Skip to content
2000
Volume 26, Issue 1
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD) is a broad condition characterized by lipid accumulation in the liver tissue, which can progress to fibrosis and cirrhosis if left untreated. Traditionally, liver biopsy is the gold standard for evaluating fibrosis. However, non-invasive biomarkers of liver fibrosis are developed to assess the fibrosis without the risk of biopsy complications. Novel serum biomarkers have emerged as a promising tool for non-invasive assessment of liver fibrosis in MAFLD patients. Several studies have shown that elevated levels of Mac-2 binding protein glycosylation isomer (M2BPGi) are associated with increased liver fibrosis severity in MAFLD patients. This suggests that M2BPGi could serve as a reliable marker for identifying individuals at higher risk of disease progression. Furthermore, the use of M2BPGi offers a non-invasive alternative to liver biopsy, which is invasive and prone to sampling errors. Overall, the usage of M2BPGi in assessing liver fibrosis in MAFLD holds great promise for improving risk stratification and monitoring disease progression in affected individuals. Further research is needed to validate its utility in clinical practice and establish standardized protocols for its implementation.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037315931240618085529
2024-07-08
2024-12-29
Loading full text...

Full text loading...

References

  1. SangroP. de la TorreA.M. SangroB. D’AvolaD. Metabolic dysfunction–associated fatty liver disease (MAFLD): An update of the recent advances in pharmacological treatment.J. Physiol. Biochem.202379486987910.1007/s13105‑023‑00954‑436976456
    [Google Scholar]
  2. PalS.C. Méndez-SánchezN. Insulin resistance and adipose tissue interactions as the cornerstone of metabolic (dysfunction)-associated fatty liver disease pathogenesis.World J. Gastroenterol.202329253999400810.3748/wjg.v29.i25.399937476582
    [Google Scholar]
  3. QuW. MaT. CaiJ. ZhangX. ZhangP. SheZ. WanF. LiH. Liver fibrosis and MAFLD: From molecular aspects to novel pharmacological strategies.Front. Med. (Lausanne)2021876153810.3389/fmed.2021.76153834746195
    [Google Scholar]
  4. Segura-AzuaraN.Á. Varela-ChinchillaC.D. Trinidad-CalderónP.A. MAFLD/NAFLD biopsy-free scoring systems for hepatic steatosis, NASH, and fibrosis diagnosis.Front. Med. (Lausanne)2022877407910.3389/fmed.2021.77407935096868
    [Google Scholar]
  5. KarsdalM.A. Manon-JensenT. GenoveseF. KristensenJ.H. NielsenM.J. SandJ.M.B. HansenN.U.B. Bay-JensenA.C. BagerC.L. KragA. BlanchardA. KrarupH. LeemingD.J. SchuppanD. Novel insights into the function and dynamics of extracellular matrix in liver fibrosis.Am. J. Physiol. Gastrointest. Liver Physiol.201530810G807G83010.1152/ajpgi.00447.201425767261
    [Google Scholar]
  6. RoderfeldM. Matrix metalloproteinase functions in hepatic injury and fibrosis.Matrix Biol.201868-6945246210.1016/j.matbio.2017.11.01129221811
    [Google Scholar]
  7. Conde de la RosaL. GoicoecheaL. TorresS. Garcia-RuizC. Fernandez-ChecaJ.C. Role of oxidative stress in liver disorders.Livers20222428331410.3390/livers2040023
    [Google Scholar]
  8. PeiselerM. SchwabeR. HampeJ. KubesP. HeikenwälderM. TackeF. Immune mechanisms linking metabolic injury to inflammation and fibrosis in fatty liver disease – novel insights into cellular communication circuits.J. Hepatol.20227741136116010.1016/j.jhep.2022.06.01235750137
    [Google Scholar]
  9. VenkateshS.K. TorbensonM.S. Liver fibrosis quantification.Abdom. Radiol. (N.Y.)20224731032105210.1007/s00261‑021‑03396‑y35022806
    [Google Scholar]
  10. PatelK. SebastianiG. Limitations of non-invasive tests for assessment of liver fibrosis.JHEP Rep. Innov. Hepatol.20202210006710.1016/j.jhepr.2020.10006732118201
    [Google Scholar]
  11. LoombaR. AdamsL.A. Advances in non-invasive assessment of hepatic fibrosis.Gut20206971343135210.1136/gutjnl‑2018‑31759332066623
    [Google Scholar]
  12. ParkC.C. NguyenP. HernandezC. BettencourtR. RamirezK. FortneyL. Magnetic resonance elastography vs transient elastography in detection of fibrosis and noninvasive measurement of steatosis in patients with biopsy-proven nonalcoholic fatty liver disease.Gastroenterology20171523598607
    [Google Scholar]
  13. DanaJ. GirardM. Franchi-AbellaS. BertelootL. Benoit-CherifiM. Imbert-BismutF. Sermet-GaudelusI. DebrayD. Comparison of transient elastography, shearwave elastography, magnetic resonance elastography and fibrotest as routine diagnostic markers for assessing liver fibrosis in children with cystic fibrosis.Clin. Res. Hepatol. Gastroenterol.202246310185510.1016/j.clinre.2021.10185534933150
    [Google Scholar]
