Skip to content
2000
Volume 26, Issue 1
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

Antimicrobial peptides (AMPs) are recognized for their potential application as new generation antibiotics, however, up to date, they have not been widely commercialized as expected. Although current bioinformatics tools can predict antimicrobial activity based on only amino acid sequences with astounding accuracy, peptide selectivity and potency are not foreseeable. This, in turn, creates a bottleneck not only in the discovery and isolation of promising candidates but, most importantly, in the design and development of novel synthetic peptides. In this paper, we discuss the challenges faced when trying to predict peptide selectivity and potency, based on peptide sequence, structure and relevant biophysical properties such as length, net charge and hydrophobicity. Here, pore-forming alpha-helical antimicrobial peptides family isolated from anurans was used as the case study. Our findings revealed no congruent relationship between the predicted peptide properties and reported microbial assay data, such as minimum inhibitory concentrations against microorganisms and hemolysis. In many instances, the peptides with the best physicochemical properties performed poorly against microbial strains. In some cases, the predicted properties were so similar that differences in activity amongst peptides of the same family could not be projected. Our general conclusion is that antimicrobial peptides of interest must be carefully examined since there is no universal strategy for accurately predicting their behavior.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037317887240625054710
2024-07-15
2024-12-28
Loading full text...

Full text loading...

References

  1. MorettaA. ScieuzoC. PetroneA.M. SalviaR. MannielloM.D. FrancoA. LucchettiD. VassalloA. VogelH. SgambatoA. FalabellaP. Antimicrobial peptides: A new hope in biomedical and pharmaceutical fields.Front. Cell. Infect. Microbiol.20211166863210.3389/fcimb.2021.668632
    [Google Scholar]
  2. HuanY. KongQ. MouH. YiH. Antimicrobial peptides: Classification, design, application and research progress in multiple fields.Front. Microbiol.20201158277910.3389/fmicb.2020.582779
    [Google Scholar]
  3. LeiJ. SunL. HuangS. ZhuC. LiP. HeJ. MackeyV. CoyD.H. HeQ. The antimicrobial peptides and their potential clinical applications.Am. J. Transl. Res.20191139193931
    [Google Scholar]
  4. da CostaJ.P. CovaM. FerreiraR. VitorinoR. Antimicrobial peptides: An alternative for innovative medicines?Appl. Microbiol. Biotechnol.20159952023204010.1007/s00253‑015‑6375‑x
    [Google Scholar]
  5. DengT. GeH. HeH. LiuY. ZhaiC. FengL. YiL. The heterologous expression strategies of antimicrobial peptides in microbial systems.Protein Expr. Purif.2017140525910.1016/j.pep.2017.08.003
    [Google Scholar]
  6. Isidro-LlobetA. KenworthyM.N. MukherjeeS. KopachM.E. WegnerK. GallouF. SmithA.G. RoschangarF. Sustainability challenges in peptide synthesis and purification: From R&D to production.J. Org. Chem.20198484615462810.1021/acs.joc.8b03001
    [Google Scholar]
  7. SarkarT. ChetiaM. ChatterjeeS. Antimicrobial peptides and proteins: From nature’s reservoir to the laboratory and beyond.Front Chem.2021969153210.3389/fchem.2021.691532
    [Google Scholar]
  8. TuM. ChengS. LuW. DuM. Advancement and prospects of bioinformatics analysis for studying bioactive peptides from food-derived protein: Sequence, structure, and functions.Trends Analyt. Chem.201810571710.1016/j.trac.2018.04.005
    [Google Scholar]
  9. D’AnnessaI. Di LevaF.S. La TeanaA. NovellinoE. LimongelliV. Di MarinoD. Bioinformatics and biosimulations as toolbox for peptides and peptidomimetics design: Where are we?Front. Mol. Biosci.202076610.3389/fmolb.2020.00066
    [Google Scholar]
  10. LiH. TamangT. NantasenamatC. Toward insights on antimicrobial selectivity of host defense peptides via machine learning model interpretation.Genomics202111363851386310.1016/j.ygeno.2021.08.023
    [Google Scholar]
