Skip to content
2000
Volume 26, Issue 1
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

Objective

Proteomic elucidation is an essential step in improving our understanding of the biological properties of proteins in amyotrophic lateral sclerosis (ALS).

Methods

Preliminary proteomic analysis was performed on the spinal cord and brain of SOD1 G93A (TG) and wild-type (WT) mice using isobaric tags for relative and absolute quantitation.

Results

Partial up- and downregulated proteins showing significant differences between TG and WT mice were identified, of which 105 proteins overlapped with differentially expressed proteins in both the spinal cord and brain of progression mice. Bioinformatic analyses using Gene Ontology, a cluster of orthologous groups, and Kyoto Encyclopedia of Genes and Genomes pathway revealed that the significantly up- and downregulated proteins represented multiple biological functions closely related to ALS, with 105 overlapping differentially expressed proteins in the spinal cord and brain at the progression stage of TG mice closely related to 122 pathways. Differentially expressed proteins involved in a set of molecular functions play essential roles in maintaining neural cell survival.

Conclusion

This study provides additional proteomic profiles of TG mice, including potential overlapping proteins in both the spinal cord and brain that participate in pathogenesis, as well as novel insights into the up- and downregulation of proteins involved in the pathogenesis of ALS.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037293525240621120033
2024-07-09
2024-12-30
Loading full text...

Full text loading...

References

  1. XuR.S. YuanM. Considerations on the concept, definition, and diagnosis of amyotrophic lateral sclerosis.Neural Regen. Res.20211691723172910.4103/1673‑5374.30606533510061
    [Google Scholar]
  2. IngreC. ChenL. ZhanY. TermorshuizenJ. YinL. FangF. Lipids, apolipoproteins, and prognosis of amyotrophic lateral sclerosis.Neurology20209417e1835e184410.1212/WNL.000000000000932232221024
    [Google Scholar]
  3. CruzM.P. Edaravone (Radicava): A novel neuroprotective agent for the treatment of amyotrophic lateral sclerosis.P&T2018431252829290672
    [Google Scholar]
  4. SiddiqueN. SiddiqueT. Amyotrophic lateral sclerosis overview. GeneReviewsSeattleUniversity of Washington2023
    [Google Scholar]
  5. LibroR. BramantiP. MazzonE. The role of the Wnt canonical signaling in neurodegenerative diseases.Life Sci.2016158788810.1016/j.lfs.2016.06.02427370940
    [Google Scholar]
  6. LeeJ.-M. TanV. LovejoyD. BraidyN. RoweD.B. BrewB.J. GuilleminG.J. Involvement of quinolinic acid in the neuropathogenesis of amyotrophic lateral sclerosis.Neuropharmacology2017112Pt B34636410.1016/j.neuropharm.2016.05.011
    [Google Scholar]
  7. MonahanZ. ShewmakerF. PandeyU.B. Stress granules at the intersection of autophagy and ALS.Brain Res20161649Pt B18920010.1016/j.brainres.2016.05.022
    [Google Scholar]
  8. RozasP. BargstedL. MartínezF. HetzC. MedinasD.B. The ER proteostasis network in ALS: Determining the differential motoneuron vulnerability.Neurosci. Lett.201763691510.1016/j.neulet.2016.04.06627150076
    [Google Scholar]
  9. BozzoF. MirraA. CarrìM.T. Oxidative stress and mitochondrial damage in the pathogenesis of ALS: New perspectives.Neurosci. Lett.20176363810.1016/j.neulet.2016.04.06527150074
