Skip to content
2000
Volume 26, Issue 1
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

Background

spp. are a great source of bioactive molecules. The production and recovery of bioactive molecules vary according to strain, growth substrate, and extraction solution. Variations in protease and their inhibitors in basidiomata from a commercial strain (. ) and an Amazonian isolate ( sp.) cultivated in Amazonian lignocellulosic wastes and extracted with different solutions are plausible and were investigated in our study.

Methods

Basidiomata from cultivation in substrates based on açaí seed, guaruba-cedro sawdust and three lots of marupá sawdust were submitted to extraction in water, Tris-HCl, and sodium phosphate. Protein content, proteases, and protease inhibitors were estimated through different assays. The samples were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR).

Results

Tris-HCl provided higher protein extraction from sp. and higher caseinolytic, gelatinolytic, and fibrinolytic activity for . cultivated in açaí. Water extracts of sp., in general, exhibited higher trypsin and papain inhibitor activities compared to . . Extracts in Tris-HCl and sodium phosphate showed more intense protein bands in SDS-PAGE, highlighting bands of molecular weights around 100, 50, and 30 kDa. FTIR spectra showed patterns for proteins in all extracts, with variation in transmittance according to substrate and extractor.

Conclusion

Water extract from Amazonian sp. cultivated in marupá wastes are promising as a source of protease inhibitors, while the Tris-HCL extract of . from açaí cultivation stands out as a source of proteases with fibrinolytic, caseinolytic, and gelatinolytic activities.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037297181240605112831
2024-06-24
2024-12-30
Loading full text...

Full text loading...