  11. RaheemN. StrausS.K. Mechanisms of action for antimicrobial peptides with antibacterial and antibiofilm functions.Front. Microbiol.201910286610.3389/fmicb.2019.02866
    [Google Scholar]
  12. MercerD.K. TorresM.D.T. DuayS.S. LovieE. SimpsonL. von Köckritz-BlickwedeM. de la Fuente-NunezC. O’NeilD.A. Angeles-BozaA.M. Antimicrobial susceptibility testing of antimicrobial peptides to better predict efficacy.Front. Cell. Infect. Microbiol.20201032610.3389/fcimb.2020.00326
    [Google Scholar]
  13. LeiM. JayaramanA. Van DeventerJ.A. LeeK. Engineering selectively targeting antimicrobial peptides.Annu. Rev. Biomed. Eng.202123133935710.1146/annurev‑bioeng‑010220‑095711
    [Google Scholar]
  14. SinhaR. ShuklaP. Antimicrobial peptides: Recent insights on biotechnological interventions and future perspectives.Protein Pept. Lett.2019262798710.2174/0929866525666181026160852
    [Google Scholar]
  15. AquilaM. BenedusiM. Dell’OrcoD. Biophysical characterization of antimicrobial peptides activity: From in vitro to ex vivo techniques.Curr. Protein Pept. Sci.201314760761610.2174/13892037113146660088
    [Google Scholar]
  16. Salehi-ReyhaniA. CesO. ElaniY. Artificial cell mimics as simplified models for the study of cell biology.Exp. Biol. Med.2017242131309131710.1177/1535370217711441
    [Google Scholar]
  17. LeeM.T. Biophysical characterization of peptide–membrane interactions.Adv. Phys. X201831140842810.1080/23746149.2017.1408428
    [Google Scholar]
  18. MunusamyS. CondeR. BertrandB. Munoz-GarayC. Biophysical approaches for exploring lipopeptide-lipid interactions.Biochimie202017017320210.1016/j.biochi.2020.01.009
    [Google Scholar]
  19. SchäferA.B. WenzelM. A how-to guide for mode of action analysis of antimicrobial peptides.Front. Cell. Infect. Microbiol.20201054089810.3389/fcimb.2020.540898
    [Google Scholar]
  20. PalmerN. MaaschJ.R.M.A. TorresM.D.T. de la Fuente- NunezC. Molecular dynamics for antimicrobial peptide discovery.Infect. Immun.2021894e00703-2010.1128/IAI.00703‑20
    [Google Scholar]
  21. BertrandB. Garduño-JuárezR. Munoz-GarayC. Estimation of pore dimensions in lipid membranes induced by peptides and other biomolecules: A review.Biochim. Biophys. Acta Biomembr.2021186318355110.1016/j.bbamem.2021.183551
    [Google Scholar]
  22. PogerD. CaronB. MarkA.E. Validating lipid force fields against experimental data: Progress, challenges and perspectives.Biochim. Biophys. Acta Biomembr.2016185871556156510.1016/j.bbamem.2016.01.029
    [Google Scholar]
  23. UdenigweC.C. Bioinformatics approaches, prospects and challenges of food bioactive peptide research.Trends Food Sci. Technol.201436213714310.1016/j.tifs.2014.02.004
    [Google Scholar]
  24. OsorioD. Rondón-VillarrealP. TorresR. Peptides: A package for data mining of antimicrobial peptides.Small20151244444
    [Google Scholar]
  25. AgyeiD. TsopmoA. UdenigweC.C. Bioinformatics and peptidomics approaches to the discovery and analysis of food-derived bioactive peptides.Anal. Bioanal. Chem.2018410153463347210.1007/s00216‑018‑0974‑1
    [Google Scholar]
  26. MahlapuuM. HåkanssonJ. RingstadL. BjörnC. Antimicrobial peptides: An emerging category of therapeutic agents.Front. Cell. Infect. Microbiol.2016619410.3389/fcimb.2016.00194
    [Google Scholar]
  27. DijksteelG.S. UlrichM.M.W. MiddelkoopE. BoekemaB.K.H.L. Review: Lessons learned from clinical trials using antimicrobial peptides (AMPs).Front. Microbiol.20211261697910.3389/fmicb.2021.616979
    [Google Scholar]
  28. PaneK. DuranteL. CrescenziO. CafaroV. PizzoE. VarcamontiM. ZanfardinoA. IzzoV. Di DonatoA. NotomistaE. Antimicrobial potency of cationic antimicrobial peptides can be predicted from their amino acid composition: Application to the detection of “cryptic” antimicrobial peptides.J. Theor. Biol.201741925426510.1016/j.jtbi.2017.02.012
    [Google Scholar]
  29. AlmeidaJ.R. PalaciosA.L.V. PatiñoR.S.P. MendesB. TeixeiraC.A.S. GomesP. da SilvaS.L. Harnessing snake venom phospholipases A 2 to novel approaches for overcoming antibiotic resistance.Drug Dev. Res.2019801688510.1002/ddr.21456
    [Google Scholar]