    [Google Scholar]
  10. ChiS. JiangT. TanL. YuJ.T. Distinct neurological disorders with C9orf72 mutations: Genetics, pathogenesis, and therapy.Neurosci. Biobehav. Rev.20166612714210.1016/j.neubiorev.2016.03.03327139021
    [Google Scholar]
  11. TokudaE. FurukawaY. Copper homeostasis as a therapeutic target in amyotrophic lateral sclerosis with SOD1 mutations.Int. J. Mol. Sci.201617563610.3390/ijms1705063627136532
    [Google Scholar]
  12. LacorteE. FerrignoL. LeonciniE. CorboM. BocciaS. VanacoreN. Physical activity, and physical activity related to sports, leisure and occupational activity as risk factors for ALS: A systematic review.Neurosci. Biobehav. Rev.201666617910.1016/j.neubiorev.2016.04.00727108217
    [Google Scholar]
  13. BozzoniV. PansarasaO. DiamantiL. NosariG. CeredaC. CeroniM. Amyotrophic lateral sclerosis and environmental factors.Funct. Neurol.201631171910.11138/FNeur/2016.31.1.00727027889
    [Google Scholar]
  14. RivaN. AgostaF. LunettaC. FilippiM. QuattriniA. Recent advances in amyotrophic lateral sclerosis.J. Neurol.201626361241125410.1007/s00415‑016‑8091‑627025851
    [Google Scholar]
  15. BrowneE.C. AbbottB.M. Recent progress towards an effective treatment of amyotrophic lateral sclerosis using the SOD1 mouse model in a preclinical setting.Eur. J. Med. Chem.201612191892510.1016/j.ejmech.2016.02.04827012524
    [Google Scholar]
  16. EdensB.M. MillerN. MaY.C. Impaired autophagy and defective mitochondrial function: Converging paths on the road to motor neuron degeneration.Front. Cell. Neurosci.2016104410.3389/fncel.2016.0004426973461
    [Google Scholar]
  17. LeisA.A. RossM.A. VerheijdeJ.L. LeisJ.F. Immunoablation and stem cell transplantation in amyotrophic lateral sclerosis: The ultimate test for the autoimmune pathogenesis hypothesis.Front. Neurol.201671210.3389/fneur.2016.0001226903945
    [Google Scholar]
  18. KomineO. YamanakaK. Neuroinflammation in motor neuron disease.Nagoya J. Med. Sci.201577453754926663933
    [Google Scholar]
  19. QiuL. TanE.K. ZengL. microRNAs and neurodegenerative diseases.Adv. Exp. Med. Biol.20158888510510.1007/978‑3‑319‑22671‑2_626663180
    [Google Scholar]
  20. CozzolinoM. RossiS. MirraA. CarrìM.T. Mitochondrial dynamism and the pathogenesis of amyotrophic lateral sclerosis.Front. Cell. Neurosci.201593110.3389/fncel.2015.0003125713513
    [Google Scholar]
  21. FukunagaK. ShinodaY. TagashiraH. The role of SIGMAR1 gene mutation and mitochondrial dysfunction in amyotrophic lateral sclerosis.J. Pharmacol. Sci.20151271364110.1016/j.jphs.2014.12.01225704016
    [Google Scholar]
  22. PalomoG.M. ManfrediG. Exploring new pathways of neurodegeneration in ALS: The role of mitochondria quality control.Brain Res.20151607364610.1016/j.brainres.2014.09.06525301687
    [Google Scholar]
  23. TanW. PasinelliP. TrottiD. Role of mitochondria in mutant SOD1 linked amyotrophic lateral sclerosis.Biochim. Biophys. Acta Mol. Basis Dis.2014184281295130110.1016/j.bbadis.2014.02.00924568860
    [Google Scholar]
  24. KawamataH. NgS.K. DiazN. BursteinS. MorelL. OsgoodA. SiderB. HigashimoriH. HaydonP.G. ManfrediG. YangY. Abnormal intracellular calcium signaling and SNARE-dependent exocytosis contributes to SOD1G93A astrocyte-mediated toxicity in amyotrophic lateral sclerosis.J. Neurosci.20143462331234810.1523/JNEUROSCI.2689‑13.201424501372
    [Google Scholar]
