Skip to content
2000
Volume 26, Issue 1
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

The biotechnology field has witnessed rapid advancements, leading to the development of numerous proteins and peptides (PPs) for disease management. The production and isolation of bioactive milk peptides (BAPs) involve enzymatic hydrolysis and fermentation, followed by purification through various techniques such as ultrafiltration and chromatography. The nutraceutical potential of bioactive milk peptides has gained significant attention in nutritional research, as these peptides may regulate blood sugar levels, mitigate oxidative stress, improve cardiovascular health, gut health, bone health, and immune responses, and exhibit anticancer properties. However, to enhance BAP bioavailability, the encapsulation method can be used to offer protection against protease degradation and controlled release. This article provides insights into the composition, types, production, isolation, bioavailability, and health benefits of BAPs.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037319188240806074731
2024-08-20
2025-05-02
Loading full text...

Full text loading...

References

  1. PatelA. PatelM. YangX. MitraA. Recent advances in protein and Peptide drug delivery: A special emphasis on polymeric nanoparticles.Protein Pept. Lett.201421111102112010.2174/092986652166614080711424025106908
    [Google Scholar]
  2. ZhuQ. ChenZ. PaulP.K. LuY. WuW. QiJ. Oral delivery of proteins and peptides: Challenges, status quo and future perspectives.Acta Pharm. Sin. B20211182416244810.1016/j.apsb.2021.04.00134522593
    [Google Scholar]
  3. IsmailR. CsókaI. Novel strategies in the oral delivery of antidiabetic peptide drugs – Insulin, GLP 1 and its analogs.Eur. J. Pharm. Biopharm.201711525726710.1016/j.ejpb.2017.03.01528336368
    [Google Scholar]
  4. DruckerD.J. Advances in oral peptide therapeutics.Nat. Rev. Drug Discov.202019427728910.1038/s41573‑019‑0053‑031848464
    [Google Scholar]
  5. RäderA.F.B. WeinmüllerM. ReichartF. Schumacher-KlingerA. MerzbachS. GilonC. HoffmanA. KesslerH. Orally active peptides: Is there a magic bullet?Angew. Chem. Int. Ed.20185744144141443810.1002/anie.20180729830144240
    [Google Scholar]
  6. MohantyD.P. MohapatraS. MisraS. SahuP.S. Milk derived bioactive peptides and their impact on human health – A review.Saudi J. Biol. Sci.201623557758310.1016/j.sjbs.2015.06.00527579006
    [Google Scholar]
  7. NakamuraT. AizawaT. KariyaR. OkadaS. DemuraM. KawanoK. MakabeK. KuwajimaK. Molecular mechanisms of the cytotoxicity of human α-lactalbumin made lethal to tumor cells (HAMLET) and other protein-oleic acid complexes.J. Biol. Chem.201328820144081441610.1074/jbc.M112.43788923580643
    [Google Scholar]
  8. AndersonG.H. MooreS.E. Dietary proteins in the regulation of food intake and body weight in humans.J. Nutr.20041344974S979S10.1093/jn/134.4.974S15051857
    [Google Scholar]
  9. ClareD.A. SwaisgoodH.E. Bioactive milk peptides: A prospectus.J. Dairy Sci.20008361187119510.3168/jds.S0022‑0302(00)74983‑610877382
    [Google Scholar]
  10. WadaY. LönnerdalB. Bioactive peptides derived from human milk proteins — mechanisms of action.J. Nutr. Biochem.201425550351410.1016/j.jnutbio.2013.10.01224411973
    [Google Scholar]
  11. KittsD.D. Antioxidant properties of casein-phosphopeptides.Trends Food Sci. Technol.2005161254955410.1016/j.tifs.2005.08.009
    [Google Scholar]
  12. Hernández-LedesmaB. García-NebotM.J. Fernández-ToméS. AmigoL. RecioI. Dairy protein hydrolysates: Peptides for health benefits.Int. Dairy J.20143828210010.1016/j.idairyj.2013.11.004
    [Google Scholar]
  13. PanchaudA. AffolterM. KussmannM. Mass spectrometry for nutritional peptidomics: How to analyze food bioactives and their health effects.J. Proteomics201275123546355910.1016/j.jprot.2011.12.02222227401
    [Google Scholar]
  14. UdenigweC.C. AlukoR.E. Food protein-derived bioactive peptides: Production, processing, and potential health benefits.J. Food Sci.2012771R11R2410.1111/j.1750‑3841.2011.02455.x22260122
    [Google Scholar]
  15. KorhonenH. PihlantoA. Bioactive peptides: Production and functionality.Int. Dairy J.200616994596010.1016/j.idairyj.2005.10.012
    [Google Scholar]
  16. NongoniermaA.B. FitzGeraldR.J. Biofunctional properties of caseinophosphopeptides in the oral cavity.Caries Res.201246323426710.1159/00033838122572605
    [Google Scholar]
  17. PowerO. JakemanP. FitzGeraldR.J. Antioxidative peptides: Enzymatic production, in vitro and in vivo antioxidant activity and potential applications of milk-derived antioxidative peptides.Amino Acids201344379782010.1007/s00726‑012‑1393‑922968663
    [Google Scholar]
  18. NongoniermaA.B.O. KeeffeM.B. Fitz GeraldeR.J. Milk protein hydrolysates and bioactive peptides. Advanced Dairy Chemistry: Volume 1B: Proteins: Applied Aspects.4th edNew YorkSpringer201641748210.1007/978‑1‑4939‑2800‑2_15
    [Google Scholar]