  30. BoboneS. StellaL. Selectivity of antimicrobial peptides: A complex interplay of multiple equilibria.Antimicrobial Peptides: Basics for Clinical Application. MatsuzakiK. Springer Singapore, Singapore201917521410.1007/978‑981‑13‑3588‑4_11
    [Google Scholar]
  31. BessalleR. KapitkovskyA. GoreaA. ShalitI. FridkinM. All-D-magainin: Chirality, antimicrobial activity and proteolytic resistance.FEBS Lett.19902741-215115510.1016/0014‑5793(90)81351‑N
    [Google Scholar]
  32. ChenY. VasilA.I. RehaumeL. MantC.T. BurnsJ.L. VasilM.L. HancockR.E.W. HodgesR.S. Comparison of biophysical and biologic properties of alpha-helical enantiomeric antimicrobial peptides.Chem. Biol. Drug Des.200667216217310.1111/j.1747‑0285.2006.00349.x
    [Google Scholar]
  33. de la Fuente-NúñezC. ReffuveilleF. MansourS.C. Reckseidler-ZentenoS.L. HernándezD. BrackmanG. CoenyeT. HancockR.E.W. D-enantiomeric peptides that eradicate wild-type and multidrug-resistant biofilms and protect against lethal Pseudomonas aeruginosa infections.Chem. Biol.201522219620510.1016/j.chembiol.2015.01.002
    [Google Scholar]
  34. YeW. YeghiasarianL. CutlerC.W. BergeronB.E. SidowS. XuH.H.K. NiuL. MaJ. TayF.R. Comparison of the use of d-enantiomeric and l-enantiomeric antimicrobial peptides incorporated in a calcium-chelating irrigant against Enterococcus faecalis root canal wall biofilms.J. Dent.20199110323110.1016/j.jdent.2019.103231
    [Google Scholar]
  35. KumarS. SaharanR. KhokraS.L. SinghS. TiwariA. TiwariV. SahooB.M. KumarM. A comprehensive review on therapeutic potentials of natural cyclic peptides.Curr. Nutr. Food Sci.202218544144910.2174/1573401318666220114153509
    [Google Scholar]
  36. KumarS. TiwariA. TiwariV. KhokraS.L. SaharanR. KumarM. SharmaA. VirmaniT. VirmaniR. KumarG. AlhalmiA. Synthesis, anticancer, and antimicrobial evaluation of integerrimide-A.BioMed. Res. Int.2023202311110.1155/2023/9289141
    [Google Scholar]
  37. LamiableA. ThévenetP. ReyJ. VavrusaM. DerreumauxP. TufféryP. PEP-FOLD3: Faster de novo structure prediction for linear peptides in solution and in complex.Nucleic Acids Res.201644W1W449W45410.1093/nar/gkw329
    [Google Scholar]
  38. JumperJ. EvansR. PritzelA. GreenT. FigurnovM. RonnebergerO. TunyasuvunakoolK. BatesR. ŽídekA. PotapenkoA. BridglandA. MeyerC. KohlS.A.A. BallardA.J. CowieA. Romera-ParedesB. NikolovS. JainR. AdlerJ. BackT. PetersenS. ReimanD. ClancyE. ZielinskiM. SteineggerM. PacholskaM. BerghammerT. BodensteinS. SilverD. VinyalsO. SeniorA.W. KavukcuogluK. KohliP. HassabisD. Highly accurate protein structure prediction with AlphaFold.Nature2021596787358358910.1038/s41586‑021‑03819‑2
    [Google Scholar]
  39. GabernetG. GautschiD. MüllerA.T. NeuhausC.S. ArmbrechtL. DittrichP.S. HissJ.A. SchneiderG. In silico design and optimization of selective membranolytic anticancer peptides.Sci. Rep.2019911128210.1038/s41598‑019‑47568‑9
    [Google Scholar]
  40. FjellC.D. JenssenH. HilpertK. CheungW.A. PantéN. HancockR.E.W. CherkasovA. Identification of novel antibacterial peptides by chemoinformatics and machine learning.J. Med. Chem.20095272006201510.1021/jm8015365
    [Google Scholar]
  41. Barrientos-SalcedoC. Rico-RosilloG. Giménez-SchererJ.A. Soriano-CorreaC. Computational study of the electronic structure characterization of a novelanti-inflammatory tripeptide derived from monocyte locomotion inhibitoryfactor (MLIF)-pentapeptide.Eur. J. Med. Chem.20094483114311910.1016/j.ejmech.2009.03.003
    [Google Scholar]
  42. SpänigS. HeiderD. Encodings and models for antimicrobial peptide classification for multi-resistant pathogens.BioData Min.2019121710.1186/s13040‑019‑0196‑x
    [Google Scholar]
  43. LataS. SharmaB.K. RaghavaG.P.S. Analysis and prediction of antibacterial peptides.BMC Bioinformatics20078126310.1186/1471‑2105‑8‑263
    [Google Scholar]
  44. LeeT.H. HofferekV. SeparovicF. ReidG.E. AguilarM.I. The role of bacterial lipid diversity and membrane properties in modulating antimicrobial peptide activity and drug resistance.Curr. Opin. Chem. Biol.201952859210.1016/j.cbpa.2019.05.025
    [Google Scholar]