  25. ClarkR. BlizzardC. DicksonT. Inhibitory dysfunction in amyotrophic lateral sclerosis: Future therapeutic opportunities.Neurodegener. Dis. Manag.20155651152510.2217/nmt.15.4926619150
    [Google Scholar]
  26. NotoY. ShibuyaK. VucicS. KiernanM.C. Novel therapies in development that inhibit motor neuron hyperexcitability in amyotrophic lateral sclerosis.Expert Rev. Neurother.201616101147115410.1080/14737175.2016.119777427314534
    [Google Scholar]
  27. LeroyF. ZytnickiD. Is hyperexcitability really guilty in amyotrophic lateral sclerosis?Neural Regen. Res.20151091413141510.4103/1673‑5374.16530826604899
    [Google Scholar]
  28. KingA.E. WoodhouseA. KirkcaldieM.T.K. VickersJ.C. Excitotoxicity in ALS: Overstimulation, or overreaction?Exp. Neurol.2016275Pt 116217110.1016/j.expneurol.2015.09.01926584004
    [Google Scholar]
  29. RadfordR.A. MorschM. RaynerS.L. ColeN.J. PountneyD.L. ChungR.S. The established and emerging roles of astrocytes and microglia in amyotrophic lateral sclerosis and frontotemporal dementia.Front. Cell. Neurosci.2015941410.3389/fncel.2015.0041426578880
    [Google Scholar]
  30. NiedzielskaE. SmagaI. GawlikM. MoniczewskiA. StankowiczP. PeraJ. FilipM. Oxidative stress in neurodegenerative diseases.Mol. Neurobiol.20165364094412510.1007/s12035‑015‑9337‑526198567
    [Google Scholar]
  31. D’AmicoE. Factor-LitvakP. SantellaR.M. MitsumotoH. Clinical perspective on oxidative stress in sporadic amyotrophic lateral sclerosis.Free Radic. Biol. Med.20136550952710.1016/j.freeradbiomed.2013.06.02923797033
    [Google Scholar]
  32. BarberS.C. MeadR.J. ShawP.J. Oxidative stress in ALS: A mechanism of neurodegeneration and a therapeutic target.Biochim. Biophys. Acta Mol. Basis Dis.2006176211-121051106710.1016/j.bbadis.2006.03.00816713195
    [Google Scholar]
  33. ZareiS. CarrK. ReileyL. DiazK. GuerraO. AltamiranoP. PaganiW. LodinD. OrozcoG. ChineaA. A comprehensive review of amyotrophic lateral sclerosis.Surg. Neurol. Int.20156117110.4103/2152‑7806.16956126629397
    [Google Scholar]
  34. MadabhushiR. PanL. TsaiL.H. DNA damage and its links to neurodegeneration.Neuron201483226628210.1016/j.neuron.2014.06.03425033177
    [Google Scholar]
  35. LeblondC.S. KanebH.M. DionP.A. RouleauG.A. Dissection of genetic factors associated with amyotrophic lateral sclerosis.Exp Neurol2014262Pt B9110110.1016/j.expneurol.2014.04.013
    [Google Scholar]
  36. TherrienM. DionP.A. RouleauG.A. ALS: Recent developments from genetics studies.Curr. Neurol. Neurosci. Rep.20161665910.1007/s11910‑016‑0658‑127113253
    [Google Scholar]
  37. KanehisaM. LimviphuvadhV. TanabeM. Knowledge-based analysis of protein interaction networks in neurodegenerative diseases.NeuroproteomicsBoca Raton (FL)CRC Press/Taylor & Francis2010
    [Google Scholar]
  38. StrongM.J. KesavapanyS. PantH.C. The pathobiology of amyotrophic lateral sclerosis: A proteinopathy?J. Neuropathol. Exp. Neurol.200564864966410.1097/01.jnen.0000173889.71434.ea16106213
    [Google Scholar]
  39. RuegseggerC. SaxenaS. Proteostasis impairment in ALS.Brain Res20161648Pt B57157910.1016/j.brainres.2016.03.032
    [Google Scholar]
  40. KiriyamaY. NochiH. The function of autophagy in neurodegenerative diseases.Int. J. Mol. Sci.20151611267972681210.3390/ijms16112599026569220
    [Google Scholar]