References

  1. WińskaK. MączkaW. GabryelskaK. GrabarczykM. Mushrooms of the genus Ganoderma used to treat diabetes and insulin resistance.Molecules20192422407510.3390/molecules2422407531717970
    [Google Scholar]
  2. WangL. LiJ. ZhangJ. LiZ. LiuH. WangY. Traditional uses, chemical components and pharmacological activities of the genus Ganoderma P. Karst.: A review.RSC Advances20201069420844209710.1039/D0RA07219B35516772
    [Google Scholar]
  3. CaoY. WuS.H. DaiY.C. Species clarification of the prize medicinal Ganoderma mushroom “Lingzhi”.Fungal Divers.2012561496210.1007/s13225‑012‑0178‑5
    [Google Scholar]
  4. KumarA. Ganoderma Lucidum: A traditional chinese medicine used for curing tumors.Int. J. Pharm. Pharm. Sci.20211311310.22159/ijpps.2021v13i3.40614
    [Google Scholar]
  5. ChafouzR. KaravergouS. TsiftsoglouO.S. MaskovicP. LazariD. Ganoderma adspersum (Ganodermataceae): Investigation of its secondary metabolites and the antioxidant, antimicrobial, and cytotoxic potential of its extracts.Int. J. Mol. Sci.202325151610.3390/ijms2501051638203687
    [Google Scholar]
  6. KumakuraK. HoriC. MatsuokaH. IgarashiK. SamejimaM. Protein components of water extracts from fruiting bodies of the reishi mushroom Ganoderma lucidum contribute to the production of functional molecules.J. Sci. Food Agric.201999252953510.1002/jsfa.921129931755
    [Google Scholar]
  7. NaveedM. NadeemF. MehmoodT. BilalM. AnwarZ. AmjadF. Protease a versatile and ecofriendly biocatalyst with multi- industrial applications: An updated review.Catal. Lett.2021151230732310.1007/s10562‑020‑03316‑7
    [Google Scholar]
  8. ShankarR. UpadhyayP.K. KumarM. Protease enzymes: Highlights on potential of proteases as therapeutics agents.Int. J. Pept. Res. Ther.20212721281129610.1007/s10989‑021‑10167‑2
    [Google Scholar]
  9. LiL.D. MaoP.W. ShaoK.D. BaiX.H. ZhouX.W. Ganoderma proteins and their potential applications in cosmetics.Appl. Microbiol. Biotechnol.201910323-249239925010.1007/s00253‑019‑10171‑z31659419
    [Google Scholar]
  10. SousaA.S. Araújo-RodriguesH. PintadoM.E. The health-promoting potential of edible mushroom proteins.Curr. Pharm. Des.2023291180482310.2174/138161282966622122310375636567303
    [Google Scholar]
  11. PessoaV.A. SoaresL.B.N. SilvaG.L. VasconcelosA.S. SilvaJ.F. FariñaJ.I. Oliveira-JuniorS.D. Sales-CamposC. ChevreuilL.R. Production of mycelial biomass, proteases and protease inhibitors by Ganoderma lucidum under different submerged fermentation conditions.Braz. J. Biol.202383e27031610.1590/1519‑6984.27031637162094
    [Google Scholar]
  12. PetragliaT. LatronicoT. LiuzziG.M. FanigliuloA. CrescenziA. RossanoR. Edible mushrooms as source of fibrin (ogen) olytic enzymes: Comparison between four cultivated species.Molecules20222723814510.3390/molecules2723814536500238
    [Google Scholar]
  13. HazareC. BhagwatP. SinghS. PillaiS. Diverse origins of fibrinolytic enzymes: A comprehensive review.Heliyon2024105e2666810.1016/j.heliyon.2024.e2666838434287
    [Google Scholar]
  14. ColeE.R. MertzE.T. Studies on plasminogen. II. A comparison of the esterolytic, caseinolytic, and fibrinolytic activities of bovine and human plasminogen.Can. J. Biochem. Physiol.196139121911191910.1139/o61‑21113880416
    [Google Scholar]
  15. MoserK.M. FreyM.B. Comparison of caseinolytic and fibrinolytic assays for plasmin (fibrinolysin) in “fibrinolytic agents”.Thromb. Haemost.19661501/0225227210.1055/s‑0038‑16494264224094
    [Google Scholar]
  16. SabotičJ. KosJ. Fungal protease inhibitors. Fungal metabolites: reference series in phytochemistry.ChamSpringer2015133
    [Google Scholar]