  19. NongoniermaA.B. FitzGeraldR.J. The scientific evidence for the role of milk protein-derived bioactive peptides in humans: A Review.J. Funct. Foods20151764065610.1016/j.jff.2015.06.021
    [Google Scholar]
  20. SaadiS. SaariN. AnwarF. Abdul HamidA. GhazaliH.M. Recent advances in food biopeptides: Production, biological functionalities and therapeutic applications.Biotechnol. Adv.20153318011610.1016/j.biotechadv.2014.12.00325499177
    [Google Scholar]
  21. Li-ChanE.C.Y. Bioactive peptides and protein hydrolysates: Research trends and challenges for application as nutraceuticals and functional food ingredients.Curr. Opin. Food Sci.201511283710.1016/j.cofs.2014.09.005
    [Google Scholar]
  22. BrouwerC.P.J.M. RahmanM. WellingM.M. Discovery and development of a synthetic peptide derived from lactoferrin for clinical use.Peptides20113291953196310.1016/j.peptides.2011.07.01721827807
    [Google Scholar]
  23. van der VeldenW.J.F.M. van IerselT.M.P. BlijlevensN.M.A. DonnellyJ.P. Safety and tolerability of the antimicrobial peptide human lactoferrin 1-11 (hLF1-11).BMC Med.2009714410.1186/1741‑7015‑7‑4419735580
    [Google Scholar]
  24. KorhonenH. PihlantoA. Food-derived bioactive peptides--opportunities for designing future foods.Curr. Pharm. Des.20039161297130810.2174/138161203345489212769738
    [Google Scholar]
  25. ChristensenJ.E. DudleyE.G. PedersonJ.A. SteeleJ.L. Peptidases and amino acid catabolism in lactic acid bacteria.Antonie van Leeuwenhoek1999761/421724610.1023/A:100200191972010532381
    [Google Scholar]
  26. NongoniermaA.B. FitzGeraldR.J. Dipeptidyl peptidase IV inhibitory properties of a whey protein hydrolysate: Influence of fractionation, stability to simulated gastrointestinal digestion and food–drug interaction.Int. Dairy J.2013321333910.1016/j.idairyj.2013.03.005
    [Google Scholar]
  27. WalshD.J. BernardH. MurrayB.A. MacDonaldJ. PentzienA.K. WrightG.A. WalJ.M. StruthersA.D. MeiselH. FitzGeraldR.J. In vitro generation and stability of the lactokinin β-lactoglobulin fragment (142-148).J. Dairy Sci.200487113845385710.3168/jds.S0022‑0302(04)73524‑915483169
    [Google Scholar]
  28. StuknytėM. CattaneoS. MasottiF. De NoniI. Occurrence and fate of ACE-inhibitor peptides in cheeses and in their digestates following in vitro static gastrointestinal digestion.Food Chem.2015168273310.1016/j.foodchem.2014.07.04525172679
    [Google Scholar]
  29. PicarielloG. IacominoG. MamoneG. FerrantiP. FierroO. GianfraniC. Di LucciaA. AddeoF. Transport across Caco-2 monolayers of peptides arising from in vitro digestion of bovine milk proteins.Food Chem.20131391-420321210.1016/j.foodchem.2013.01.06323561097
    [Google Scholar]
  30. QuirósA. DávalosA. LasunciónM.A. RamosM. RecioI. Bioavailability of the antihypertensive peptide LHLPLP: Transepithelial flux of HLPLP.Int. Dairy J.200818327928610.1016/j.idairyj.2007.09.006
    [Google Scholar]
  31. VermeirssenV. DeplanckeB. TappendenK.A. CampJ.V. GaskinsH.R. VerstraeteW. Intestinal transport of the lactokinin Ala-Leu-Pro-Met-His-Ile-Arg through a Caco-2 Bbe monolayer.J. Pept. Sci.2002839510010.1002/psc.37111931586
    [Google Scholar]
  32. FoltzM. MeynenE.E. BiancoV. van PlaterinkC. KoningT.M.M.G. KloekJ. Angiotensin converting enzyme inhibitory peptides from a lactotripeptide-enriched milk beverage are absorbed intact into the circulation.J. Nutr.2007137495395810.1093/jn/137.4.95317374660
    [Google Scholar]
  33. JauhiainenT PilviT. ChengZ.J. Milk products containing bioactive tripeptides have an antihypertensive effect in double transgenic rats (dTGR) harbouring human renin and human angiotensinogen genes.J. Nutr. Metab.20102010287030
    [Google Scholar]
  34. HansenM. SandströmB. JensenM. SørensenS.S. Casein phosphopeptides improve zinc and calcium absorption from rice-based but not from whole-grain infant cereal.J. Pediatr. Gastroenterol. Nutr.199724156629093988
    [Google Scholar]
  35. SamtiyaM. SamtiyaS. BadgujarP.C. PuniyaA.K. DhewaT. AlukoR.E. Health-promoting and therapeutic attributes of milk-derived bioactive peptides.Nutrients20221415300110.3390/nu1415300135893855
    [Google Scholar]
  36. GuhaS. SharmaH. DeshwalG.K. A comprehensive review on bioactive peptides derived from milk and milk products of minor dairy species. Food Production.Proc. Nutr.202131121
    [Google Scholar]
  37. Vargas-Bello-PérezE. Márquez-HernándezR.I. Hernández-CastellanoL.E. Bioactive peptides from milk: Animal determinants and their implications in human health.J. Dairy Res.201986213614410.1017/S002202991900038431156082
    [Google Scholar]
  38. PuniaH. TokasJ. MalikA. SangwanS. BalodaS. SinghN. SinghS. BhukerA. SinghP. YashveerS. AgarwalS. MorV.S. Identification and detection of bioactive peptides in milk and dairy products: Remarks about agro-foods.Molecules20202515332810.3390/molecules2515332832707993
    [Google Scholar]
  39. KorhonenH. Milk-derived bioactive peptides: From science to applications.J. Funct. Foods20091217718710.1016/j.jff.2009.01.007