  41. LeeJ.K. ShinJ.H. LeeJ.E. ChoiE.J. Role of autophagy in the pathogenesis of amyotrophic lateral sclerosis.Biochim. Biophys. Acta Mol. Basis Dis.20151852112517252410.1016/j.bbadis.2015.08.00526264610
    [Google Scholar]
  42. GötzlJ.K. LangC.M. HaassC. CapellA. Impaired protein degradation in FTLD and related disorders.Ageing Res. Rev.20163212213910.1016/j.arr.2016.04.00827166223
    [Google Scholar]
  43. AtkinG. PaulsonH. Ubiquitin pathways in neurodegenerative disease.Front. Mol. Neurosci.201476310.3389/fnmol.2014.0006325071440
    [Google Scholar]
  44. ParakhS. AtkinJ.D. Protein folding alterations in amyotrophic lateral sclerosis.Brain Res20161648Pt B63364910.1016/j.brainres.2016.04.010
    [Google Scholar]
  45. RadiE. FormichiP. BattistiC. FedericoA. Apoptosis and oxidative stress in neurodegenerative diseases.J. Alzheimers Dis.201442s3Suppl. 3S125S15210.3233/JAD‑13273825056458
    [Google Scholar]
  46. GhavamiS. ShojaeiS. YeganehB. AndeS.R. JangamreddyJ.R. MehrpourM. ChristofferssonJ. ChaabaneW. MoghadamA.R. KashaniH.H. HashemiM. OwjiA.A. ŁosM.J. Autophagy and apoptosis dysfunction in neurodegenerative disorders.Prog. Neurobiol.2014112244910.1016/j.pneurobio.2013.10.00424211851
    [Google Scholar]
  47. KaurS.J. McKeownS.R. RashidS. Mutant SOD1 mediated pathogenesis of Amyotrophic Lateral Sclerosis.Gene2016577210911810.1016/j.gene.2015.11.04926657039
    [Google Scholar]
  48. ZhangJ. HuangP. WuC. LiangH. LiY. ZhuL. LuY. TangC. XuR. Preliminary observation about alteration of proteins and their potential functions in spinal cord of SOD1 G93A transgenic mice.Int. J. Biol. Sci.201814101306132010.7150/ijbs.2682930123078
    [Google Scholar]
  49. SasaguriH. ChewJ. XuY.F. GendronT.F. GarrettA. LeeC.W. Jansen-WestK. BauerP.O. PerkersonE.A. TongJ. StetlerC. ZhangY.J. The extreme N-terminus of TDP-43 mediates the cytoplasmic aggregation of TDP-43 and associated toxicity in vivo.Brain Res.20161647576410.1016/j.brainres.2016.04.06927155453
    [Google Scholar]
  50. RattiA. BurattiE. Physiological functions and pathobiology of TDP-43 and FUS/TLS proteins.J. Neurochem.2016138S1Suppl. 19511110.1111/jnc.1362527015757
    [Google Scholar]
  51. MisM.S.C. BrajkovicS. TafuriF. BresolinN. ComiG.P. CortiS. Development of therapeutics for C9ORF72 ALS/FTD-related disorders.Mol. Neurobiol.20175464466447610.1007/s12035‑016‑9993‑027349438
    [Google Scholar]
  52. ToddT.W. PetrucelliL. Insights into the pathogenic mechanisms of Chromosome 9 open reading frame 72 (C9orf72) repeat expansions.J. Neurochem.2016138S1Suppl. 114516210.1111/jnc.1362327016280
    [Google Scholar]
  53. KanekuraK. SuzukiH. AisoS. MatsuokaM. ER stress and unfolded protein response in amyotrophic lateral sclerosis.Mol. Neurobiol.2009392818910.1007/s12035‑009‑8054‑319184563
    [Google Scholar]
  54. KampingaH.H. BerginkS. Heat shock proteins as potential targets for protective strategies in neurodegeneration.Lancet Neurol.201615774875910.1016/S1474‑4422(16)00099‑527106072
    [Google Scholar]
  55. VermaA. Prions, prion-like prionoids, and neurodegenerative disordersVacancy.Ann. Indian Acad. Neurol.201619216917410.4103/0972‑2327.17997927293325
    [Google Scholar]
  56. van den HeuvelD.M.A. HarschnitzO. van den BergL.H. PasterkampR.J. Taking a risk: A therapeutic focus on ataxin-2 in amyotrophic lateral sclerosis?Trends Mol. Med.2014201253510.1016/j.molmed.2013.09.00124140266
    [Google Scholar]