  17. Gutierrez-GongoraD. Geddes-McAlisterJ. From naturally sourced protease inhibitors to new treatments for fungal infections.J. Fungi2021712101610.3390/jof712101634946998
    [Google Scholar]
  18. WuS. ZhangS. PengB. TanD. WuM. WeiJ. WangY. LuoH. Ganoderma lucidum : A comprehensive review of phytochemistry, efficacy, safety and clinical study.Food Sci. Hum. Wellness202413256859610.26599/FSHW.2022.9250051
    [Google Scholar]
  19. RautJ.K. Mushroom: a potent source of natural antiviral drugs.Appl. Sci. Technol. Annals202011819110.3126/asta.v1i1.30277
    [Google Scholar]
  20. ZhangY. ZhangG. LingJ. Medicinal fungi with antiviral effect.Molecules20222714445710.3390/molecules2714445735889330
    [Google Scholar]
  21. EkizE. OzE. Abd El-AtyA. ProestosC. BrennanC. ZengM. TomasevicI. ElobeidT. ÇadırcıK. BayrakM. OzF. Exploring the potential medicinal benefits of Ganoderma lucidum: From metabolic disorders to coronavirus infections.Foods20231271512153210.3390/foods1207151237048331
    [Google Scholar]
  22. SevindikM. BalC. EraslanE.C. Uysalİ. MohammedF.S. Medicinal mushrooms: a comprehensive study on their antiviral potential.Prosp. Pharm. Sci.2023212425610.56782/pps.141
    [Google Scholar]
  23. ZervakisG.I. KoutrotsiosG. Solid-state fermentation of plant residues and agro-industrial wastes for the production of medicinal mushrooms.Med. Aromatic Plants of the World2017436539610.1007/978‑981‑10‑5978‑0_12
    [Google Scholar]
  24. GrimmD. WöstenH.A.B. Mushroom cultivation in the circular economy.Appl. Microbiol. Biotechnol.2018102187795780310.1007/s00253‑018‑9226‑830027491
    [Google Scholar]
  25. AntunesF. MarçalS. TaofiqO. MoraisA.M.M.B. FreitasA.C. FerreiraI.C.F.R. PintadoM. Valorization of mushroom by-products as a source of value-added compounds and potential applications.Molecules20202511267210.3390/molecules2511267232526879
    [Google Scholar]
  26. PilafidisS. DiamantopoulouP. GkatzionisK. SarrisD. Valorization of agro-industrial wastes and residues through the production of bioactive compounds by macrofungi in liquid state cultures: Growing circular economy.Appl. Sci.202212221142610.3390/app122211426
    [Google Scholar]
  27. PessoaV.A. Análises química e quimiométrica de linhagens comerciais e amazônicas de Pleurotus ostreatus, Ganoderma lucidum e G. tropicum visando inibidores proteolíticos, com ênfase na protease do HIV-1.ManausUniversidade do Estado do Amazonas2022
    [Google Scholar]
  28. GouvêaP.R.S. SoaresL.B.N. PessoaV.A. Oliveira-JúniorS.D. AguiarL.V.B. ChevreuilL.R. Sales-CamposC. Amazonian residue effect on the production and centesimal composition of Ganoderma spp.Int. J. Agric. Biol.2024312778310.17957/IJAB/15.2117
    [Google Scholar]
  29. ĆilerdžićJ. StajićM. VukojevićJ. Degradation of wheat straw and oak sawdust by Ganoderma applanatum. Int. Biodeterior. Biodegradation2016114394410.1016/j.ibiod.2016.05.024
    [Google Scholar]
  30. ZhouX.W. SuK.Q. ZhangY.M. Applied modern biotechnology for cultivation of Ganoderma and development of their products.Appl. Microbiol. Biotechnol.201293394196310.1007/s00253‑011‑3780‑722170106
    [Google Scholar]
  31. Sułkowska-ZiajaK. BalikM. SzczepkowskiA. TrepaM. ZenginG. KałaK. MuszyńskaB. A review of chemical composition and bioactivity studies of the most promising species of Ganoderma spp.Diversity202315888210.3390/d15080882
    [Google Scholar]
  32. Al-ObaidiJ.R. SaidiN.B. UsuldinS.R.A. HussinS.N.I.S. YusoffN.M. IdrisA.S. Comparison of different protein extraction methods for gel-based proteomic analysis of Ganoderma spp.Protein J.201635210010610.1007/s10930‑016‑9656‑z27016942
    [Google Scholar]