    [Google Scholar]
  40. GermanJ.B. DillardC.J. WardR.E. Bioactive components in milk.Curr. Opin. Clin. Nutr. Metab. Care20025665365810.1097/00075197‑200211000‑0000712394640
    [Google Scholar]
  41. Ledesma-MartínezE. Aguíñiga-SánchezI. Weiss-SteiderB. Rivera-MartínezA.R. Santiago-OsorioE. Casein and peptides derived from casein as antileukaemic agents.J. Oncol.20192019111410.1155/2019/815096731582978
    [Google Scholar]
  42. ZhaoC. AshaoluT.J. Bioactivity and safety of whey peptides.Lebensm. Wiss. Technol.202013410993510.1016/j.lwt.2020.109935
    [Google Scholar]
  43. SánchezA. VázquezA. Bioactive peptides: A review.Food Quality and Safety201711294610.1093/fqs/fyx006
    [Google Scholar]
  44. AkbarianM. KhaniA. EghbalpourS. UverskyV.N. Bioactive peptides: Synthesis, sources, applications, and proposed mechanisms of action.Int. J. Mol. Sci.2022233144510.3390/ijms2303144535163367
    [Google Scholar]
  45. AgyeiD. DanquahM.K. Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides.Biotechnol. Adv.201129327227710.1016/j.biotechadv.2011.01.00121238564
    [Google Scholar]
  46. NongoniermaA.B. FitzGeraldR.J. Enhancing bioactive peptide release and identification using targeted enzymatic hydrolysis of milk proteins.Anal. Bioanal. Chem.2018410153407342310.1007/s00216‑017‑0793‑929260283
    [Google Scholar]
  47. Abdel-HamidM. OtteJ. De GobbaC. OsmanA. HamadE. Angiotensin I-converting enzyme inhibitory activity and antioxidant capacity of bioactive peptides derived from enzymatic hydrolysis of buffalo milk proteins.Int. Dairy J.201766919810.1016/j.idairyj.2016.11.006
    [Google Scholar]
  48. HafeezZ. Cakir-KieferC. RouxE. PerrinC. MicloL. Dary-MourotA. Strategies of producing bioactive peptides from milk proteins to functionalize fermented milk products.Food Res. Int.201463718010.1016/j.foodres.2014.06.002
    [Google Scholar]
  49. FitzgeraldR.J. MurrayB.A. Bioactive peptides and lactic fermentations.Int. J. Dairy Technol.200659211812510.1111/j.1471‑0307.2006.00250.x
    [Google Scholar]
  50. Homayouni-TabriziM. AsoodehA. SoltaniM. Cytotoxic and antioxidant capacity of camel milk peptides: Effects of isolated peptide on superoxide dismutase and catalase gene expression.Yao Wu Shi Pin Fen Xi201725356757528911643
    [Google Scholar]
  51. KimS. LimS.D. Separation and purification of lipase inhibitory peptide from fermented milk by Lactobacillus plantarum Q180.Food Sci. Anim. Resour.2020401879510.5851/kosfa.2019.e8731970333
    [Google Scholar]
  52. WaliA. YanhuaG. IshimovU. YiliA. AisaH.A. SalikhovS. Isolation and identification of three novel antioxidant peptides from the bactrian camel milk hydrolysates.Int. J. Pept. Res. Ther.202026264165010.1007/s10989‑019‑09871‑x
    [Google Scholar]
  53. XuJ. ChenY. FanX. ShiZ. LiuM. ZengX. WuZ. PanD. Isolation, identification, and characterization of corn-derived antioxidant peptides from corn fermented milk by Limosilactobacillus fermentum. Front. Nutr.20229104165510.3389/fnut.2022.104165536438739
    [Google Scholar]
  54. Espejo-CarpioF.J. Pérez-GálvezR. AlmécijaM.C. GuadixA. GuadixE.M. Production of goat milk protein hydrolysate enriched in ACE-inhibitory peptides by ultrafiltration.J. Dairy Res.201481438539310.1017/S002202991400028425003564
    [Google Scholar]
  55. BayramT. PekmezM. ArdaN. YalçınA.S. Antioxidant activity of whey protein fractions isolated by gel exclusion chromatography and protease treatment.Talanta200875370570910.1016/j.talanta.2007.12.00718585135
    [Google Scholar]
  56. MohsinA.Z. SukorR. SelamatJ. Meor HussinA.S. IsmailI.H. JambariN.N. JonetA. A highly selective two-way purification method using liquid chromatography for isolating αS2-casein from goat milk of five different breeds.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2020116012238010.1016/j.jchromb.2020.12238032971369
    [Google Scholar]
  57. TrujilloA.J. CasalsI. GuamisB. Analysis of major caprine milk proteins by reverse-phase high-performance liquid chromatography and electrospray ionization-mass spectrometry.J. Dairy Sci.2000831111910.3168/jds.S0022‑0302(00)74848‑X10659957
    [Google Scholar]
  58. MagalhãesI.S. GuimarãesA.D.B. TribstA.A.L. OliveiraE.B. Leite JúniorB.R.C. Ultrasound-assisted enzymatic hydrolysis of goat milk casein: Effects on hydrolysis kinetics and on the solubility and antioxidant activity of hydrolysates.Food Res. Int.202215711131010.1016/j.foodres.2022.11131035761604
    [Google Scholar]
  59. CapriottiA.L. CarusoG. CavaliereC. SamperiR. VenturaS. Zenezini ChiozziR. LaganàA. Identification of potential bioactive peptides generated by simulated gastrointestinal digestion of soybean seeds and soy milk proteins.J. Food Compos. Anal.20154420521310.1016/j.jfca.2015.08.007
    [Google Scholar]
  60. AertgeertsK. YeS. TennantM.G. KrausM.L. RogersJ. SangB.C. SkeneR.J. WebbD.R. PrasadG.S. Crystal structure of human dipeptidyl peptidase IV in complex with a decapeptide reveals details on substrate specificity and tetrahedral intermediate formation.Protein Sci.200413241242110.1110/ps.0346060414718659