  57. BoniniN.M. GitlerA.D. Model organisms reveal insight into human neurodegenerative disease: Ataxin-2 intermediate-length polyglutamine expansions are a risk factor for ALS.J. Mol. Neurosci.201145367668310.1007/s12031‑011‑9548‑921660502
    [Google Scholar]
  58. ChandranJ. DingJ. CaiH. Alsin and the molecular pathways of amyotrophic lateral sclerosis.Mol. Neurobiol.200736322423110.1007/s12035‑007‑0034‑x17955197
    [Google Scholar]
  59. HadanoS. KunitaR. OtomoA. Suzuki-UtsunomiyaK. IkedaJ.E. Molecular and cellular function of ALS2/alsin: Implication of membrane dynamics in neuronal development and degeneration.Neurochem. Int.2007512-4748410.1016/j.neuint.2007.04.01017566607
    [Google Scholar]
  60. ContiA. AlessioM. Comparative proteomics for the evaluation of protein expression and modifications in neurodegenerative diseases.Int. Rev. Neurobiol.201512111715210.1016/bs.irn.2015.05.00426315764
    [Google Scholar]
  61. PfohlS.R. HalicekM.T. MitchellC.S. Characterization of the contribution of genetic background and gender to disease progression in the SOD1 G93A mouse model of amyotrophic lateral sclerosis: A meta-analysis.J. Neuromuscul. Dis.20152213715010.3233/JND‑14006826594635
    [Google Scholar]
  62. GurneyM.E. PuH. ChiuA.Y. Dal CantoM.C. PolchowC.Y. AlexanderD.D. CaliendoJ. HentatiA. KwonY.W. DengH.X. ChenW. ZhaiP. SufitR.L. SiddiqueT. Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation.Science199426451661772177510.1126/science.82092588209258
    [Google Scholar]
  63. ZhouY. LuY. FangX. ZhangJ. LiJ. LiS. DengX. YuY. XuR. An astrocyte regenerative response from vimentin-containing cells in the spinal cord of amyotrophic lateral sclerosis’s disease-like transgenic (G93A SOD1) mice.Neurodegener. Dis.201515111210.1159/00036946625591625
    [Google Scholar]
  64. HenriquesA. PitzerC. SchneiderA. Characterization of a novel SOD-1(G93A) transgenic mouse line with very decelerated disease development.PLoS One2010511e1544510.1371/journal.pone.001544521102999
    [Google Scholar]
  65. HaoP. QianJ. RenY. SzeS.K. Electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) versus strong cation exchange (SCX) for fractionation of iTRAQ-labeled peptides.J. Proteome Res.201110125568557410.1021/pr200768622014306
    [Google Scholar]
  66. YangW. SopperM.M. Leystra-LantzC. StrongM.J. Microtubule-associated tau protein positive neuronal and glial inclusions in ALS.Neurology200361121766177310.1212/01.WNL.0000099372.75786.F814694044
    [Google Scholar]
  67. ZhangL. ShengR. QinZ. The lysosome and neurodegenerative diseases.Acta Biochim. Biophys. Sin. (Shanghai)200941643744510.1093/abbs/gmp03119499146
    [Google Scholar]
  68. TanakaY. HasegawaM. Profilin 1 mutants form aggregates that induce accumulation of prion-like TDP-43.Prion201610428328910.1080/19336896.2016.120703327432186
    [Google Scholar]
  69. TaylorJ.P. HardyJ. FischbeckK.H. Toxic proteins in neurodegenerative disease.Science200229655751991199510.1126/science.106712212065827
    [Google Scholar]
  70. WoodJ.D. BeaujeuxT.P. ShawP.J. Protein aggregation in motor neurone disorders.Neuropathol. Appl. Neurobiol.200329652954510.1046/j.0305‑1846.2003.00518.x14636160
    [Google Scholar]
  71. ZhangJ. WenA. ChaiW. LiangH. TangC. GanW. XuR. Potential proteomic alteration in the brain of Tg(SOD1*G93A)1Gur mice: A new pathogenesis insight of amyotrophic lateral sclerosis.Cell Biol. Int.20224691378139810.1002/cbin.1184235801511