  33. Roselló-SotoE. ParniakovO. DengQ. PatrasA. KoubaaM. GrimiN. BoussettaN. TiwariB.K. VorobievE. LebovkaN. BarbaF.J. Application of non-conventional extraction methods: Toward a sustainable and green production of valuable compounds from mushrooms.Food Eng. Rev.20168221423410.1007/s12393‑015‑9131‑1
    [Google Scholar]
  34. BohB. Ganoderma lucidum: A potential for biotechnological production of anti-cancer and immunomodulatory drugs.Recent Patents Anticancer Drug Discov.20138325528710.2174/1574891X11308999003623227951
    [Google Scholar]
  35. KumaranS. PalaniP. ChellaramC. AnandaT.P. KaviyarasanV. Screening of fibrinolytic protease from South Indian isolates of Ganoderma lucidum. Int. J. Pharma Bio Sci.201121419431
    [Google Scholar]
  36. PannuruP. RaniA. VenkatesuP. LeeM.J. The effects of biological buffers TRIS, TAPS, TES on the stability of lysozyme.Int. J. Biol. Macromol.201811272072710.1016/j.ijbiomac.2018.01.20329425867
    [Google Scholar]
  37. RenL. HemarY. PereraC.O. LewisG. KrissansenG.W. BuchananP.K. Antibacterial and antioxidant activities of aqueous extracts of eight edible mushrooms.Bioactive Carbohydrates and Dietary Fibre201432415110.1016/j.bcdf.2014.01.003
    [Google Scholar]
  38. GuoQ. LiangS. XiaoZ. GeC. Research progress on extraction technology and biological activity of polysaccharides from Edible Fungi: A review.Food Rev. Int.20233984909494010.1080/87559129.2022.2039182
    [Google Scholar]
  39. SalvatoreM.M. De GregorioV. GalloM. CorsaroM.M. CasilloA. VecchioneR. AndolfiA. NaviglioD. NettiP.A. Evaluation of two extraction methods for the analysis of hydrophilic low molecular weight compounds from Ganoderma lucidum spores and antiproliferative activity on human cell lines.Appl. Sci.20201011403310.3390/app10114033
    [Google Scholar]
  40. YueY. ZhouS. ChengC. TengL. ZhangJ. CuiB. HanW. DaiY. FengN. Determination and chemotaxonomic analysis of lanostane triterpenoids in the mycelia of Ganoderma spp. using ultra-performance liquid chromatography-tandem mass spectrometry (I).Planta Med.202389151505151410.1055/a‑2143‑835737579776
    [Google Scholar]
  41. DuZ. LiY. WangX.C. WangK. YaoY.J. Re-examination of the holotype of Ganoderma sichuanense (Ganodermataceae, Polyporales ) and a clarification of the identity of Chinese cultivated Lingzhi.J. Fungi20239332310.3390/jof903032336983491
    [Google Scholar]
  42. GouvêaP.R.S. Oliveira JúniorS.D. PessoaV.A. CostaC.L.S.C. Sales-CamposC. ChevreuilL.R. Agro-wastes bioconvertion by an Amazonian isolate of Ganoderma sp. and a commercial strain of Ganoderma lingzhi. Biocatal. Agric. Biotechnol.20235410295910.1016/j.bcab.2023.102959
    [Google Scholar]
  43. BradfordM.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem.1976721-224825410.1016/0003‑2697(76)90527‑3942051
    [Google Scholar]
  44. RovatiJ.I. DelgadoO.D. FigueroaL.I.C. FariñaJ.I. A novel source of fibrinolytic activity: Bionectria sp., an unconventional enzyme-producing fungus isolated from Las Yungas rainforest (Tucumán, Argentina).World J. Microbiol. Biotechnol.2010261556210.1007/s11274‑009‑0142‑z
    [Google Scholar]
  45. TeixeiraM.F.S. Obtenção de espécies de Aspergillus e Penicillium termofílicas e termotolerantes na Amazônia e caracterização de suas enzimas de interesse na indústria de alimentos; Universidade Federal do Amazonas.1994
    [Google Scholar]
  46. LaemmliU.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature1970227525968068510.1038/227680a05432063
    [Google Scholar]
  47. NmS. AgB. VnB. SvM. SvB. SvS. NnN. TnG. SgV. SeP. Phylogenetic and biochemical analysis of the Reishi mushroom (Ganoderma lucidum) populations from Altai.Annal. Appl. Microbiol. Biotechnol. J.2017111610.36876/aamb.1004
    [Google Scholar]