  45. BárcenasO. Pintado-GrimaC. SidorczukK. TeufelF. NielsenH. VenturaS. BurdukiewiczM. The dynamic landscape of peptide activity prediction.Comput. Struct. Biotechnol. J.2022206526653310.1016/j.csbj.2022.11.043
    [Google Scholar]
  46. SchefterB.R. NourbakhshS. Taheri-AraghiS. HaB.Y. Modeling cell selectivity of antimicrobial peptides: How is the selectivity influenced by intracellular peptide uptake and cell density.Frontiers in Med. Technol.2021362648110.3389/fmedt.2021.626481
    [Google Scholar]
  47. LeeT-H. HallK.N. AguilarM-I. Antimicrobial peptide structure and mechanism of action: A focus on the role of membrane structure.Curr. Top. Med. Chem.201616253910.2174/1568026615666150703121700
    [Google Scholar]
  48. DatheM. NikolenkoH. MeyerJ. BeyermannM. BienertM. Optimization of the antimicrobial activity of magainin peptides by modification of charge.FEBS Lett.20015012-314615010.1016/S0014‑5793(01)02648‑5
    [Google Scholar]
  49. JiangZ. MantC.T. VasilM. HodgesR.S. Role of positively charged residues on the polar and non-polar faces of amphipathic α-helical antimicrobial peptides on specificity and selectivity for Gram-negative pathogens.Chem. Biol. Drug Des.2018911759210.1111/cbdd.13058
    [Google Scholar]
  50. López CascalesJ.J. ZenakS. García de la TorreJ. LezamaO.G. GarroA. EnrizR.D. Small cationic peptides: Influence of charge on their antimicrobial activity.ACS Omega2018355390539810.1021/acsomega.8b00293
    [Google Scholar]
  51. TalandashtiR. MahdiuniH. JafariM. MehrnejadF. Molecular basis for membrane selectivity of antimicrobial peptide pleurocidin in the presence of different eukaryotic and prokaryotic model membranes.J. Chem. Inf. Model.20195973262327610.1021/acs.jcim.9b00245
    [Google Scholar]
  52. JiangZ. VasilA.I. HaleJ. HancockR.E.W. VasilM.L. HodgesR.S. Effects of net charge and the number of positively charged residues on the biological activity of amphipathic α-helical cationic antimicrobial peptides.Adv. Exp. Med. Biol.200961156156210.1007/978‑0‑387‑73657‑0_246
    [Google Scholar]
  53. GlukhovE. StarkM. BurrowsL.L. DeberC.M. Basis for selectivity of cationic antimicrobial peptides for bacterial versus mammalian membranes.J. Biol. Chem.200528040339603396710.1074/jbc.M507042200
    [Google Scholar]
  54. JuretićD. SimunićJ. Design of α-helical antimicrobial peptides with a high selectivity index.Expert Opin. Drug Discov.201914101053106310.1080/17460441.2019.1642322
    [Google Scholar]
  55. SonM. LeeY. HwangH. HyunS. YuJ. Disruption of interactions between hydrophobic residues on nonpolar faces is a key determinant in decreasing hemolysis and increasing antimicrobial activities of α-helical amphipathic peptides.ChemMedChem20138101638164210.1002/cmdc.201300264
    [Google Scholar]
  56. StrandbergE. BentzD. WadhwaniP. BürckJ. UlrichA.S. Terminal charges modulate the pore forming activity of cationic amphipathic helices.Biochim. Biophys. Acta Biomembr.2020186218324310.1016/j.bbamem.2020.183243
    [Google Scholar]
  57. ReißerS. StrandbergE. SteinbrecherT. UlrichA.S. A.S. Ulrich, 3D hydrophobic moment vectors as a tool to characterize the surface polarity of amphiphilic peptides.Biophys. J.2014106112385239410.1016/j.bpj.2014.04.020
    [Google Scholar]
  58. CherryM.A. HigginsS.K. MelroyH. LeeH.S. PokornyA. Peptides with the same composition, hydrophobicity, and hydrophobic moment bind to phospholipid bilayers with different affinities.J. Phys. Chem. B201411843124621247010.1021/jp507289w
    [Google Scholar]
  59. DatheM. SchümannM. WieprechtT. WinklerA. BeyermannM. KrauseE. MatsuzakiK. MuraseO. BienertM. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes.Biochemistry19963538126121262210.1021/bi960835f
    [Google Scholar]
  60. LiuZ. BradyA. YoungA. RasimickB. ChenK. ZhouC. KallenbachN.R. Length effects in antimicrobial peptides of the (RW)n series.Antimicrob. Agents Chemother.200751259760310.1128/AAC.00828‑06
    [Google Scholar]
  61. GagnonM.C. StrandbergE. Grau-CampistanyA. WadhwaniP. ReichertJ. BürckJ. RabanalF. AugerM. PaquinJ.F. UlrichA.S. Influence of the length and charge on the activity of α-helical amphipathic antimicrobial peptides.Biochemistry201756111680169510.1021/acs.biochem.6b01071