    [Google Scholar]
  72. LuY. TangC. ZhuL. LiJ. LiangH. ZhangJ. XuR. The overexpression of TDP-43 protein in the neuron and oligodendrocyte cells causes the progressive motor neuron degeneration in the SOD1 G93A transgenic mouse model of amyotrophic lateral sclerosis.Int. J. Biol. Sci.20161291140114910.7150/ijbs.1593827570488
    [Google Scholar]
  73. LiJ. LuY. LiangH. TangC. ZhuL. ZhangJ. XuR. Changes in the expression of FUS/TLS in spinal cords of SOD1 G93A transgenic mice and correlation with motor-neuron degeneration.Int. J. Biol. Sci.201612101181119010.7150/ijbs.1615827766033
    [Google Scholar]
  74. ZhangJ. LiangH. ZhuL. GanW. TangC. LiJ. XuR. Expression and distribution of arylsulfatase B are closely associated with neuron death in SOD1 G93A transgenic mice.Mol. Neurobiol.20185521323133710.1007/s12035‑017‑0406‑928124772
    [Google Scholar]
  75. LiangH. WuC. DengY. ZhuL. ZhangJ. GanW. TangC. XuR. Aldehyde dehydrogenases 1A2 expression and distribution are potentially associated with neuron death in spinal cord of Tg(SOD1*G93A)1gur mice.Int. J. Biol. Sci.201713557458710.7150/ijbs.1915028539831
    [Google Scholar]
  76. AllenS. HeathP.R. KirbyJ. WhartonS.B. CooksonM.R. MenziesF.M. BanksR.E. ShawP.J. Analysis of the cytosolic proteome in a cell culture model of familial amyotrophic lateral sclerosis reveals alterations to the proteasome, antioxidant defenses, and nitric oxide synthetic pathways.J. Biol. Chem.200327886371638310.1074/jbc.M20991520012475980
    [Google Scholar]
  77. FukadaK. ZhangF. VienA. CashmanN.R. ZhuH. Mitochondrial proteomic analysis of a cell line model of familial amyotrophic lateral sclerosis.Mol. Cell. Proteomics20043121211122310.1074/mcp.M400094‑MCP20015501831
    [Google Scholar]
  78. RanganathanS. WilliamsE. GanchevP. GopalakrishnanV. LacomisD. UrbinelliL. NewhallK. CudkowiczM.E. BrownR.H.Jr BowserR. Proteomic profiling of cerebrospinal fluid identifies biomarkers for amyotrophic lateral sclerosis.J. Neurochem.20059551461147110.1111/j.1471‑4159.2005.03478.x16313519
    [Google Scholar]
  79. PasinettiG.M. UngarL.H. LangeD.J. YemulS. DengH. YuanX. BrownR.H. CudkowiczM.E. NewhallK. PeskindE. MarcusS. HoL. Identification of potential CSF biomarkers in ALS.Neurology20066681218122210.1212/01.wnl.0000203129.82104.0716481598
    [Google Scholar]
  80. RanganathanS. NichollG.C.B. HenryS. LutkaF. SathanooriR. LacomisD. BowserR. Comparative proteomic profiling of cerebrospinal fluid between living and post mortem ALS and control subjects.Amyotroph. Lateral Scler.20078637337910.1080/1748296070154968117852009
    [Google Scholar]
  81. PotoC.D. IadarolaP. BardoniA.M. PassadoreI. GiorgettiS. CeredaC. CarrìM.T. 2-DE and MALDI-TOF-MS for a comparative analysis of proteins expressed in different cellular models ofamyotrophic lateral sclerosis.Electrophoresis200728234320432910.1002/elps.20070045517979159
    [Google Scholar]
  82. BrettschneiderJ. MogelH. LehmensiekV. AhlertT. SüssmuthS. LudolphA.C. TumaniH. Proteome analysis of cerebrospinal fluid in amyotrophic lateral sclerosis (ALS).Neurochem. Res.200833112358236310.1007/s11064‑008‑9742‑518481174
    [Google Scholar]
  83. BrettschneiderJ. LehmensiekV. MogelH. PfeifleM. DorstJ. HendrichC. LudolphA.C. TumaniH. Proteome analysis reveals candidate markers of disease progression in amyotrophic lateral sclerosis (ALS).Neurosci. Lett.20104681232710.1016/j.neulet.2009.10.05319853641