  14. KarsdalM.A. DanielsS.J. Holm NielsenS. BagerC. RasmussenD.G.K. LoombaR. SurabattulaR. VillesenI.F. LuoY. ShevellD. GudmannN.S. NielsenM.J. GeorgeJ. ChristianR. LeemingD.J. SchuppanD. Collagen biology and non-invasive biomarkers of liver fibrosis.Liver Int.202040473675010.1111/liv.1439031997561
    [Google Scholar]
  15. HeyensL.J.M. BusschotsD. KoekG.H. RobaeysG. FrancqueS. Liver fibrosis in non-alcoholic fatty liver disease: From liver biopsy to non-invasive biomarkers in diagnosis and treatment.Front. Med. (Lausanne)2021861597810.3389/fmed.2021.61597833937277
    [Google Scholar]
  16. JangS.Y. TakW.Y. ParkS.Y. KweonY.O. LeeY.R. KimG. HurK. HanM.H. LeeW.K. Diagnostic efficacy of serum Mac-2 binding protein glycosylation isomer and other markers for liver fibrosis in non-alcoholic fatty liver diseases.Ann. Lab. Med.202141330230910.3343/alm.2021.41.3.30233303715
    [Google Scholar]
  17. ChengY.M. WangC.C. Serum Mac-2 binding protein glycosylation isomer (M2BPGi) can predict mild or significant liver fibrosis in non-alcoholic fatty liver disease.Hepat. Mon.20212152110.5812/hepatmon.115400
    [Google Scholar]
  18. GantumurD. HarimotoN. MuranushiR. HoshinoK. BatbayarC. HagiwaraK. YamanakaT. IshiiN. TsukagoshiM. IgarashiT. WatanabeA. KuboN. ArakiK. YokoboriT. AishimaS. ShirabeK. Hepatic stellate cell as a Mac-2-binding protein-producing cell in patients with liver fibrosis.Hepatol. Res.202151101058106310.1111/hepr.1364833877725
    [Google Scholar]
  19. KimuraY. TauraK. Hai NamN. UemotoY. YoshinoK. IkenoY. OkudaY. NishioT. YamamotoG. TanabeK. KoyamaY. AnazawaT. FukumitsuK. ItoT. YagiS. KamoN. SeoS. IwaisakoK. HataK. ImaiT. UemotoS. Utility of Mac-2 binding protein glycosylation isomer to evaluate graft status after liver transplantation.Liver Transpl.202127340341510.1002/lt.2587032780942
    [Google Scholar]
  20. BehairyO.G. El-GendyS.A. IbrahimD.Y. MansourA.I. El-ShimiO.S. Mac-2 binding protein glycan isomer as noninvasive tool to assess liver fibrosis in children with chronic liver disease.Hepatol. Res.202151327728310.1111/hepr.1360833393720
    [Google Scholar]
  21. MokhtareM. AbdiA. SadeghianA.M. SotoudeheianM. NamaziA. KhalighiS.M. Investigation about the correlation between the severity of metabolic-associated fatty liver disease and adherence to the Mediterranean diet.Clin. Nutr. ESPEN20235822122710.1016/j.clnesp.2023.10.00138057010
    [Google Scholar]
  22. MokhtareM. SadeghianA.M. SotoudeheianM. S1390 the accuracy and reliability of AST to platelet ratio index, FIB-4, FIB-5, and NAFLD fibrosis scores in detecting advanced fibrosis in patients with metabolic-associated fatty liver disease.Am. J. Gastroenterol.202311810SS1064S1065
    [Google Scholar]
  23. XianY.X. WengJ.P. XuF. MAFLD vs. NAFLD: Shared features and potential changes in epidemiology, pathophysiology, diagnosis, and pharmacotherapy.Chin. Med. J. (Engl.)2021134181910.1097/CM9.000000000000126333323806
    [Google Scholar]
  24. LinH. ZhangX. LiG. WongG.L.H. WongV.W.S. Epidemiology and clinical outcomes of metabolic (dysfunction)-associated fatty liver disease.J. Clin. Transl. Hepatol.20219697298210.14218/JCTH.2021.0020134966660
    [Google Scholar]
  25. LeMH YeoYH LiX LiJ ZouB WuY 2019 Global NAFLD Prevalence: A systematic review and meta-analysis.Clin Gastroenterol Hepatol2022201228092817
    [Google Scholar]
  26. VazK. Clayton-ChubbD. MajeedA. LubelJ. SimmonsD. KempW. RobertsS.K. Current understanding and future perspectives on the impact of changing NAFLD to MAFLD on global epidemiology and clinical outcomes.Hepatol. Int.20231751082109710.1007/s12072‑023‑10568‑z37556065
    [Google Scholar]
  27. LimG.E.H. TangA. NgC.H. ChinY.H. LimW.H. TanD.J.H. An observational data meta-analysis on the differences in prevalence and risk factors between MAFLD vs NAFLD.Clin. Gastroenterol. Hepatol.2023213619629.e710.1016/j.cgh.2021.11.038
    [Google Scholar]
  28. AyadaI. van KleefL.A. AlferinkL.J.M. LiP. de KnegtR.J. PanQ. Systematically comparing epidemiological and clinical features of MAFLD and NAFLD by meta-analysis: Focusing on the non-overlap groups.Liver Int.202242227728710.1111/liv.1513934953098
    [Google Scholar]
  29. KuchayM.S. ChoudharyN.S. MishraS.K. Pathophysiological mechanisms underlying MAFLD.Diabetes Metab. Syndr.20201461875188710.1016/j.dsx.2020.09.02632998095
    [Google Scholar]
  30. SchwärzlerJ. GrabherrF. GranderC. AdolphT.E. TilgH. The pathophysiology of MASLD: An immunometabolic perspective.Expert Rev. Clin. Immunol.202420437638638149354
    [Google Scholar]
  31. ZakariaZ. OthmanZ.A. SuleimanJ.B. CheJ.N.A. GhazaliW.S.W. NnaV.U. MohamedM. Hepatoprotective effect of bee bread in metabolic dysfunction-associated fatty liver disease (MAFLD) rats: Impact on oxidative stress and inflammation.Antioxidants20211012203110.3390/antiox1012203134943134
    [Google Scholar]