    [Google Scholar]
  61. ShimizuM. Food-derived peptides and intestinal functions.Biofactors2004211-4434710.1002/biof.55221010915630168
    [Google Scholar]
  62. ShimizuM. Interaction between food substances and the intestinal epithelium.Biosci. Biotechnol. Biochem.201074223224110.1271/bbb.9073020139625
    [Google Scholar]
  63. FoltzM. van der PijlP.C. DuchateauG.S.M.J.E. Current in vitro testing of bioactive peptides is not valuable.J. Nutr.2010140111711810.3945/jn.109.11622819906810
    [Google Scholar]
  64. LedouxN. MahéS. DubarryM. BourrasM. BenamouzigR. ToméD. Intraluminal immunoreactive caseinomacropeptide after milk protein ingestion in humans.Nahrung199943319620010.1002/(SICI)1521‑3803(19990601)43:3<196::AID‑FOOD196>3.0.CO;2‑N10399354
    [Google Scholar]
  65. BoirieY. DanginM. GachonP. VassonM.P. MauboisJ.L. BeaufrèreB. Slow and fast dietary proteins differently modulate postprandial protein accretion.Proc. Natl. Acad. Sci. USA19979426149301493510.1073/pnas.94.26.149309405716
    [Google Scholar]
  66. MorifujiM. IshizakaM. BabaS. FukudaK. MatsumotoH. KogaJ. KanegaeM. HiguchiM. Comparison of different sources and degrees of hydrolysis of dietary protein: effect on plasma amino acids, dipeptides, and insulin responses in human subjects.J. Agric. Food Chem.201058158788879710.1021/jf101912n20614926
    [Google Scholar]
  67. MahéS. RoosN. BenamouzigR. DavinL. LuengoC. GagnonL. GaussergèsN. RautureauJ. ToméD. Gastrojejunal kinetics and the digestion of [15N]beta-lactoglobulin and casein in humans: The influence of the nature and quantity of the protein.Am. J. Clin. Nutr.199663454655210.1093/ajcn/63.4.5468599318
    [Google Scholar]
  68. KoopmanR. CrombachN. GijsenA.P. WalrandS. FauquantJ. KiesA.K. LemosquetS. SarisW.H.M. BoirieY. van LoonL.J.C. Ingestion of a protein hydrolysate is accompanied by an accelerated in vivo digestion and absorption rate when compared with its intact protein.Am. J. Clin. Nutr.200990110611510.3945/ajcn.2009.2747419474134
    [Google Scholar]
  69. CalbetJ.A.L. HolstJ.J. Gastric emptying, gastric secretion and enterogastrone response after administration of milk proteins or their peptide hydrolysates in humans.Eur. J. Nutr.200443312713910.1007/s00394‑004‑0448‑415168035
    [Google Scholar]
  70. ShimizuM. TsunogaiM. AraiS. Transepithelial transport of oligopeptides in the human intestinal cell, Caco-2.Peptides199718568168710.1016/S0196‑9781(97)00002‑89213361
    [Google Scholar]
  71. ChabanceB. MarteauP. RambaudJ.C. Migliore-SamourD. BoynardM. PerrotinP. GuilletR. JollèsP. FiatA.M. Casein peptide release and passage to the blood in humans during digestion of milk or yogurt.Biochimie199880215516510.1016/S0300‑9084(98)80022‑99587673
    [Google Scholar]
  72. BoutrouR. GaudichonC. DupontD. JardinJ. AirineiG. Marsset-BaglieriA. BenamouzigR. ToméD. LeonilJ. Sequential release of milk protein–derived bioactive peptides in the jejunum in healthy humans.Am. J. Clin. Nutr.20139761314132310.3945/ajcn.112.05520223576048
    [Google Scholar]
  73. RobertsP.R. BurneyJ.D. BlackK.W. ZalogaG.P. Effect of chain length on absorption of biologically active peptides from the gastrointestinal tract.Digestion199960433233710.1159/00000767910394027
    [Google Scholar]
  74. PowerO. NongoniermaA.B. JakemanP. FitzGeraldR.J. Food protein hydrolysates as a source of dipeptidyl peptidase IV inhibitory peptides for the management of type 2 diabetes.Proc. Nutr. Soc.2014731344610.1017/S002966511300360124131508
    [Google Scholar]
  75. CharmanW.N. PorterC.J.H. MithaniS. DressmanJ.B. Physiochemical and physiological mechanisms for the effects of food on drug absorption: The role of lipids and pH.J. Pharm. Sci.199786326928210.1021/js960085v9050793
    [Google Scholar]
  76. AbdullahM CyrA LabontéM-È The impact of dairy consumption on circulating cholesterol levels is modulated by common single nucleotide polymorphisms in cholesterol synthesis- and transport-related genes.FASEB J201428S11038
    [Google Scholar]
  77. ClaessonM.J. JefferyI.B. CondeS. PowerS.E. O’ConnorE.M. CusackS. HarrisH.M.B. CoakleyM. LakshminarayananB. O’SullivanO. FitzgeraldG.F. DeaneJ. O’ConnorM. HarnedyN. O’ConnorK. O’MahonyD. van SinderenD. WallaceM. BrennanL. StantonC. MarchesiJ.R. FitzgeraldA.P. ShanahanF. HillC. RossR.P. O’TooleP.W. Gut microbiota composition correlates with diet and health in the elderly.Nature2012488741017818410.1038/nature1131922797518
    [Google Scholar]
  78. RémondD. MachebeufM. YvenC. BuffièreC. MiocheL. MosoniL. MirandP.P. Postprandial whole-body protein metabolism after a meat meal is influenced by chewing efficiency in elderly subjects.Am. J. Clin. Nutr.20078551286129210.1093/ajcn/85.5.128617490964
    [Google Scholar]