  48. CörD. BotićT. GregoriA. PohlevenF. KnezŽ. The effects of different solvents on bioactive metabolites and “in vitro” antioxidant and anti-acetylcholinesterase activity of Ganoderma lucidum fruiting body and primordia extracts.Maced. J. Chem. Chem. Eng.201736112914110.20450/mjcce.2017.1054
    [Google Scholar]
  49. ManavalanT. ManavalanA. ThangaveluK.P. HeeseK. Secretome analysis of Ganoderma lucidum cultivated in sugarcane bagasse.J. Proteomics20127729830910.1016/j.jprot.2012.09.00423000217
    [Google Scholar]
  50. XieC. LuoW. LiZ. YanL. ZhuZ. WangJ. HuZ. PengY. Secretome analysis of Pleurotus eryngii reveals enzymatic composition for ramie stalk degradation.Electrophoresis201637231032010.1002/elps.20150031226525014
    [Google Scholar]
  51. SunY.F. LebretonA. XingJ.H. FangY.X. SiJ. MorinE. MiyauchiS. DrulaE. AhrendtS. CobaughK. LipzenA. KoriabineM. RileyR. KohlerA. BarryK. HenrissatB. GrigorievI.V. MartinF.M. CuiB.K. Phylogenomics and comparative genomics highlight specific genetic features in Ganoderma species.J. Fungi20228331133410.3390/jof803031135330313
    [Google Scholar]
  52. FonsecaT.R.B. Pleurotus ostreatoroseus DPUA 1720: avaliação do crescimento, produção de basidioma e determinação da atividade proteolítica em resíduos agroindustriais; Universidade Federal do Amazonas.2013
    [Google Scholar]
  53. OsmolovskiyA.A. ŞaşB. AleksandrovaA.V. BaranovaN.A. KreyerV.G. Evaluation of the spectrum of proteolytic activity of micromycetes of the genus Aspergillus in relation to proteins of the hemostasis system.Moscow Univ. Biol. Sci. Bull.202277213313710.3103/S0096392522020079
    [Google Scholar]
  54. Rodríguez-SifuentesL. MarszalekJ.E. Chuck-HernándezC. Serna-SaldívarS.O. Legumes protease inhibitors as biopesticides and their defense mechanisms against biotic factors.Int. J. Mol. Sci.2020219332210.3390/ijms2109332232397104
    [Google Scholar]
  55. CotabarrenJ. LufranoD. ParisiM.G. ObregónW.D. Biotechnological, biomedical, and agronomical applications of plant protease inhibitors with high stability: A systematic review.Plant Sci.202029211039810.1016/j.plantsci.2019.11039832005400
    [Google Scholar]
  56. ClementeM. CoriglianoM. ParianiS. Sánchez-LópezE. SanderV. Ramos-DuarteV. Plant serine protease inhibitors: Biotechnology application in agriculture and molecular farming.Int. J. Mol. Sci.2019206134510.3390/ijms2006134530884891
    [Google Scholar]
  57. Dërmaku-SopjaniM. SopjaniM. Interactions between ACE2 and SARS-CoV-2 S Protein: Peptide inhibitors for potential drug developments against COVID-19.Curr. Protein Pept. Sci.2021221072974410.2174/138920372266621091614192434530706
    [Google Scholar]
  58. SteutenK. KimH. WidenJ.C. BabinB.M. OngukaO. LovellS. BolgiO. CerikanB. NeufeldtC.J. CorteseM. MuirR.K. BennettJ.M. Geiss-FriedlanderR. PetersC. BartenschlagerR. BogyoM. Challenges for targeting SARS- CoV-2 proteases as a therapeutic strategy for COVID-19.ACS Infect. Dis.2021761457146810.1021/acsinfecdis.0c0081533570381
    [Google Scholar]
  59. KronenbergerT. LauferS.A. PillaiyarT. COVID-19 therapeutics: Small-molecule drug development targeting SARS-CoV-2 main protease.Drug Discov. Today202328610357910.1016/j.drudis.2023.10357937028502
    [Google Scholar]
  60. SuwannarachN. KumlaJ. SujaritK. PattananandechaT. SaenjumC. LumyongS. Natural bioactive compounds from fungi as potential candidates for protease inhibitors and immunomodulators to apply for coronaviruses.Molecules2020258180010.3390/molecules2508180032295300
    [Google Scholar]
  61. ZhangH. WuZ.Y. WangY.Z. ZhouD.D. YangF.Q. LiD.Q. On-line immobilized trypsin microreactor for evaluating inhibitory activity of phenolic acids by capillary electrophoresis and molecular docking.Food Chem.202031012582310.1016/j.foodchem.2019.12582331757489