    [Google Scholar]
  62. ReinhardtA. NeundorfI. Design and application of antimicrobial peptide conjugates.Int. J. Mol. Sci.201617570110.3390/ijms17050701
    [Google Scholar]
  63. LiuJ. ChenS. ChaiX.Y. GaoF. WangC. TangH. LiX. LiuY. HuH.G. Design, synthesis, and biological evaluation of stapled ascaphin-8 peptides.Bioorg. Med. Chem.20214011615810.1016/j.bmc.2021.116158
    [Google Scholar]
  64. EpandR.M. Anionic lipid clustering model.Antimicrobial Peptides: Basics for Clinical Application. MatsuzakiK. Springer Singapore, Singapore2019657110.1007/978‑981‑13‑3588‑4_5
    [Google Scholar]
  65. MatsuzakiK. Control of cell selectivity of antimicrobial peptides.Biochim. Biophys. Acta Biomembr.2009178881687169210.1016/j.bbamem.2008.09.013
    [Google Scholar]
  66. BertrandB. MunusamyS. Espinosa-RomeroJ.-F. CorzoG. Arenas SosaI. Galván-HernándezA. Ortega-BlakeI. Hernández-AdameP.L. Ruiz-GarcíaJ. Velasco-BolomJ.-L. Garduño-JuárezR. Munoz-GarayC. Biophysical characterization of the insertion of two potent antimicrobial peptides-Pin2 and its variant Pin2[GVG] in biological model membranes.Biochim. Biophys. Acta Biomembr.2020186218310510.1016/j.bbamem.2019.183105
    [Google Scholar]
  67. Morales-MartínezA. BertrandB. Hernández-MezaJ.M. Garduño-JuárezR. Silva-SanchezJ. Munoz-GarayC. Membrane fluidity, composition, and charge affect the activity and selectivity of the AMP ascaphin-8.Biophys. J.2022121163034304810.1016/j.bpj.2022.07.018
    [Google Scholar]
  68. EpandR.M. EpandR.F. Lipid domains in bacterial membranes and the action of antimicrobial agents.Biochim. Biophys. Acta Biomembr.20091788128929410.1016/j.bbamem.2008.08.023
    [Google Scholar]
  69. MuraM. WangJ. ZhouY. PinnaM. ZvelindovskyA.V. DennisonS.R. PhoenixD.A. The effect of amidation on the behaviour of antimicrobial peptides.Eur. Biophys. J.201645319520710.1007/s00249‑015‑1094‑x
    [Google Scholar]
  70. WadhwaniP. EpandR.F. HeidenreichN. BürckJ. UlrichA.S. EpandR.M. Membrane-active peptides and the clustering of anionic lipids.Biophys. J.2012103226527410.1016/j.bpj.2012.06.004
    [Google Scholar]
  71. CorzoG. EscoubasP. VillegasE. BarnhamK.J. HeW. NortonR.S. NakajimaT. Characterization of unique amphipathic antimicrobial peptides from venom of the scorpion Pandinus imperator.Biochem. J.20013591354510.1042/bj3590035
    [Google Scholar]
  72. LaiR. ZhengY.T. ShenJ.H. LiuG.J. LiuH. LeeW.H. TangS.Z. ZhangY. Antimicrobial peptides from skin secretions of Chinese red belly toad Bombina maxima.Peptides200223342743510.1016/S0196‑9781(01)00641‑6
    [Google Scholar]
  73. KamechN. VukičevićD. LadramA. PiesseC. VasseurJ. BojovićV. SimunićJ. JuretićD. Improving the selectivity of antimicrobial peptides from anuran skin.J. Chem. Inf. Model.201252123341335110.1021/ci300328y
    [Google Scholar]
  74. ChaudharyK. KumarR. SinghS. TuknaitA. GautamA. MathurD. AnandP. VarshneyG.C. RaghavaG.P.S. A web server and mobile app for computing hemolytic potency of peptides.Sci. Rep.2016612284310.1038/srep22843
    [Google Scholar]
  75. KimH. YooY.D. LeeG.Y. Identification of bacterial membrane selectivity of romo1-derived antimicrobial peptide AMPR-22 via molecular dynamics.Int. J. Mol. Sci.20222313740410.3390/ijms23137404
    [Google Scholar]
  76. MadanchiH. RahmatiS. DoaeiY. SardariS. Mousavi MalekiM.S. RostamianM. Ebrahimi KiasariR. Seyed MousaviS.J. GhodsE. ArdekanianM. Determination of antifungal activity and action mechanism of the modified Aurein 1.2 peptide derivatives.Microb. Pathog.202217310586610.1016/j.micpath.2022.105866
    [Google Scholar]
  77. GawdeU. ChakrabortyS. WaghuF.H. BaraiR.S. KhanderkarA. IndraguruR. ShirsatT. Idicula-ThomasS. CAMPR4: A database of natural and synthetic antimicrobial peptides.Nucleic Acids Res.202351D1D377D38310.1093/nar/gkac933
    [Google Scholar]
  78. DiamondG. BeckloffN. WeinbergA. KisichK. The roles of antimicrobial peptides in innate host defense.Curr. Pharm. Des.200915212377239210.2174/138161209788682325
    [Google Scholar]