  32. Monserrat-MesquidaM. Quetglas-LlabrésM. AbbateM. MontemayorS. MascaróC.M. CasaresM. TejadaS. AbeteI. ZuletM.A. TurJ.A. MartínezJ.A. SuredaA. Oxidative stress and pro-inflammatory status in patients with non-alcoholic fatty liver disease.Antioxidants20209875910.3390/antiox908075932824349
    [Google Scholar]
  33. ClareK. DillonJ.F. BrennanP.N. Reactive oxygen species and oxidative stress in the pathogenesis of MAFLD.J. Clin. Transl. Hepatol.202210593994610.14218/JCTH.2022.0006736304513
    [Google Scholar]
  34. RuiF. YangH. HuX. XueQ. XuY. ShiJ. LiJ. Renaming NAFLD to MAFLD: Advantages and potential changes in diagnosis, pathophysiology, treatment, and management.Infect. Microbes Dis.202242495510.1097/IM9.0000000000000089
    [Google Scholar]
  35. RoebE. Excess body weight and metabolic (dysfunction)-associated fatty liver disease (MAFLD).Visc. Med.202137427328010.1159/00051544534540943
    [Google Scholar]
  36. JarvisH. CraigD. BarkerR. SpiersG. StowD. AnsteeQ.M. HanrattyB. Metabolic risk factors and incident advanced liver disease in non-alcoholic fatty liver disease (NAFLD): A systematic review and meta-analysis of population-based observational studies.PLoS Med.2020174e100310010.1371/journal.pmed.100310032353039
    [Google Scholar]
  37. LeeS.H. ParkS.Y. ChoiC.S. Insulin resistance: From mechanisms to therapeutic strategies.Diabetes Metab. J.2022461153710.4093/dmj.2021.028034965646
    [Google Scholar]
  38. AhmedB. SultanaR. GreeneM.W. Adipose tissue and insulin resistance in obese.Biomed. Pharmacother.202113711131510.1016/j.biopha.2021.11131533561645
    [Google Scholar]
  39. HeerenJ. SchejaL. Metabolic-associated fatty liver disease and lipoprotein metabolism.Mol. Metab.20215010123810.1016/j.molmet.2021.10123833892169
    [Google Scholar]
  40. RaoG. PengX. LiX. AnK. HeH. FuX. LiS. AnZ. Unmasking the enigma of lipid metabolism in metabolic dysfunction-associated steatotic liver disease: From mechanism to the clinic.Front. Med. (Lausanne)202310129426710.3389/fmed.2023.129426738089874
    [Google Scholar]
  41. LimS. KimJ.W. TargherG. Links between metabolic syndrome and metabolic dysfunction-associated fatty liver disease.Trends Endocrinol. Metab.202132750051410.1016/j.tem.2021.04.00833975804
    [Google Scholar]
  42. IsmaielA. DumitrascuD.L. Genetic predisposition in metabolic-dysfunction-associated fatty liver disease and cardiovascular outcomes—Systematic review.Eur. J. Clin. Invest.20205010e1333110.1111/eci.1333132589269
    [Google Scholar]
  43. EslamM. SanyalA.J. GeorgeJ. SanyalA. Neuschwander-TetriB. TiribelliC. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease.Gastroenterology2020158719992014.e110.1053/j.gastro.2019.11.312
    [Google Scholar]
  44. Kocas-KilicarslanZ.N. CetinZ. FaccioliL.A.P. MotomuraT. AmirneniS. Diaz-AragonR. FlorentinoR.M. SunY. Pla-PalacinI. XiaM. MiedelM.T. KuriharaT. HuZ. OstrowskaA. WangZ. ConstantineR. LiA. TaylorD.L. BehariJ. Soto-GutierrezA. TafalengE.N. Polymorphisms associated with metabolic dysfunction-associated steatotic liver disease influence the progression of end-stage liver disease.Gastro Hep Adv.202431677710.1016/j.gastha.2023.09.01138292457
    [Google Scholar]
  45. DheerajK. MisraR. BagriN. AggarwalA. KampaniG. Diagnostic performance of ultrasound in detecting hepatic steatosis in non-alcoholic fatty liver disease considering mri proton density fat fraction as the reference standard.J. Glob. Radiol.2024202410
    [Google Scholar]
  46. EbrahimzadehA. MohseniS. SafargarM. MohtashamianA. NiknamS. BakhodaM. AfshariS. JafariA. EbrahimzadehA. FooladshekanS. MohtashamiA. FernsG.A. BabajafariS. SohrabiZ. Curcumin effects on glycaemic indices, lipid profile, blood pressure, inflammatory markers and anthropometric measurements of non-alcoholic fatty liver disease patients: A systematic review and meta-analysis of randomized clinical trials.Complement. Ther. Med.20248010302510.1016/j.ctim.2024.10302538232906
    [Google Scholar]
  47. LiuM. GaoX. TianY. LiH. YinZ. HanL. ZhangL. Serum metrnl is decreased in metabolic dysfunction-associated fatty liver disease: A case-control study.Diabetes Metab. Syndr. Obes.20241753354310.2147/DMSO.S44712738318446
    [Google Scholar]
  48. RamaiD. FacciorussoA. VigandtE. SchafB. SaadedeenW. ChauhanA. di NunzioS. ShahA. GiacomelliL. SaccoR. Progressive liver fibrosis in non-alcoholic fatty liver disease.Cells20211012340110.3390/cells1012340134943908
    [Google Scholar]
  49. ParolaM. PinzaniM. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues.Mol. Aspects Med.201965375510.1016/j.mam.2018.09.00230213667
    [Google Scholar]
  50. Zuñiga-AguilarE. Ramírez-FernándezO. Fibrosis and hepatic regeneration mechanism.Transl. Gastroenterol. Hepatol.20227910.21037/tgh.2020.02.2135243118
    [Google Scholar]
  51. AbbeyP. Shalimar Nodular regenerative hyperplasia.Curr. Hepatol. Rep.202322318219210.1007/s11901‑023‑00613‑8
    [Google Scholar]