  79. BraydenD.J. BairdA.W. Opportunities for drug-delivery research in nutraceuticals and functional foods?Ther. Deliv.20134330130510.4155/tde.12.15223442077
    [Google Scholar]
  80. Aguilar-ToaláJ.E. Quintanar-GuerreroD. LiceagaA.M. Zambrano-ZaragozaM.L. Encapsulation of bioactive peptides: A strategy to improve the stability, protect the nutraceutical bioactivity and support their food applications.RSC Advances202212116449645810.1039/D1RA08590E35424621
    [Google Scholar]
  81. ZuidamN.J. ShimoniE. Overview of microencapsulates for use in food products or processes and methods to make them. Encapsulation Technologies for Active Food Ingredients and Food ProcessingBerlin, HeidelbergSpringer Link201032910.1007/978‑1‑4419‑1008‑0_2
    [Google Scholar]
  82. HongC.R. LeeG.W. PaikH.D. ChangP.S. ChoiS.J. Influence of biopolymers on the solubility of branched-chain amino acids and stability of their solutions.Food Chem.201823987287810.1016/j.foodchem.2017.07.03228873647
    [Google Scholar]
  83. ErasoM.O. AníbalH. Use of Starches and Milk Proteins in Microencapsulation.Int. J. Veg. Sci.201420428930410.1080/19315260.2013.803181
    [Google Scholar]
  84. HongC.R. LeeG.W. PaikH.D. ChangP.S. ChoiS.J. Nanosuspended branched chain amino acids: The influence of stabilizers on their solubility and colloidal stability.Food Sci. Biotechnol.201726357357910.1007/s10068‑017‑0100‑830263581
    [Google Scholar]
  85. Dietary supplements and athletic performance.J. Nutr. Educ.19851727010.1016/S0022‑3182(85)80200‑4
    [Google Scholar]
  86. MohanA. RajendranS.R.C.K. HeQ.S. BazinetL. UdenigweC.C. Encapsulation of food protein hydrolysates and peptides: A review.RSC Adv.2015597792707927810.1039/C5RA13419F
    [Google Scholar]
  87. ZhangS. ZengX. RenM. MaoX. QiaoS. Novel metabolic and physiological functions of branched chain amino acids: A review.J. Anim. Sci. Biotechnol.2017811010.1186/s40104‑016‑0139‑z28127425
    [Google Scholar]
  88. YangS. MaoX.Y. LiF.F. ZhangD. LengX-J. RenF-Z. TengG-X. The improving effect of spray-drying encapsulation process on the bitter taste and stability of whey protein hydrolysate.Eur. Food Res. Technol.20122351919710.1007/s00217‑012‑1735‑6
    [Google Scholar]
  89. SarabandiK. Sadeghi MahoonakA. HamishekarH. GhorbaniM. JafariS.M. Microencapsulation of casein hydrolysates: Physicochemical, antioxidant and microstructure properties.J. Food Eng.2018237869510.1016/j.jfoodeng.2018.05.036
    [Google Scholar]
  90. ChenM.J. ChenK.N. Applications of Probiotic Encapsulation in Dairy Products. Encapsulation and Controlled Release Technologies in Food Systems.Hoboken, New JerseyWiley8311210.1002/9780470277881.ch4
    [Google Scholar]
  91. MaJ.J. MaoX.Y. WangQ. YangS. ZhangD. ChenS-W. LiY-H. Effect of spray drying and freeze drying on the immunomodulatory activity, bitter taste and hygroscopicity of hydrolysate derived from whey protein concentrate.Lebensm. Wiss. Technol.201456229630210.1016/j.lwt.2013.12.019
    [Google Scholar]
  92. MendanhaD. Microencapsulation of casein hydrolysate by complex coacervation with SPI/pectin.Food Res Int20094281099104
    [Google Scholar]
  93. DrapalaK.P. AutyM.A.E. MulvihillD.M. O’MahonyJ.A. Improving thermal stability of hydrolysed whey protein-based infant formula emulsions by protein–carbohydrate conjugation.Food Res. Int.201688Pt A425110.1016/j.foodres.2016.01.02828847402
    [Google Scholar]
  94. MohanA. McClementsD.J. UdenigweC.C. Encapsulation of bioactive whey peptides in soy lecithin-derived nanoliposomes: Influence of peptide molecular weight.Food Chem.201621314314810.1016/j.foodchem.2016.06.07527451165
    [Google Scholar]
  95. TimilsenaY.P. HaqueM.A. AdhikariB. Encapsulation in the food industry: A brief historical overview to recent developments.Food Nutr. Sci.202011648150810.4236/fns.2020.116035
    [Google Scholar]
  96. Gómez-MascaraqueL.G. MirallesB. RecioI. López-RubioA. Microencapsulation of a whey protein hydrolysate within micro-hydrogels: Impact on gastrointestinal stability and potential for functional yoghurt development.J. Funct. Foods20162629030010.1016/j.jff.2016.08.006
    [Google Scholar]
  97. RaoP.S. BajajR.K. MannB. AroraS. TomarS.K. Encapsulation of antioxidant peptide enriched casein hydrolysate using maltodextrin–gum arabic blend.J. Food Sci. Technol.201653103834384310.1007/s13197‑016‑2376‑828017999
    [Google Scholar]
  98. ChenL. ShangguanW. BaoC. ShuG. ChenH. Collaborative optimization and molecular docking exploration of novel ACE-inhibitory peptides from bovine milk by complex proteases hydrolysis.Artif. Cells Nanomed. Biotechnol.202048118018710.1080/21691401.2019.169982431852309
    [Google Scholar]
  99. ShanmugamV.P. KapilaS. KemgangT.S. ReddiS. KapilaR. MuthukumarS. RajeshD. Isolation and characterization of angiotensin converting enzyme inhibitory peptide from buffalo casein.Int. J. Pept. Res. Ther.20212721481149110.1007/s10989‑021‑10185‑0
    [Google Scholar]