  79. GongT. FuJ. ShiL. ChenX. ZongX. Antimicrobial peptides in gut health: A review.Front. Nutr.2021875101010.3389/fnut.2021.751010
    [Google Scholar]
  80. WangZ. WangG. APD: The antimicrobial peptide database.Nucleic Acids Res.20043290001590D59210.1093/nar/gkh025
    [Google Scholar]
  81. SimmacoM. MignognaG. CanofeniS. MieleR. MangoniM.L. BarraD. Temporins, antimicrobial peptides from the European red frog Rana temporaria.Eur. J. Biochem.1996242378879210.1111/j.1432‑1033.1996.0788r.x
    [Google Scholar]
  82. RozekT. WegenerK.L. BowieJ.H. OlverI.N. CarverJ.A. WallaceJ.C. TylerM.J. The antibiotic and anticancer active aurein peptides from the Australian Bell Frogs Litoria aurea and Litoria raniformis.Eur. J. Biochem.2000267175330534110.1046/j.1432‑1327.2000.01536.x
    [Google Scholar]
  83. ConlonJ.M. SonnevendA. DavidsonC. David SmithD. NielsenP.F. The ascaphins: A family of antimicrobial peptides from the skin secretions of the most primitive extant frog, Ascaphus truei.Biochem. Biophys. Res. Commun.2004320117017510.1016/j.bbrc.2004.05.141
    [Google Scholar]
  84. ApponyiM.A. PukalaT.L. BrinkworthC.S. MaselliV.M. BowieJ.H. TylerM.J. BookerG.W. WallaceJ.C. CarverJ.A. SeparovicF. DoyleJ. LlewellynL.E. Host-defence peptides of Australian anurans: Structure, mechanism of action and evolutionary significance.Peptides20042561035105410.1016/j.peptides.2004.03.006
    [Google Scholar]
  85. PukalaT.L. BertozziT. DonnellanS.C. BowieJ.H. Surinya-JohnsonK.H. LiuY. JackwayR.J. DoyleJ.R. LlewellynL.E. TylerM.J. Host-defence peptide profiles of the skin secretions of interspecific hybrid tree frogs and their parents, female Litoria splendida and male Litoria caerulea.FEBS J.2006273153511351910.1111/j.1742‑4658.2006.05358.x
    [Google Scholar]
  86. ConlonJ.M. KolodziejekJ. NowotnyN. Antimicrobial peptides from the skins of North American frogs.Biochim. Biophys. Acta Biomembr.2009178881556156310.1016/j.bbamem.2008.09.018
    [Google Scholar]
  87. Azevedo CalderonL. SilvaA.A.E. CiancagliniP. StábeliR.G. Antimicrobial peptides from Phyllomedusa frogs: From biomolecular diversity to potential nanotechnologic medical applications.Amino Acids2011401294910.1007/s00726‑010‑0622‑3
    [Google Scholar]
  88. ConlonJ.M. MechkarskaM. CoquetL. JouenneT. LeprinceJ. VaudryH. KolodziejekJ. NowotnyN. KingJ.D. Characterization of antimicrobial peptides in skin secretions from discrete populations of Lithobates chiricahuensis (Ranidae) from central and southern Arizona.Peptides201132466466910.1016/j.peptides.2011.01.018
    [Google Scholar]
  89. RinaldiA.C. ConlonJ.M. Temporins.Handbook of Biologically Active Peptides.Chapter 562nd ed KastinA.J. BostonAcademic Press201340040610.1016/B978‑0‑12‑385095‑9.00056‑7
    [Google Scholar]
  90. SavelyevaA. GhavamiS. DavoodpourP. AsoodehA. ŁosM.J. An overview of Brevinin superfamily: Structure, function and clinical perspectives.Adv. Exp. Med. Biol.201481819721210.1007/978‑1‑4471‑6458‑6_10
    [Google Scholar]
  91. GómezE.A. GiraldoP. OrduzS. InverPep: A database of invertebrate antimicrobial peptides.J. Glob. Antimicrob. Resist.20178131710.1016/j.jgar.2016.10.003
    [Google Scholar]
  92. BelokonevaO.S. VillegasE. CorzoG. DaiL. NakajimaT. The hemolytic activity of six arachnid cationic peptides is affected by the phosphatidylcholine-to-sphingomyelin ratio in lipid bilayers.Biochim. Biophys. Acta Biomembr.200316171-2223010.1016/j.bbamem.2003.08.010
    [Google Scholar]
  93. JubaM.L. PorterD.K. WilliamsE.H. RodriguezC.A. BarksdaleS.M. BishopB.M. Helical cationic antimicrobial peptide length and its impact on membrane disruption.Biochim. Biophys. Acta Biomembr.2015184851081109110.1016/j.bbamem.2015.01.007
    [Google Scholar]
  94. ShahmiriM. EncisoM. MechlerA. Controls and constrains of the membrane disrupting action of Aurein 1.2.Sci. Rep.2015511637810.1038/srep16378
    [Google Scholar]
  95. ZhengM. WangR. ChenS. ZouY. YanL. ZhaoL. LiX. Design, synthesis and antifungal activity of stapled aurein1.2 peptides.Antibiotics202110895610.3390/antibiotics10080956
    [Google Scholar]
