
  134. TsurusakiS. TsuchiyaY. KoumuraT. NakasoneM. SakamotoT. MatsuokaM. ImaiH. Yuet-Yin KokC. OkochiH. NakanoH. MiyajimaA. TanakaM. Hepatic ferroptosis plays an important role as the trigger for initiating inflammation in nonalcoholic steatohepatitis.Cell Death Dis.201910644910.1038/s41419‑019‑1678‑y31209199
    [Google Scholar]
  135. GaoG. XieZ. LiE. YuanY. FuY. WangP. ZhangX. QiaoY. XuJ. HölscherC. WangH. ZhangZ. Dehydroabietic acid improves nonalcoholic fatty liver disease through activating the Keap1/Nrf2-ARE signaling pathway to reduce ferroptosis.J. Nat. Med.202175354055210.1007/s11418‑021‑01491‑433590347
    [Google Scholar]
  136. TsuchiyaH. AshlaA.A. HoshikawaY. MatsumiY. KankiK. EnjojiM. MomosakiS. NakamutaM. TaketomiA. MaeharaY. ShomoriK. KurimasaA. HisatomeI. ItoH. ShiotaG. Iron state in association with retinoid metabolism in non-alcoholic fatty liver disease.Hepatol. Res.201040121227123810.1111/j.1872‑034X.2010.00719.x20880062
    [Google Scholar]
  137. LiN. WangW. ZhouH. WuQ. DuanM. LiuC. WuH. DengW. ShenD. TangQ. Ferritinophagy-mediated ferroptosis is involved in sepsis-induced cardiac injury.Free Radic. Biol. Med.202016030331810.1016/j.freeradbiomed.2020.08.00932846217
    [Google Scholar]
  138. Martin-SanchezD. Ruiz-AndresO. PovedaJ. CarrascoS. Cannata-OrtizP. Sanchez-NiñoM.D. Ruiz OrtegaM. EgidoJ. LinkermannA. OrtizA. SanzA.B. Ferroptosis, but not necroptosis, is important in nephrotoxic folic acid–induced AKI.J. Am. Soc. Nephrol.201728121822910.1681/ASN.201512137627352622
    [Google Scholar]
  139. EleftheriadisT. PissasG. LiakopoulosV. StefanidisI. Factors that may protect the native hibernator syrian hamster renal tubular epithelial cells from ferroptosis due to warm anoxia-reoxygenation.Biology (Basel)2019822210.3390/biology802002230935115
    [Google Scholar]
  140. WuY. ZhaoY. YangH. WangY. ChenY. HMGB1 regulates ferroptosis through Nrf2 pathway in mesangial cells in response to high glucose.Biosci. Rep.2021412BSR2020292410.1042/BSR2020292433565572
    [Google Scholar]
  141. CaoZ. XueY. WangJ. Screening diagnostic markers of osteoporosis based on ferroptosis of osteoblast and osteoclast.Aging (Albany NY)202315189391940710.18632/aging.20494537770229
    [Google Scholar]
  142. MaH. WangX. ZhangW. LiH. ZhaoW. SunJ. YangM. Melatonin suppresses ferroptosis induced by high glucose via activation of the Nrf2/HO-1 signaling pathway in type 2 diabetic osteoporosis.Oxid. Med. Cell. Longev.2020202011810.1155/2020/906761033343809
    [Google Scholar]
  143. YangR.Z. XuW.N. ZhengH.L. ZhengX.F. LiB. JiangL.S. JiangS.D. Exosomes derived from vascular endothelial cells antagonize glucocorticoid-induced osteoporosis by inhibiting ferritinophagy with resultant limited ferroptosis of osteoblasts.J. Cell. Physiol.202123696691670510.1002/jcp.3033133590921
    [Google Scholar]
  144. SongH. LiX. ZhaoZ. QianJ. WangY. CuiJ. WengW. CaoL. ChenX. HuY. SuJ. Reversal of osteoporotic activity by endothelial cell-secreted bone targeting and biocompatible exosomes.Nano Lett.20191953040304810.1021/acs.nanolett.9b0028730968694
    [Google Scholar]
  145. ChenP. LiF.M. ZhouY.F. QianC. LiJ. JiangL.R. QianZ.M. Effects of alpha-lipoic acid on expression of iron transport and storage proteins in BV-2 microglia cells.Pharmacol. Rep.20176911510.1016/j.pharep.2016.09.01127755990
    [Google Scholar]
  146. YepiskoposyanH. EgliD. FergestadT. SelvarajA. TreiberC. MulthaupG. GeorgievO. SchaffnerW. Transcriptome response to heavy metal stress in drosophila reveals a new zinc transporter that confers resistance to zinc.Nucleic Acids Res.200634174866487710.1093/nar/gkl60616973896
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037315874240826112422
Loading
/content/journals/cpps/10.2174/0113892037315874240826112422
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test