  100. Chanson-RolleA. AubinF. BraescoV. HamasakiT. KitakazeM. Influence of the lactotripeptides isoleucine–proline–proline and valine–proline–proline on systolic blood pressure in Japanese subjects: A systematic review and meta-analysis of randomized controlled trials.PLoS One20151011e014223510.1371/journal.pone.014223526536628
    [Google Scholar]
  101. JauhiainenT. RönnbackM. VapaataloH. WuolleK. KautiainenH. GroopP-H. KorpelaR. Long-term intervention with Lactobacillus helveticus fermented milk reduces augmentation index in hypertensive subjects.Eur. J. Clin. Nutr.201064442443110.1038/ejcn.2010.320145666
    [Google Scholar]
  102. SoleymanzadehN. MirdamadiS. MirzaeiM. KianiradM. Novel β-casein derived antioxidant and ACE-inhibitory active peptide from camel milk fermented by Leuconostoc lactis PTCC1899: Identification and molecular docking.Int. Dairy J.20199720120810.1016/j.idairyj.2019.05.012
    [Google Scholar]
  103. XueL. WangX. HuZ. WuZ. WangL. WangH. YangM. Identification and characterization of an angiotensin-converting enzyme inhibitory peptide derived from bovine casein.Peptides20189916116810.1016/j.peptides.2017.09.02128987277
    [Google Scholar]
  104. OkamotoK. ItoR. HayashiJ. TagawaM. Production of the antihypertensive peptide Tyr-Pro from milk using the white-rot fungus Peniophora sp. in submerged fermentation and a jar fermentor.Dairy20212345246110.3390/dairy2030036
    [Google Scholar]
  105. SiowH.L. ChoiS.B. GanC.Y. Structure–activity studies of protease activating, lipase inhibiting, bile acid binding and cholesterol-lowering effects of pre-screened cumin seed bioactive peptides.J. Funct. Foods20162760061110.1016/j.jff.2016.10.013
    [Google Scholar]
  106. LapphanichayakoolP. SutheerawattananondaM. LimpeanchobN. Hypocholesterolemic effect of sericin-derived oligopeptides in high-cholesterol fed rats.J. Nat. Med.201771120821510.1007/s11418‑016‑1050‑927771849
    [Google Scholar]
  107. MorikawaK. KondoI. KanamaruY. NagaokaS. A novel regulatory pathway for cholesterol degradation via lactostatin.Biochem. Biophys. Res. Commun.2007352369770210.1016/j.bbrc.2006.11.09017141196
    [Google Scholar]
  108. NagaokaS. FutamuraY. MiwaK. AwanoT. YamauchiK. KanamaruY. TadashiK. KuwataT. Identification of novel hypocholesterolemic peptides derived from bovine milk β-lactoglobulin.Biochem. Biophys. Res. Commun.20012811111710.1006/bbrc.2001.429811178953
    [Google Scholar]
  109. KalyanS. MeenaS. KapilaS. SowmyaK. KumarR. Evaluation of goat milk fat and goat milk casein fraction for anti-hypercholesterolaemic and antioxidative properties in hypercholesterolaemic rats.Int. Dairy J.201884232710.1016/j.idairyj.2018.03.012
    [Google Scholar]
  110. BoachieR. YaoS. UdenigweC.C. Molecular mechanisms of cholesterol-lowering peptides derived from food proteins.Curr. Opin. Food Sci.201820586310.1016/j.cofs.2018.03.006
    [Google Scholar]
  111. JiangX. PanD. ZhangT. LiuC. ZhangJ. SuM. WuZ. ZengX. SunY. GuoY. Novel milk casein–derived peptides decrease cholesterol micellar solubility and cholesterol intestinal absorption in Caco-2 cells.J. Dairy Sci.202010353924393610.3168/jds.2019‑1758632113776
    [Google Scholar]
  112. JahandidehF. BourqueS.L. WuJ. A comprehensive review on the glucoregulatory properties of food-derived bioactive peptides.Food Chem. X20221310022210.1016/j.fochx.2022.10022235498998
    [Google Scholar]
  113. AcquahC. DzuvorC.K.O. ToshS. AgyeiD. Anti-diabetic effects of bioactive peptides: Recent advances and clinical implications.Crit. Rev. Food Sci. Nutr.20226282158217110.1080/10408398.2020.185116833317324
    [Google Scholar]
  114. SinghB.P. AlukoR.E. HatiS. SolankiD. Bioactive peptides in the management of lifestyle-related diseases: Current trends and future perspectives.Crit. Rev. Food Sci. Nutr.202262174593460610.1080/10408398.2021.187710933506720
    [Google Scholar]
  115. ZhuB. HeH. HouT. A Comprehensive review of corn protein-derived bioactive peptides: Production, characterization, bioactivities, and transport pathways.Compr. Rev. Food Sci. Food Saf.201918132934510.1111/1541‑4337.1241133337020
    [Google Scholar]
  116. NongoniermaA.B. CadamuroC. Le GouicA. MudgilP. MaqsoodS. FitzGeraldR.J. Dipeptidyl peptidase IV (DPP-IV) inhibitory properties of a camel whey protein enriched hydrolysate preparation.Food Chem.2019279707910.1016/j.foodchem.2018.11.14230611514
    [Google Scholar]
  117. ZhangY. ChenR. MaH. ChenS. Isolation and Identification of Dipeptidyl Peptidase IV-Inhibitory Peptides from Trypsin/Chymotrypsin-Treated Goat Milk Casein Hydrolysates by 2D-TLC and LC–MS/MS.J. Agric. Food Chem.201563408819882810.1021/acs.jafc.5b0306226323964
    [Google Scholar]
  118. JiaC. Generation and characterization of dipeptidyl peptidase-IV inhibitory peptides from trypsin-hydrolyzed α-lactalbumin-rich whey proteins..Food Chem2020318126333
    [Google Scholar]
  119. El-SayedM.I. In vivo anti-diabetic and biological activities of milk protein and milk 1 protein hydrolyaste.J. Adv. Dairy Res.201642.