  96. ZohrabF. AskarianS. JaliliA. Kazemi OskueeR. Biological properties, current applications and potential therapeautic applications of brevinin peptide superfamily.Int. J. Pept. Res. Ther.2019251394810.1007/s10989‑018‑9723‑8
    [Google Scholar]
  97. ChenG. MiaoY. MaC. ZhouM. ShiZ. ChenX. BurrowsJ.F. XiX. ChenT. WangL. Brevinin-2GHk from and the design of truncated analogs exhibiting the enhancement of antimicrobial activity.Antibiotics2020928510.3390/antibiotics9020085
    [Google Scholar]
  98. SoodR. KinnunenP.K.J. Cholesterol, lanosterol, and ergosterol attenuate the membrane association of LL-37(W27F) and temporin L.Biochim. Biophys. Acta Biomembr.2008177861460146610.1016/j.bbamem.2008.02.014
    [Google Scholar]
  99. KimJ.B. HalversonT. BasirY.J. DulkaJ. KnoopF.C. AbelP.W. ConlonJ.M. Purification and characterization of antimicrobial and vasorelaxant peptides from skin extracts and skin secretions of the North American pig frog Rana grylio.Regul. Pept.2000901-3536010.1016/S0167‑0115(00)00107‑5
    [Google Scholar]
  100. Al-GhaferiN. KolodziejekJ. NowotnyN. CoquetL. JouenneT. LeprinceJ. VaudryH. KingJ.D. ConlonJ.M. Antimicrobial peptides from the skin secretions of the South-East Asian frog Hylarana erythraea (Ranidae).Peptides201031454855410.1016/j.peptides.2009.12.013
    [Google Scholar]
  101. YangX. LeeW.H. ZhangY. Extremely abundant antimicrobial peptides existed in the skins of nine kinds of Chinese odorous frogs.J. Proteome Res.201211130631910.1021/pr200782u
    [Google Scholar]
  102. HouriA.J. MechlerA. Mechanism of action of the antimicrobial peptide caerin1.1.ChemistrySelect20205205895590210.1002/slct.202000851
    [Google Scholar]
  103. WongH. BowieJ.H. CarverJ.A. The solution structure and activity of caerin 1.1, an antimicrobial peptide from the Australian green tree frog, Litoria splendida.Eur. J. Biochem.1997247254555710.1111/j.1432‑1033.1997.00545.x
    [Google Scholar]
  104. SteinbornerS.T. CurrieG.J. BowieJ.H. WallaceJ.C. TylerM.J. New antibiotic caerin 1 peptides from the skin secretion of the Australian tree frog Litoria chloris. comparison of the activities of the caerin 1 peptides from the genus Litoria.J. Pept. Res.199851212112610.1111/j.1399‑3011.1998.tb00629.x
    [Google Scholar]
  105. StoneD.J.M. WaughR.J. BowieJ.H. WallaceJ.C. TylerM.J. Peptides from Australian frogs. Structures of the caerins and caeridin 1 from Litoria splendida.J. Chem. Soc., Perkin Trans. 119921233173317810.1039/p19920003173
    [Google Scholar]
  106. GalanthC. AbbassiF. LequinO. Ayala-SanmartinJ. LadramA. NicolasP. AmicheM. Mechanism of antibacterial action of dermaseptin B2: interplay between helix-hinge-helix structure and membrane curvature strain.Biochemistry200948231332710.1021/bi802025a
    [Google Scholar]
  107. MorA. HaniK. NicolasP. The vertebrate peptide antibiotics dermaseptins have overlapping structural features but target specific microorganisms.J. Biol. Chem.199426950316353164110.1016/S0021‑9258(18)31742‑3
    [Google Scholar]
  108. BatistaC.V.F. Rosendo da SilvaL. SebbenA. ScaloniA. FerraraL. PaivaG.R. Olamendi-PortugalT. PossaniL.D. BlochC.Jr Antimicrobial peptides from the Brazilian frog Phyllomedusa distincta1.Peptides199920667968610.1016/S0196‑9781(99)00050‑9
    [Google Scholar]
  109. WonH.S. KangS.J. LeeB.J. Action mechanism and structural requirements of the antimicrobial peptides, gaegurins.Biochim. Biophys. Acta Biomembr.2009178881620162910.1016/j.bbamem.2008.10.021
    [Google Scholar]
  110. ZhouX. ShiD. ZhongR. YeZ. MaC. ZhouM. XiX. WangL. ChenT. KwokH.F. Bioevaluation of Ranatuerin-2Pb from the frog skin secretion of rana pipiens and its truncated analogues.Biomolecules20199624910.3390/biom9060249
    [Google Scholar]
  111. GorayaJ. WangY. LiZ. O’FlahertyM. KnoopF.C. PlatzJ.E. ConlonJ.M. Peptides with antimicrobial activity from four different families isolated from the skins of the North American frogs Rana luteiventris, Rana berlandieri and Rana pipiens.Eur. J. Biochem.2000267389490010.1046/j.1432‑1327.2000.01074.x
    [Google Scholar]