  52. SanyalA.J. CasteraL. WongV.W.S. Noninvasive assessment of liver fibrosis in NAFLD.Clin. Gastroenterol. Hepatol.20232182026203910.1016/j.cgh.2023.03.04237062495
    [Google Scholar]
  53. BinetQ. LoumayeA. PreumontV. ThissenJ-P. HermansM.P. LanthierN. Non-invasive screening, staging and management of metabolic dysfunction-associated fatty liver disease (MAFLD) in type 2 diabetes mellitus patients : What do we know so far?Acta Gastroenterol. Belg.202285234635710.51821/85.2.977535709779
    [Google Scholar]
  54. GuptaU. RuliT. ButtarD. ShoreibahM. GrayM. Metabolic dysfunction associated steatotic liver disease: Current practice, screening guidelines and management in the primary care setting.Am. J. Med. Sci.202337967750
    [Google Scholar]
  55. ZhangC.Y. YuanW.G. HeP. LeiJ.H. WangC.X. Liver fibrosis and hepatic stellate cells: Etiology, pathological hallmarks and therapeutic targets.World J. Gastroenterol.20162248105121052210.3748/wjg.v22.i48.1051228082803
    [Google Scholar]
  56. MoonA.M. SingalA.G. TapperE.B. Contemporary epidemiology of chronic liver disease and cirrhosis.Clin. Gastroenterol. Hepatol.202018122650266610.1016/j.cgh.2019.07.06031401364
    [Google Scholar]
  57. LimY.S. KimW.R. The global impact of hepatic fibrosis and end-stage liver disease.Clin. Liver Dis.2008124733746, vii10.1016/j.cld.2008.07.00718984463
    [Google Scholar]
  58. FogliaB. CannitoS. BoccaC. ParolaM. NovoE. ERK pathway in activated, myofibroblast-like, hepatic stellate cells: A critical signaling crossroad sustaining liver fibrosis.Int. J. Mol. Sci.20192011270010.3390/ijms2011270031159366
    [Google Scholar]
  59. KrenkelO. HundertmarkJ. RitzT. WeiskirchenR. TackeF. Single cell RNA sequencing identifies subsets of hepatic stellate cells and myofibroblasts in liver fibrosis.Cells20198550310.3390/cells805050331137713
    [Google Scholar]
  60. YangW. HeH. WangT. SuN. ZhangF. JiangK. ZhuJ. ZhangC. NiuK. WangL. YuanX. LiuN. LiL. WeiW. HuJ. Single-cell transcriptomic analysis reveals a hepatic stellate cell–activation roadmap and myofibroblast origin during liver fibrosis in mice.Hepatology20217452774279010.1002/hep.3198734089528
    [Google Scholar]
  61. Ramos-TovarE. MurielP. Molecular mechanisms that link oxidative stress, inflammation, and fibrosis in the liver.Antioxidants2020912127910.3390/antiox912127933333846
    [Google Scholar]
  62. BanerjeeP. GaddamN. ChandlerV. ChakrabortyS. Oxidative stress-induced liver damage and remodeling of the liver vasculature.Am. J. Pathol.2023193101400141410.1016/j.ajpath.2023.06.00237355037
    [Google Scholar]
  63. JuliánM.T. BallestaS. PeraG. Pérez-Montes de OcaA. SoldevilaB. CaballeríaL. MorillasR. ExpósitoC. Martínez-EscudéA. Puig-DomingoM. Franch-NadalJ. ToránP. CusiK. JulveJ. MauricioD. AlonsoN. Abdominal obesity and dsyglycemia are risk factors for liver fibrosis progression in NAFLD subjects: A population-based study.Front. Endocrinol. (Lausanne)202313105195810.3389/fendo.2022.105195836714592
    [Google Scholar]
  64. SohnW. KwonH.J. ChangY. RyuS. ChoY.K. Liver fibrosis in Asians with metabolic dysfunction–associated fatty liver disease.Clin. Gastroenterol. Hepatol.2022205e1135e114810.1016/j.cgh.2021.06.04234224877
    [Google Scholar]
  65. RoehlenN. CrouchetE. BaumertT.F. Liver fibrosis: Mechanistic concepts and therapeutic perspectives.Cells20209487510.3390/cells904087532260126
    [Google Scholar]
  66. WoodM.J. PowellL.W. RammG.A. Environmental and genetic modifiers of the progression to fibrosis and cirrhosis in hemochromatosis.Blood200811194456446210.1182/blood‑2007‑11‑12237418316631
    [Google Scholar]
  67. TackeF. WeiskirchenR. Non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH)-related liver fibrosis: Mechanisms, treatment and prevention.Ann. Transl. Med.20219872910.21037/atm‑20‑435433987427
    [Google Scholar]
  68. KumarS. DuanQ. WuR. HarrisE.N. SuQ. Pathophysiological communication between hepatocytes and non-parenchymal cells in liver injury from NAFLD to liver fibrosis.Adv. Drug Deliv. Rev.202117611386910.1016/j.addr.2021.11386934280515
    [Google Scholar]
  69. EslamM. El-SeragH.B. FrancqueS. SarinS.K. WeiL. BugianesiE. GeorgeJ. Metabolic (dysfunction)-associated fatty liver disease in individuals of normal weight.Nat. Rev. Gastroenterol. Hepatol.2022191063865110.1038/s41575‑022‑00635‑535710982
    [Google Scholar]
  70. Arroyave-OspinaJ.C. WuZ. GengY. MoshageH. Role of oxidative stress in the pathogenesis of non-alcoholic fatty liver disease: Implications for prevention and therapy.Antioxidants202110217410.3390/antiox1002017433530432
    [Google Scholar]
  71. HuiE. XuA. Bo YangH. LamK.S.L. Obesity as the common soil of non-alcoholic fatty liver disease and diabetes: Role of adipokines.J. Diabetes Investig.20134541342510.1111/jdi.1209324843689
    [Google Scholar]