    [Google Scholar]
  62. LillicoD.M.E. PembertonJ.G. StaffordJ.L. Trypsin differentially modulates the surface expression and function of channel catfish leukocyte immune-type receptors.Dev. Comp. Immunol.20166523124410.1016/j.dci.2016.07.01427461858
    [Google Scholar]
  63. LimJ.I. A simple preparative polyacrylamide gel electrophoresis for the purification of chymotrypsin inhibitor isoforms from Ganoderma lucidum. Bull. Korean Chem. Soc.200324101531153410.5012/bkcs.2003.24.10.1531
    [Google Scholar]
  64. LimJ.I. LimK.J. NaY.C. LeeY.K. Simple polyacrylamide affinity gel electrophoresis using oleic acid for the isolation of chymotrypsin inhibitor.J. Biosci. Bioeng.2010110327628010.1016/j.jbiosc.2010.03.00720547354
    [Google Scholar]
  65. HartiniY. SaputraB. WahonoB. AuwZ. IndayaniF. AdelyaL. NambaG. HarionoM. Biflavonoid as potential 3-chymotrypsin-like protease (3CLpro) inhibitor of SARS-Coronavirus.Results in Chemistry2021310008710.1016/j.rechem.2020.10008733520632
    [Google Scholar]
  66. HoC.L. Comparative genomics analysis of Ganoderma orthologs involved in plant-pathogenesis.Forests202314365367310.3390/f14030653
    [Google Scholar]
  67. DubeyV.K. PandeM. SinghB.K. JagannadhamM.V. Papain-like proteases: Applications of their inhibitors.Afr. J. Biotechnol.20076910771086
    [Google Scholar]
  68. TušarL. UsenikA. TurkB. TurkD. Mechanisms applied by protein inhibitors to inhibit cysteine proteases.Int. J. Mol. Sci.202122399710.3390/ijms2203099733498210
    [Google Scholar]
  69. GbassiG.K. YolouF.S. SarrS.O. AthebaP.G. AminC.N. AkeM. Whey proteins analysis in aqueous medium and in artificial gastric and intestinal fluids.Int. J. Biol. Chem. Sci.2012641828183710.4314/ijbcs.v6i4.38
    [Google Scholar]
  70. WangY.Y. LiJ.Q. LiuH.G. WangY.Z. Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) combined with chemometrics methods for the classification of Lingzhi species.Molecules201924122210222310.3390/molecules2412221031200472
    [Google Scholar]
  71. QiuG. LanJ. ZhangW. WenL. KeongC.Y. ChenX. Determination on tree species selection for Lingzhi or Reishi medicinal mushroom Ganoderma lucidum (Agaricomycetes) cultivation by Fourier transform infrared and two-dimensional infrared correlation spectroscopy.Int. J. Med. Mushrooms2023251657610.1615/IntJMedMushrooms.202204659436734920
    [Google Scholar]
  72. ChoongY.K. ChenX. JamalJ.A. WangQ. LanJ. Preliminary results of determination of chemical changes on Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W.Curt.:Fr.)P. Karst. (higher Basidiomycetes) carried by Shenzhou I spaceship with FTIR and 2D-IR correlation spectroscopy.Int. J. Med. Mushrooms201214329530510.1615/IntJMedMushr.v14.i3.6022577979
    [Google Scholar]
  73. ChoiH.S. SaY-S. Fibrinolytic and antithrombotic protease from Ganoderma lucidum.Mycologia200092354555210.1080/00275514.2000.12061191
    [Google Scholar]
  74. KumaranS. PalaniP. NishanthiR. KaviyarasanV. Studies on screening, isolation and purification of a fibrinolytic protease from an isolate (VK12) of Ganoderma lucidum and evaluation of its antithrombotic activity.Nippon Ishinkin Gakkai Zasshi201152215316210.3314/jjmm.52.15321788727
    [Google Scholar]
  75. TianY.P. ZhangK.C. Purification and characterization of a novel proteinase A inhibitor from Ganoderma lucidum by submerged fermentation.Enzyme Microb. Technol.2005362-335736110.1016/j.enzmictec.2004.10.003
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037297181240605112831
Loading
/content/journals/cpps/10.2174/0113892037297181240605112831
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test