  112. BasirY.J. KnoopF.C. DulkaJ. ConlonJ.M. Multiple antimicrobial peptides and peptides related to bradykinin and neuromedin N isolated from skin secretions of the pickerel frog, Rana palustris.Biochim. Biophys. Acta Protein Struct. Mol. Enzymol.2000154319510510.1016/S0167‑4838(00)00191‑6
    [Google Scholar]
  113. SavielloM.R. MalfiS. CampigliaP. CavalliA. GriecoP. NovellinoE. CarotenutoA. New insight into the mechanism of action of the temporin antimicrobial peptides.Biochemistry20104971477148510.1021/bi902166d
    [Google Scholar]
  114. WimleyW.C. WhiteS.H. Experimentally determined hydrophobicity scale for proteins at membrane interfaces.Nat. Struct. Mol. Biol.199631084284810.1038/nsb1096‑842
    [Google Scholar]
  115. MenousekJ. MishraB. HankeM.L. HeimC.E. KielianT. WangG. Database screening and in vivo efficacy of antimicrobial peptides against methicillin-resistant Staphylococcus aureus USA300.Int. J. Antimicrob. Agents201239540240610.1016/j.ijantimicag.2012.02.003
    [Google Scholar]
  116. MishraB. WangX. LushnikovaT. ZhangY. GollaR.M. NarayanaJ.L. WangC. McGuireT.R. WangG. Antibacterial, antifungal, anticancer activities and structural bioinformatics analysis of six naturally occurring temporins.Peptides201810692010.1016/j.peptides.2018.05.011
    [Google Scholar]
  117. WangH. YanX. YuH. HuY. YuZ. ZhengH. ChenZ. ZhangZ. LiuJ. Isolation, characterization and molecular cloning of new antimicrobial peptides belonging to the brevinin-1 and temporin families from the skin of Hylarana latouchii (Anura: Ranidae).Biochimie200991454054710.1016/j.biochi.2009.01.007
    [Google Scholar]
  118. AbbassiF. LequinO. PiesseC. GoasdouéN. FoulonT. NicolasP. LadramA. Temporin-SHf, a new type of phe-rich and hydrophobic ultrashort antimicrobial peptide.J. Biol. Chem.201028522168801689210.1074/jbc.M109.097204
    [Google Scholar]
  119. SongY. JiS. LiuW. YuX. MengQ. LaiR. Different expression profiles of bioactive peptides in Pelophylax nigromaculatus from distinct regions.Biosci. Biotechnol. Biochem.20137751075107910.1271/bbb.130044
    [Google Scholar]
  120. PayneJ.W. JakesR. HartleyB.S. The primary structure of alamethicin.Biochem. J.1970117475776610.1042/bj1170757
    [Google Scholar]
  121. HeK. LudtkeS.J. WorcesterD.L. HuangH.W. Neutron scattering in the plane of membranes: Structure of alamethicin pores.Biophys. J.19967062659266610.1016/S0006‑3495(96)79835‑1
    [Google Scholar]
  122. WhilesJ.A. BrasseurR. GloverK.J. MelaciniG. KomivesE.A. VoldR.R. Orientation and effects of mastoparan X on phospholipid bicelles.Biophys. J.200180128029310.1016/S0006‑3495(01)76013‑4
    [Google Scholar]
  123. DürrU.H.N. SudheendraU.S. RamamoorthyA. LL-37, the only human member of the cathelicidin family of antimicrobial peptides.Biochim. Biophys. Acta Biomembr.2006175891408142510.1016/j.bbamem.2006.03.030
    [Google Scholar]
  124. DongP. ZhouY. HeW. HuaD. A strategy for enhanced antibacterial activity against Staphylococcus aureus by the assembly of alamethicin with a thermo-sensitive polymeric carrier.Chem. Commun.201652589689910.1039/C5CC07054F
    [Google Scholar]
  125. MeyerC.E. ReusserF. A polypeptide antibacterial agent isolated from Trichoderma viride.Experientia1967232858610.1007/BF02135929
    [Google Scholar]
  126. TurnerJ. ChoY. DinhN.N. WaringA.J. LehrerR.I. Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils.Antimicrob. Agents Chemother.19984292206221410.1128/AAC.42.9.2206
    [Google Scholar]
  127. HenriksenJ.R. EtzerodtT. GjettingT. AndresenT.L. Side chain hydrophobicity modulates therapeutic activity and membrane selectivity of antimicrobial peptide mastoparan-X.PLoS One201493e9100710.1371/journal.pone.0091007
    [Google Scholar]
  128. SöylemezÜ.G. YousefM. KesmenZ. BüyükkirazM.E. Bakir-GungorB. Prediction of linear cationic antimicrobial peptides active against gram-negative and gram-positive bacteria based on machine learning models.Appl. Sci.2022127363110.3390/app12073631
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037317887240625054710
Loading
/content/journals/cpps/10.2174/0113892037317887240625054710
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s web site along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test