  72. PanJ. DingY. SunY. LiQ. WeiT. GuY. ZhouY. PangN. PeiL. MaS. GaoM. XiaoY. HuD. WuF. YangL. Associations between adipokines and metabolic dysfunction-associated fatty liver disease using three different diagnostic criteria.J. Clin. Med.2023126212610.3390/jcm1206212636983127
    [Google Scholar]
  73. BertolaniC. MarraF. The role of adipokines in liver fibrosis.Pathophysiology20081529110110.1016/j.pathophys.2008.05.00118602801
    [Google Scholar]
  74. Maya-MilesD. AmpueroJ. Gallego-DuránR. DingiannaP. Romero-GómezM. Management of NAFLD patients with advanced fibrosis.Liver Int.202141S1Suppl. 19510410.1111/liv.1484734155801
    [Google Scholar]
  75. CarrieriP. MouradA. MarcellinF. TrylesinskiA. CallejaJ.L. ProtopopescuC. LazarusJ.V. Knowledge of liver fibrosis stage among adults with NAFLD / NASH improves adherence to lifestyle changes.Liver Int.202242598499410.1111/liv.1520935220673
    [Google Scholar]
  76. KaurN. GoyalG. GargR. TapasviC. ChawlaS. KaurR. Potential role of noninvasive biomarkers during liver fibrosis.World J. Hepatol.202113121919193510.4254/wjh.v13.i12.191935069998
    [Google Scholar]
  77. GinèsP. CasteraL. LammertF. GrauperaI. Serra-BurrielM. AllenA.M. WongV.W.S. HartmannP. ThieleM. CaballeriaL. de KnegtR.J. GrgurevicI. AugustinS. TsochatzisE.A. SchattenbergJ.M. GuhaI.N. MartiniA. MorillasR.M. Garcia-RetortilloM. de KoningH.J. FabrellasN. PichJ. MaA.T. DiazM.A. RoulotD. NewsomeP.N. MannsM. KamathP.S. KragA. Population screening for liver fibrosis: Toward early diagnosis and intervention for chronic liver diseases.Hepatology202275121922810.1002/hep.3216334537988
    [Google Scholar]
  78. ChowdhuryA.B. MehtaK.J. Liver biopsy for assessment of chronic liver diseases: A synopsis.Clin. Exp. Med.202223227328510.1007/s10238‑022‑00799‑z35192111
    [Google Scholar]
  79. LimT.S. KimJ.K. Is liver biopsy still useful in the era of non-invasive tests?Clin. Mol. Hepatol.202026330230410.3350/cmh.2020.008132646204
    [Google Scholar]
  80. ArjmandA. TsipourasM.G. TzallasA.T. ForlanoR. ManousouP. GiannakeasN. Quantification of liver fibrosis—A comparative study.Appl. Sci. (Basel)202010244710.3390/app10020447
    [Google Scholar]
  81. LiQ. ChenT. ShiN. YeW. YuanM. ShiY. Quantitative evaluation of hepatic fibrosis by fibro Scan and Gd-EOB-DTPA-enhanced T1 mapping magnetic resonance imaging in chronic hepatitis B.Abdom. Radiol. (N.Y.)202247268469210.1007/s00261‑021‑03300‑834825269
    [Google Scholar]
  82. FuF. LiX. ChenC. BaiY. LiuQ. ShiD. SangJ. WangK. WangM. Non-invasive assessment of hepatic fibrosis: Comparison of MR elastography to transient elastography and intravoxel incoherent motion diffusion-weighted MRI.Abdom. Radiol. (N.Y.)2020451738210.1007/s00261‑019‑02140‑x31372777
    [Google Scholar]
  83. ForsgrenM.F. NasrP. KarlssonM. DahlströmN. NorénB. IgnatovaS. SinkusR. CedersundG. LeinhardO.D. EkstedtM. KechagiasS. LundbergP. Biomarkers of liver fibrosis: Prospective comparison of multimodal magnetic resonance, serum algorithms and transient elastography.Scand. J. Gastroenterol.202055784885910.1080/00365521.2020.178659932684060
    [Google Scholar]
  84. KromreyM.L. Le BihanD. IchikawaS. MotosugiU. Diffusion-weighted MRI-based virtual elastography for the assessment of liver fibrosis.Radiology2020295112713510.1148/radiol.202019149832043948
    [Google Scholar]
  85. GheorgheG. BungăuS. CeobanuG. IlieM. BacalbaşaN. BratuO.G. VesaC.M. GămanM.A. DiaconuC.C. The non-invasive assessment of hepatic fibrosis.J. Formos. Med. Assoc.2021120279480310.1016/j.jfma.2020.08.01932861550
    [Google Scholar]
  86. AnushiravaniA. AlswatK. DalekosG.N. ZachouK. ÖrmeciN. Al-BusafiS. AbdoA. SanaiF. MikhailN.N.H. SolimanR. ShihaG. Multicenter validation of FIB-6 as a novel machine learning non-invasive score to rule out liver cirrhosis in biopsy-proven MAFLD.Eur. J. Gastroenterol. Hepatol.202335111284128810.1097/MEG.000000000000264137695595
    [Google Scholar]
  87. PrasoppokakornT. ChanW.K. WongV.W.S. PitisuttithumP. MahadevaS. Nik MustaphaN.R. WongG.L.H. LeungH.H.W. SripongpunP. TreeprasertsukS. Validation model of fibrosis-8 index score to predict significant fibrosis among patients with nonalcoholic fatty liver disease.World J. Gastroenterol.202228151563157310.3748/wjg.v28.i15.156335582126
    [Google Scholar]
  88. CianciN. SubhaniM. HillT. KhannaA. ZhengD. ShethA. CrooksC. AithalG.P. Prognostic non-invasive biomarkers for all-cause mortality in non-alcoholic fatty liver disease: A systematic review and meta-analysis.World J. Hepatol.20221451025103710.4254/wjh.v14.i5.102535721296
    [Google Scholar]
  89. SunC. GohG.B-B. ChowW-C. ChanW-K. WongG.L-H. SetoW-K. Prevalence and risk factors for impaired renal function among Asian patients with nonalcoholic fatty liver disease.Hepatobiliary Pancreat. Dis. Int.202323324124837620227
    [Google Scholar]
  90. SebastianiG. Serum biomarkers for the non-invasive diagnosis of liver fibrosis: The importance of being validated.Clin. Chem. Lab. Med.2012504595597