    [Google Scholar]
  120. MudgilP. KamalH. YuenG.C. MaqsoodS. Characterization and identification of novel antidiabetic and anti-obesity peptides from camel milk protein hydrolysates.Food Chem.2018259465410.1016/j.foodchem.2018.03.08229680061
    [Google Scholar]
  121. SongJ.J. WangQ. DuM. LiT.G. ChenB. MaoX.Y. Casein glycomacropeptide-derived peptide IPPKKNQDKTE ameliorates high glucose-induced insulin resistance in HepG2 cells via activation of AMPK signaling.Mol. Nutr. Food Res.2017612160030127506476
    [Google Scholar]
  122. ChakrabartiS. JahandidehF. DavidgeS.T. WuJ. Milk-derived tripeptides IPP (Ile-Pro-Pro) and VPP (Val-Pro-Pro) enhance insulin sensitivity and prevent insulin resistance in 3T3-F442A preadipocytes.J. Agric. Food Chem.20186639101791018710.1021/acs.jafc.8b0205130160110
    [Google Scholar]
  123. UenishiH. KabukiT. SetoY. SerizawaA. NakajimaH. Isolation and identification of casein-derived dipeptidyl-peptidase 4 (DPP-4)-inhibitory peptide LPQNIPPL from gouda-type cheese and its effect on plasma glucose in rats.Int. Dairy J.2012221243010.1016/j.idairyj.2011.08.002
    [Google Scholar]
  124. WailiY. GahafuY. AobulitalifuA. ChangZ. XieX. KawuliG. Isolation, purification, and characterization of antioxidant peptides from fresh mare’s milk.Food Sci. Nutr.2021974018402710.1002/fsn3.229234262755
    [Google Scholar]
  125. ShivannaS.K. NatarajB.H. Revisiting therapeutic and toxicological fingerprints of milk-derived bioactive peptides: An overview.Food Biosci.20203810077110.1016/j.fbio.2020.100771
    [Google Scholar]
  126. ChenH.M. MuramotoK. YamauchiF. Structural analysis of antioxidative peptides from soybean. β.-Conglycinin.J. Agric. Food Chem.199543357457810.1021/jf00051a004
    [Google Scholar]
  127. HuangS.M. ChenK.N. ChenY.P. HongW-S. ChenM-J. Immunomodulatory properties of the milk whey products obtained by enzymatic and microbial hydrolysis.Int. J. Food Sci. Technol.20104551061106710.1111/j.1365‑2621.2010.02239.x
    [Google Scholar]
  128. Carrasco-CastillaJ. Hernández-ÁlvarezA.J. Jiménez-MartínezC. Jacinto-HernándezC. AlaizM. Girón-CalleJ. VioqueJ. Dávila-OrtizG. Antioxidant and metal chelating activities of Phaseolus vulgaris L. var. Jamapa protein isolates, phaseolin and lectin hydrolysates.Food Chem.201213141157116410.1016/j.foodchem.2011.09.084
    [Google Scholar]
  129. MadaS.B. ReddiS. KumarN. KapilaS. KapilaR. Protective effects of casein-derived peptide VLPVPQK against hydrogen peroxide–induced dysfunction and cellular oxidative damage in rat osteoblastic cells.Hum. Exp. Toxicol.201736996798010.1177/096032711667829328434258
    [Google Scholar]
  130. SowmyaK. BhatM.I. BajajR. KapilaS. KapilaR. Antioxidative and anti-inflammatory potential with trans-epithelial transport of a buffalo casein-derived hexapeptide (YFYPQL).Food Biosci.20192815116310.1016/j.fbio.2019.02.003
    [Google Scholar]
  131. TonoloF. MorettoL. FerroS. FoldaA. ScalconV. SandreM. FioreseF. MarinO. BindoliA. RigobelloM.P. Insight into antioxidant properties of milk-derived bioactive peptides in vitro and in a cellular model.J. Pept. Sci.2019255e316210.1002/psc.316230859695
    [Google Scholar]
  132. ClaustreJ. ToumiF. TrompetteA. JourdanG. GuignardH. ChayvialleJ.A. PlaisanciéP. Effects of peptides derived from dietary proteins on mucus secretion in rat jejunum.Am. J. Physiol. Gastrointest. Liver Physiol.20022833G521G52810.1152/ajpgi.00535.200112181163
    [Google Scholar]
  133. TrompetteA. ClaustreJ. CaillonF. JourdanG. ChayvialleJ.A. PlaisanciéP. Milk bioactive peptides and beta-casomorphins induce mucus release in rat jejunum.J. Nutr.2003133113499350310.1093/jn/133.11.349914608064
    [Google Scholar]
  134. ZoghbiS. TrompetteA. ClaustreJ. HomsiM.E. GarzónJ. JourdanG. ScoazecJ.Y. PlaisanciéP. β-Casomorphin-7 regulates the secretion and expression of gastrointestinal mucins through a μ-opioid pathway.Am. J. Physiol. Gastrointest. Liver Physiol.20062906G1105G111310.1152/ajpgi.00455.200516357059
    [Google Scholar]
  135. Martínez-MaquedaD. MirallesB. RamosM. RecioI. Effect of β-lactoglobulin hydrolysate and β-lactorphin on intestinal mucin secretion and gene expression in human goblet cells.Food Res. Int.20135411287129110.1016/j.foodres.2012.12.029
    [Google Scholar]
  136. PlaisanciéP. ClaustreJ. EstienneM. HenryG. BoutrouR. PaquetA. LéonilJ. A novel bioactive peptide from yoghurts modulates expression of the gel-forming MUC2 mucin as well as population of goblet cells and Paneth cells along the small intestine.J. Nutr. Biochem.201324121322110.1016/j.jnutbio.2012.05.00422901691
    [Google Scholar]
  137. de MedinaF.S. DaddaouaA. RequenaP. Capitán-CañadasF. ZarzueloA. Dolores SuárezM. Martínez-AugustinO. New insights into the immunological effects of food bioactive peptides in animal models of intestinal inflammation.Proc. Nutr. Soc.201069345446210.1017/S002966511000178320598199
    [Google Scholar]
  138. Espeche TurbayM.B. de Moreno de LeBlancA. PerdigónG. Savoy de GioriG. HebertE.M. β-Casein hydrolysate generated by the cell envelope-associated proteinase of Lactobacillus delbrueckii ssp. lactis CRL 581 protects against trinitrobenzene sulfonic acid-induced colitis in mice.J. Dairy Sci.20129531108111810.3168/jds.2011‑473522365194
    [Google Scholar]
  139. YuY.J. AmorimM. MarquesC. CalhauC. PintadoM. Effects of whey peptide extract on the growth of probiotics and gut microbiota.J. Funct. Foods20162150751610.1016/j.jff.2015.10.035