    [Google Scholar]
  84. NardoG. PozziS. PignataroM. LauranzanoE. SpanoG. GarbelliS. MantovaniS. MarinouK. PapettiL. MonteforteM. TorriV. ParisL. BazzoniG. LunettaC. CorboM. MoraG. BendottiC. BonettoV. Amyotrophic lateral sclerosis multiprotein biomarkers in peripheral blood mononuclear cells.PLoS One2011610e2554510.1371/journal.pone.002554521998667
    [Google Scholar]
  85. von NeuhoffN. OumeraciT. WolfT. KolleweK. BewerungeP. NeumannB. BrorsB. BuflerJ. WursterU. SchlegelbergerB. DenglerR. ZapatkaM. PetriS. Monitoring CSF proteome alterations in amyotrophic lateral sclerosis: Obstacles and perspectives in translating a novel marker panel to the clinic.PLoS One201279e4440110.1371/journal.pone.004440122970211
    [Google Scholar]
  86. ContiA. RivaN. PescaM. IannacconeS. CannistraciC.V. CorboM. PrevitaliS.C. QuattriniA. AlessioM. Increased expression of Myosin binding protein H in the skeletal muscle of amyotrophic lateral sclerosis patients.Biochim. Biophys. Acta Mol. Basis Dis.2014184219910610.1016/j.bbadis.2013.10.01324184715
    [Google Scholar]
  87. ElfK. ShevchenkoG. NygrenI. LarssonL. BergquistJ. AskmarkH. ArtemenkoK. Alterations in muscle proteome of patients diagnosed with amyotrophic lateral sclerosis.J. Proteomics2014108108556410.1016/j.jprot.2014.05.00424846852
    [Google Scholar]
  88. CollinsM.A. AnJ. HoodB.L. ConradsT.P. BowserR.P. Label-free LC–MS/MS proteomic analysis of cerebrospinal fluid identifies protein/pathway alterations and candidate biomarkers for amyotrophic lateral sclerosis.J. Proteome Res.201514114486450110.1021/acs.jproteome.5b0080426401960
    [Google Scholar]
  89. TortelliR. RuggieriM. CorteseR. D’ErricoE. CapozzoR. LeoA. MastrapasquaM. ZoccolellaS. LeanteR. LivreaP. LogroscinoG. SimoneI.L. Elevated cerebrospinal fluid neurofilament light levels in patients with amyotrophic lateral sclerosis: A possible marker of disease severity and progression.Eur. J. Neurol.201219121561156710.1111/j.1468‑1331.2012.03777.x22680408
    [Google Scholar]
  90. GanesalingamJ. AnJ. ShawC.E. ShawG. LacomisD. BowserR. Combination of neurofilament heavy chain and complement C3 as CSF biomarkers for ALS.J. Neurochem.2011117352853710.1111/j.1471‑4159.2011.07224.x21418221
    [Google Scholar]
  91. AronicaE. A cysteine protease inhibitor, is persistently up-regulated in neurons and glia in a rat model for mesial temporal lobe epilepsy.Eur. J. Neurosci.20011491485149110.1046/j.0953‑816x.2001.01779.x11722610
    [Google Scholar]
  92. MussapM. PlebaniM. Biochemistry and clinical role of human cystatin C.Crit. Rev. Clin. Lab. Sci.2004415-646755010.1080/1040836049050493415603510
    [Google Scholar]
  93. NagaiA. RyuJ.K. TerashimaM. TanigawaY. WakabayashiK. McLarnonJ.G. KobayashiS. MasudaJ. KimS.U. Neuronal cell death induced by cystatin C in vivo and in cultured human CNS neurons is inhibited with cathepsin B.Brain Res.200510661-212012810.1016/j.brainres.2005.10.06316325785
    [Google Scholar]
  94. LehnertS. CostaJ. de CarvalhoM. KirbyJ. Kuzma-KozakiewiczM. MorelliC. RobberechtW. ShawP. SilaniV. SteinackerP. TumaniH. Van DammeP. LudolphA. OttoM. Multicentre quality control evaluation of different biomarker candidates for amyotrophic lateral sclerosis.Amyotroph. Lateral Scler. Frontotemporal Degener.2014155-634435010.3109/21678421.2014.88459224575871
    [Google Scholar]