    [Google Scholar]
  91. LiuT. WangX. KarsdalM.A. LeemingD.J. GenoveseF. Molecular serum markers of liver fibrosis.Biomark Insights2012710511710.4137/BMI.S10009
    [Google Scholar]
  92. ChenZ. MaY. CaiJ. SunM. ZengL. WuF. ZhangY. HuM. Serum biomarkers for liver fibrosis.Clin. Chim. Acta2022537162510.1016/j.cca.2022.09.02236174721
    [Google Scholar]
  93. SotoudeheianM. Galectin-3 and severity of liver fibrosis in metabolic dysfunction-associated fatty liver disease.Protein Pept. Lett.20243111438715329
    [Google Scholar]
  94. AdamsL.A. Biomarkers of liver fibrosis.J. Gastroenterol. Hepatol.201126580280910.1111/j.1440‑1746.2010.06612.x21198831
    [Google Scholar]
  95. YoshijiH. KuriyamaS. MiyamotoY. ThorgeirssonU.P. GomezD.E. KawataM. YoshiiJ. IkenakaY. NoguchiR. TsujinoueH. NakataniT. ThorgeirssonS.S. FukuiH. Tissue inhibitor of metalloproteinases-1 promotes liver fibrosis development in a transgenic mouse model.Hepatology20003261248125410.1053/jhep.2000.2052111093731
    [Google Scholar]
  96. LidburyJ.A. HoffmannA.R. FryJ.K. SuchodolskiJ.S. SteinerJ.M. Evaluation of hyaluronic acid, procollagen type III N-terminal peptide, and tissue inhibitor of matrix metalloproteinase-1 as serum markers of canine hepatic fibrosis.Can. J. Vet. Res.201680430230827733785
    [Google Scholar]
  97. FoschiF.G. DomenicaliM. GiacomoniP. Dall’AglioA.C. ContiF. BorghiA. BevilacquaV. NapoliL. MiriciF. CucchettiA. ErcolaniG. GardiniA.C. BellentaniS. GastaldelliA. GiuffrèM. TiribelliC. BedogniG. Is there an association between commonly employed biomarkers of liver fibrosis and liver stiffness in the general population?Ann. Hepatol.202019438038710.1016/j.aohep.2020.04.00332451205
    [Google Scholar]
  98. ReinsonT. BuchananR.M. ByrneC.D. Noninvasive serum biomarkers for liver fibrosis in NAFLD: Current and future.Clin. Mol. Hepatol.202329Suppl.S157S17010.3350/cmh.2022.034836417894
    [Google Scholar]
  99. JosephJ. Serum marker panels for predicting liver fibrosis–An update.Clin. Biochem. Rev.2020412677332518428
    [Google Scholar]
  100. Di MauroS. ScamporrinoA. FilippelloA. Di PinoA. ScicaliR. MalaguarneraR. PurrelloF. PiroS. Clinical and molecular biomarkers for diagnosis and staging of NAFLD.Int. J. Mol. Sci.202122211190510.3390/ijms22211190534769333
    [Google Scholar]
  101. Cardoso-LezamaI. Ramos-TovarE. Arellanes-RobledoJ. Vargas-PozadaE.E. Vásquez-GarzónV.R. Villa-TreviñoS. MurielP. Serum α-SMA is a potential noninvasive biomarker of liver fibrosis.Toxicol. Mech. Methods2024341131910.1080/15376516.2023.224406137528633
    [Google Scholar]
  102. StefanoJ.T. GuedesL.V. de SouzaA.A.A. VanniD.S. AlvesV.A.F. CarrilhoF.J. LarguraA. ArreseM. OliveiraC.P. Usefulness of collagen type IV in the detection of significant liver fibrosis in nonalcoholic fatty liver disease.Ann. Hepatol.20212010025310.1016/j.aohep.2020.08.07032949785
    [Google Scholar]
  103. CaussyC. ChuangJ.C. BillinA. HuT. WangY. SubramanianG.M. DjedjosC.S. MyersR.P. DennisE.A. LoombaR. Plasma eicosanoids as noninvasive biomarkers of liver fibrosis in patients with nonalcoholic steatohepatitis.Therap. Adv. Gastroenterol.20201310.1177/175628482092390432523627
    [Google Scholar]
  104. TamakiN. KurosakiM. LoombaR. IzumiN. Clinical utility of Mac-2 binding protein glycosylation isomer in chronic liver diseases.Ann. Lab. Med.2021411162410.3343/alm.2021.41.1.1632829576
    [Google Scholar]
  105. EzhilarasanD. Unraveling the pathophysiologic role of galectin-3 in chronically injured liver.J. Cell. Physiol.2023238467368610.1002/jcp.3095636745560
    [Google Scholar]
  106. ParkH. JunD.W. ParkH.K. KimM. Clinical implications of serum Mac-2-binding protein glycan isomer as a novel biomarker of advanced hepatic fibrosis in diabetes.Ann. Transl. Med.2020823158310.21037/atm‑20‑521633437782
    [Google Scholar]
  107. KongF. DongR. ChenG. SunS. YangY. JiangJ. MengL. ChenH. ZhuJ. ZhengS. Progress in biomarkers related to biliary atresia.J. Clin. Transl. Hepatol.202400000000010.14218/JCTH.2023.0026038426193
    [Google Scholar]
  108. LiuC.H. LiuC.J. SuT.H. HuangS.C. TsengT.C. WuJ.H. ChenP.J. KaoJ.H. Serum Mac-2 binding protein glycosylation isomer to predict the severity of hepatic fibrosis in patients with hepatitis C virus infection.Diagnostics (Basel)20221211265010.3390/diagnostics1211265036359492
    [Google Scholar]
  109. NahE.H. ChoiY.J. ChoS. ParkH. KimS. KwonE. ChoH.I. Changes in nonalcoholic fatty liver disease and M2BPGi due to lifestyle intervention in primary healthcare.PLoS One2024192e029815110.1371/journal.pone.029815138421976
    [Google Scholar]
  110. KamadaY. MorishitaK. KosekiM. NishidaM. AsukaT. NaitoY. YamadaM. TakamatsuS. SakataY. TakeharaT. MiyoshiE. Serum Mac-2 binding protein levels associate with metabolic parameters and predict liver fibrosis progression in subjects with fatty liver disease: A 7-year longitudinal study.Nutrients2020126177010.3390/nu1206177032545650