    [Google Scholar]
  140. ZhangY. WangJ. GeW. SongY. HeR. WangZ. ZhaoL. Camel milk peptides alleviate hyperglycemia by regulating gut microbiota and metabolites in type 2 diabetic mice.Food Res. Int.2023173Pt 111327810.1016/j.foodres.2023.11327837803591
    [Google Scholar]
  141. ReddiS. ShanmugamV.P. KapilaS. KapilaR. Identification of buffalo casein-derived bioactive peptides with osteoblast proliferation activity.Eur. Food Res. Technol.2016242122139214610.1007/s00217‑016‑2710‑4
    [Google Scholar]
  142. ReddiS. KumarN. VijR. MadaS.B. KapilaS. KapilaR. Akt drives buffalo casein-derived novel peptide-mediated osteoblast differentiation.J. Nutr. Biochem.20163813414410.1016/j.jnutbio.2016.08.00327736733
    [Google Scholar]
  143. PandeyM. KapilaS. KapilaR. TrivediR. KarvandeA. Evaluation of the osteoprotective potential of whey derived-antioxidative (YVEEL) and angiotensin-converting enzyme inhibitory (YLLF) bioactive peptides in ovariectomised rats.Food Funct.2018994791480110.1039/C8FO00620B30128468
    [Google Scholar]
  144. ZhuW. RenL. ZhangL. The potential of food protein-derived bioactive peptides against chronic intestinal inflammation.Mediators Inflamm.20202020681715610.1155/2020/6817156
    [Google Scholar]
  145. RafiqS. HumaN. RakariyathamK. HussainI. GulzarN. HayatI. Anti-inflammatory and anticancer activities of water-soluble peptide extracts of buffalo and cow milk Cheddar cheeses.Int. J. Dairy Technol.201871243243810.1111/1471‑0307.12483
    [Google Scholar]
  146. ParodiP. A role for milk proteins and their peptides in cancer prevention.Curr. Pharm. Des.200713881382810.2174/13816120778036305917430183
    [Google Scholar]
  147. PapakonstantinouE. ManolopoulouE. PapamichalopoulosA. KounenidakiC. MitrogeorgouT. GeorgalakiM. TsakalidouE. Short-term effects of goat milk yogurt-containing angiotensin-converting enzyme inhibitory peptides and two raisin varieties on subjective appetite, blood pressure and glycaemic responses in healthy adults. Results from a randomised clinical trial.Br. J. Nutr.2023130236036810.1017/S000711452200253735920045
    [Google Scholar]
  148. CushenS.J. SullivanE.S. KellyT. A phase 1, single-blind, placebo-controlled, 3-arm cross-over trial assessing the appetite enhancing effects of potentially ghrelinergic dairy-derived peptides.Proceed. Nutr. Soc.202079069510.1017/S0029665120000695
    [Google Scholar]
  149. IshidaY. ShibataY. FukuharaI. YanoY. TakeharaI. KanekoK. Effect of an excess intake of casein hydrolysate containing Val-Pro-Pro and Ile-Pro-Pro in subjects with normal blood pressure, high-normal blood pressure, or mild hypertension.Biosci. Biotechnol. Biochem.201175342743310.1271/bbb.10056021389626
    [Google Scholar]
  150. NakamuraT. MizutaniJ. OhkiK. YamadaK. YamamotoN. TakeshiM. TakazawaK. Casein hydrolysate containing Val-Pro-Pro and Ile-Pro-Pro improves central blood pressure and arterial stiffness in hypertensive subjects: A randomized, double-blind, placebo-controlled trial.Atherosclerosis2011219129830310.1016/j.atherosclerosis.2011.06.00721723554
    [Google Scholar]
  151. JauhiainenT. RönnbackM. VapaataloH. WuolleK. KautiainenH. KorpelaR. Lactobacillus helveticus fermented milk reduces arterial stiffness in hypertensive subjects.Int. Dairy J.200717101209121110.1016/j.idairyj.2007.03.002
    [Google Scholar]
  152. BallardK.D. BrunoR.S. SeipR.L. QuannE.E. VolkB.M. FreidenreichD.J. KawieckiD.M. KupchakB.R. ChungM.Y. KraemerW.J. VolekJ.S. Acute ingestion of a novel whey-derived peptide improves vascular endothelial responses in healthy individuals: A randomized, placebo controlled trial.Nutr. J.2009813410.1186/1475‑2891‑8‑3419624856
    [Google Scholar]
  153. YudaN. TanakaM. YamauchiK. AbeF. KakiuchiI. KiyosawaK. MiyasakaM. SakaneN. NakamuraM. Effect of the casein-derived peptide met-lys-pro on cognitive function in community-dwelling adults without dementia: A randomized, double-blind, placebo-controlled trial.Clin. Interv. Aging20201574375410.2147/CIA.S25311632546992
    [Google Scholar]
  154. TownsendR. McFaddenC. FordV. CadéeJ. A randomized, double-blind, placebo-controlled trial of casein protein hydrolysate (C12 peptide) in human essential hypertension.Am. J. Hypertens.200417111056105810.1016/j.amjhyper.2004.06.01815533734
    [Google Scholar]
  155. SamsamikorM. MackayD.S. MollardR.C. AlashiA.M. AlukoR.E. Hemp seed protein and its hydrolysate compared with casein protein consumption in adults with hypertension: A double-blind crossover study.Am. J. Clin. Nutr.20241201566510.1016/j.ajcnut.2024.05.00138710445
    [Google Scholar]
  156. PalS. Radavelli-BagatiniS. HaggerM. EllisV. Comparative effects of whey and casein proteins on satiety in overweight and obese individuals: A randomized controlled trial.Eur. J. Clin. Nutr.201468998098610.1038/ejcn.2014.8424801369
    [Google Scholar]
  157. FieldsD. CzerkiesL. SunS. StormH. SaavedraJ. SorensenR. A randomized controlled trial assessing growth of infants fed a 100% whey extensively hydrolyzed formula compared with a casein-based extensively hydrolyzed formula.Glob. Pediatr. Health201632333794X166366110.1177/2333794X1663661327336009
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037319188240806074731
Loading
/content/journals/cpps/10.2174/0113892037319188240806074731
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test