  95. TarasiukJ. KułakowskaA. DrozdowskiW. KornhuberJ. LewczukP. CSF markers in amyotrophic lateral sclerosis.J. Neural Transm. (Vienna)2012119774775710.1007/s00702‑012‑0806‑y22555610
    [Google Scholar]
  96. SüssmuthS.D. SperfeldA.D. HinzA. BrettschneiderJ. EndruhnS. LudolphA.C. TumaniH. CSF glial markers correlate with survival in amyotrophic lateral sclerosis.Neurology2010741298298710.1212/WNL.0b013e3181d5dc3b20308682
    [Google Scholar]
  97. CudkowiczM.E. SwashM. CSF markers in amyotrophic lateral sclerosis.Neurology2010741294995010.1212/WNL.0b013e3181d72c3120308678
    [Google Scholar]
  98. VargheseA.M. SharmaA. MishraP. VijayalakshmiK. HarshaH.C. SathyaprabhaT.N. BharathS.M.M. NaliniA. AlladiP.A. RajuT.R. Chitotriosidase - a putative biomarker for sporadic amyotrophic lateral sclerosis.Clin. Proteomics20131011910.1186/1559‑0275‑10‑1924295388
    [Google Scholar]
  99. PagliardiniV. PagliardiniS. CorradoL. LucentiA. PanigatiL. BersanoE. ServoS. CantelloR. D’AlfonsoS. MazziniL. Chitotriosidase and lysosomal enzymes as potential biomarkers of disease progression in amyotrophic lateral sclerosis: A survey clinic-based study.J. Neurol. Sci.20153481-224525010.1016/j.jns.2014.12.01625563799
    [Google Scholar]
  100. NeuschC. BährM. Schneider-GoldC. Glia cells in amyotrophic lateral sclerosis: New clues to understanding an old disease?Muscle Nerve200735671272410.1002/mus.2076817373702
    [Google Scholar]
  101. SteinerJ. BogertsB. SchroeterM.L. BernsteinH.G. S100B protein in neurodegenerative disorders.Clin. Chem. and Lab. Med.201149340942410.1515/CCLM.2011.08321303299
    [Google Scholar]
  102. GurneyM.E. What transgenic mice tell us about neurodegenerative disease.BioEssays200022329730410.1002/(SICI)1521‑1878(200003)22:3<297::AID‑BIES12>3.0.CO;2‑I10684590
    [Google Scholar]
  103. LiddellJ.R. HiltonJ.B.W. KyseniusK. BillingsJ.L. NiksereshtS. McInnesL.E. HareD.J. PaulB. MercerS.W. BelaidiA.A. AytonS. RobertsB.R. BeckmanJ.S. McLeanC.A. WhiteA.R. DonnellyP.S. BushA.I. CrouchP.J. Microglial ferroptotic stress causes non-cell autonomous neuronal death.Mol. Neurodegener.20241911410.1186/s13024‑023‑00691‑838317225
    [Google Scholar]
  104. RippsM.E. HuntleyG.W. HofP.R. MorrisonJ.H. GordonJ.W. Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis.Proc. Natl. Acad. Sci. USA199592368969310.1073/pnas.92.3.6897846037
    [Google Scholar]
  105. ShinJ.H. LondonJ. Le PecheurM. WeitzdoerferR. HoegerH. LubecG. Proteome analysis in hippocampus of mice overexpressing human Cu/Zn-superoxide dismutase 1.Neurochem. Int.200546864165310.1016/j.neuint.2004.06.01715863242
    [Google Scholar]
  106. ZhouJ.Y. Afjehi-SadatL. AsressS. DuongD.M. CudkowiczM. GlassJ.D. PengJ. Galectin-3 is a candidate biomarker for amyotrophic lateral sclerosis: Discovery by a proteomics approach.J. Proteome Res.20109105133514110.1021/pr100409r20698585
    [Google Scholar]
  107. AcquadroE. CaronI. TortaroloM. BucciE.M. BendottiC. CorpilloD. Human SOD1-G93A specific distribution evidenced in murine brain of a transgenic model for amyotrophic lateral sclerosis by MALDI imaging mass spectrometry.J. Proteome Res.20141341800180910.1021/pr400942n24579824
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037293525240621120033
Loading
/content/journals/cpps/10.2174/0113892037293525240621120033
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test