    [Google Scholar]
  111. SalehS.A. SalamaM.M. AlhusseiniM.M. MohamedG.A. M2BPGi for assessing liver fibrosis in patients with hepatitis C treated with direct-acting antivirals.World J. Gastroenterol.202026212864287610.3748/wjg.v26.i21.286432550761
    [Google Scholar]
  112. ZhuM.Y. ChenP.Z. LiJ. YuD.M. HuangD. ZhuX.J. HanY. ChenJ. HuangW. ChenY.Y. GongQ.M. JiangJ.H. ZhangD.H. ZhangY. ZhangJ.M. ZhangX.X. Serum M2BPGi level is a novel predictive biomarker for the responses to pegylated interferon-α treatment in HBeAg-positive chronic hepatitis B patients.J. Med. Virol.201890472172910.1002/jmv.2501029247529
    [Google Scholar]
  113. TangvoraphonkchaiK. SuttichaimongkolT. KularbkaewC. SangaimwiboolP. SukeepaisarnjaroenW. Application of Mac-2 binding protein glycosylation isomer as a non-invasive biomarker for probing liver disease.Sci. Rep.2022121675710.1038/s41598‑022‑10744‑535474106
    [Google Scholar]
  114. BellanM. CastelloL.M. PirisiM. Candidate biomarkers of liver fibrosis: A concise, pathophysiology-oriented review.J. Clin. Transl. Hepatol.2018631910.14218/JCTH.2018.0000630271745
    [Google Scholar]
  115. UojimaH. YamasakiK. SugiyamaM. KageM. IshiiN. ShirabeK. New quantitative measurement system for M2BPGi reveals liver inflammation complicates liver cirrhosis diagnosis.Preprint202310.21203/rs.3.rs‑3781087/v1
    [Google Scholar]
  116. ShirabeK. BekkiY. GantumurD. ArakiK. IshiiN. KunoA. NarimatsuH. MizokamiM. Mac-2 binding protein glycan isomer (M2BPGi) is a new serum biomarker for assessing liver fibrosis: More than a biomarker of liver fibrosis.J. Gastroenterol.201853781982610.1007/s00535‑017‑1425‑z29318378
    [Google Scholar]
  117. YamadaN. KatanoT. HirataY. OkadaN. SanadaY. IharaY. UrahashiT. UshijimaK. KarasawaT. TakahashiM. MizutaK. Serum Mac-2 binding protein glycosylation isomer predicts the activation of hepatic stellate cells after liver transplantation.J. Gastroenterol. Hepatol.201934241842410.1111/jgh.1443830101431
    [Google Scholar]
  118. ChengD. ChaiJ. WangH. FuL. PengS. NiX. Hepatic macrophages: Key players in the development and progression of liver fibrosis.Liver Int.202141102279229410.1111/liv.1494033966318
    [Google Scholar]
  119. YasuiY. AbeT. KurosakiM. MatsunagaK. HiguchiM. TamakiN. WatakabeK. OkadaM. WangW. ShimizuT. TakauraK. MasugiY. NakanishiH. TsuchiyaK. TakahashiY. ItakuraJ. SakuraiU. HashiguchiA. SakamotoM. IzumiN. Non-invasive liver fibrosis assessment correlates with collagen and elastic fiber quantity in patients with hepatitis C virus infection.Hepatol. Res.2019491334110.1111/hepr.1328630419152
    [Google Scholar]
  120. WuP.-S. HsiehY.-C. LeeP.-C. YangT.-C. ChenY.-J. YangY.-Y. Mac-2 binding protein glycosylation isomer to albumin ratio predicts bacterial infections in cirrhotic patients.Dig Dis202442216617710.1159/000535325
    [Google Scholar]
  121. ParkH. JunD.W. ParkH.K. ParkK.Y. HwangH.S. New sequential algorithm using Mac-2 binding protein glycosylation isomer to detect advanced carotid artery atherosclerosis.Ann. Transl. Med.20219756610.21037/atm‑20‑721933987264
    [Google Scholar]
  122. Maroto-GarcíaJ. Moreno ÁlvarezA. Sanz de PedroM.P. Buño-SotoA. GonzálezÁ. Serum biomarkers for liver fibrosis assessment.Adv Lab Med20232023008110.1515/almed‑2023‑0081
    [Google Scholar]
  123. DolgormaaG. HarimotoN. IshiiN. YamanakaT. HagiwaraK. TsukagoshiM. IgarashiT. WatanabeA. KuboN. ArakiK. HandaT. YokoboriT. OyamaT. KuwanoH. ShirabeK. Mac-2-binding protein glycan isomer enhances the aggressiveness of hepatocellular carcinoma by activating mTOR signaling.Br. J. Cancer202012371145115310.1038/s41416‑020‑0971‑y32624579
    [Google Scholar]
  124. HagiwaraK. HarimotoN. YamanakaT. IshiiN. YokoboriT. TsukagoshiM. WatanabeA. ArakiK. YoshizumiT. ShirabeK. A new liver regeneration molecular mechanism involving hepatic stellate cells, Kupffer cells, and glucose-regulated protein 78 as a new hepatotrophic factor.J. Hepatobiliary Pancreat. Sci.202330216517610.1002/jhbp.118335586893
    [Google Scholar]
  125. SmirneC CroceE Di BenedettoD CantaluppiV ComiC SainaghiP Oxidative stress in non-alcoholic fatty liver disease.Livers202221307610.3390/livers2010003
    [Google Scholar]
  126. SugiuraT. DohiY. TakaseH. YamashitaS. TsuzukiY. OgawaS. TanakaY. OhteN. Factors associated with longitudinal changes in serum concentrations of Mac-2 binding protein: A prospective 3-year observational study.Nutr. Metab. Cardiovasc. Dis.201929121337134410.1016/j.numecd.2019.08.00831653515
    [Google Scholar]
  127. InomataS. MoriharaD. AnanA. YamauchiE. YamauchiR. TakataK. TanakaT. YokoyamaK. TakeyamaY. IrieM. ShakadoS. SohdaT. SakisakaS. HiraiF. Male-specific association between iron and lipid metabolism changes and erythroferrone after hepatitis C virus eradication.Intern. Med.202261446146710.2169/internalmedicine.7172‑2134433710
    [Google Scholar]
  128. HimotoT. Diet and nutrition for hepatitis.Nutrients.20211341210
    [Google Scholar]
  129. KamadaY. MiyoshiE. Liver fibrosis and glyco-biomarkers.Glycoforum.202023A1
    [Google Scholar]
  130. PhamT.T.T. HoD.T. NguyenT. Usefulness of Mac-2 binding protein glycosylation isomer in non-invasive probing liver disease in the Vietnamese population.World J. Hepatol.202012521021910.4254/wjh.v12.i5.21032547689
    [Google Scholar]
  131. MoonS.Y. BaekY.H. JangS.Y. JunD.W. YoonK.T. ChoY.Y. Proposal of a novel serological algorithm combining FIB-4 and serum M2BPGi for advanced fibrosis in nonalcoholic fatty liver disease.Gut Liver202318228337574956
    [Google Scholar]
  132. BuiH.H. NguyenS.T.B. PhanS.T. NguyenK.M. NguyenC.D. Evaluating M2BPGi as a marker for liver fibrosis in patients with chronic hepatitis B.Dig. Dis. Sci.202368124407441710.1007/s10620‑023‑08143‑537861877
    [Google Scholar]
  133. TsujiY. NamisakiT. KajiK. TakayaH. NakanishiK. SatoS. SaikawaS. SawadaY. KitagawaK. ShimozatoN. KawarataniH. MoriyaK. NoguchiR. AkahaneT. MitoroA. YoshijiH. Comparison of serum fibrosis biomarkers for diagnosing significant liver fibrosis in patients with chronic hepatitis B.Exp. Ther. Med.202020298599510.3892/etm.2020.879832765655
    [Google Scholar]
  134. UmemuraT JoshitaS SekiguchiT UsamiY ShibataS KimuraT Serum Wisteria floribunda agglutinin-positive Mac-2-binding protein level predicts liver fibrosis and prognosis in primary biliary cirrhosis.J. Gastroenterol. Hepatol.201532121922193010.1038/ajg.2015.118
    [Google Scholar]
  135. NahE.H. ChoS. KimS. KimH.S. ChoH.I. Diagnostic performance of Mac-2 binding protein glycosylation isomer (M2BPGi) in screening liver fibrosis in health checkups.J. Clin. Lab. Anal.2020348e2331610.1002/jcla.2331632227396
    [Google Scholar]
  136. ParkH.J. SeoK.I. LeeS.U. HanB.H. YunB.C. ParkE.T. LeeJ. HwangH. YoonM. Clinical usefulness of Mac-2 binding protein glycosylation isomer for diagnosing liver cirrhosis and significant fibrosis in patients with chronic liver disease: A retrospective single-center study.Medicine (Baltimore)202210140e3048910.1097/MD.000000000003048936221351
    [Google Scholar]
  137. MakL.Y. WongD.K.H. CheungK.S. SetoW.K. LaiC.L. YuenM.F. Role of serum M2BPGi levels on diagnosing significant liver fibrosis and cirrhosis in treated patients with chronic hepatitis B virus infection.Clin. Transl. Gastroenterol.201896e16310.1038/s41424‑018‑0020‑929915243
    [Google Scholar]
  138. XuH. KongW. LiuL. ChiX. WangX. WuR. GaoX. WangH. QuL. QiY. PanY. NiuJ. Accuracy of M2BPGi, compared with Fibro Scan®, in analysis of liver fibrosis in patients with hepatitis C.BMC Gastroenterol.20171716210.1186/s12876‑017‑0618‑528486931
    [Google Scholar]
  139. ChengY.M. WangC.C. Comparison of Mac-2 binding protein glycosylation isomer (M2BPGi) with AST to platelet ratio index (APRI), fibrosis 4 Score (FIB-4), and nonalcoholic fatty liver disease (NAFLD) fibrosis score (NFS) for NAFLD patients.Adv. Dig. Med.2023102879510.1002/aid2.13315
    [Google Scholar]
  140. TamakiN. KurosakiM. HuangD.Q. LoombaR. Noninvasive assessment of liver fibrosis and its clinical significance in nonalcoholic fatty liver disease.Hepatol. Res.202252649750710.1111/hepr.1376435352460
    [Google Scholar]
  141. KimM. JunD.W. ParkH. KangB.K. SumidaY. Sequential combination of FIB-4 followed by M2BPGi enhanced diagnostic performance for advanced hepatic fibrosis in an average risk population.J. Clin. Med.202094111910.3390/jcm904111932295166
    [Google Scholar]
  142. MiuraK. MaedaH. MorimotoN. WatanabeS. TsukuiM. TakaokaY. NomotoH. GokaR. KotaniK. YamamotoH. Utility of FibroScan-based scoring systems to narrow the risk group of nonalcoholic fatty liver disease with comorbidities.World J. Gastrointest. Pathophysiol.20221339610610.4291/wjgp.v13.i3.9635720167
    [Google Scholar]
  143. KwonY. KimE.S. ChoeY.H. KimM.J. Stratification by non-invasive biomarkers of non-alcoholic fatty liver disease in children.Front Pediatr.20221084627310.3389/fped.2022.84627335444966
    [Google Scholar]
  144. SekoY. TakahashiH. ToyodaH. HayashiH. YamaguchiK. IwakiM. YonedaM. AraiT. ShimaT. FujiiH. MorishitaA. KawataK. TomitaK. KawanakaM. YoshidaY. IkegamiT. NotsumataK. OedaS. KamadaY. SumidaY. FukushimaH. MiyoshiE. AishimaS. OkanoueT. NakajimaA. ItohY. Diagnostic accuracy of enhanced liver fibrosis test for nonalcoholic steatohepatitis-related fibrosis: Multicenter study.Hepatol. Res.202353431232110.1111/hepr.1387136524984
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037315931240618085529
Loading
/content/journals/cpps/10.2174/0113892037315931240618085529
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test