Skip to content
2000
image of The Impact of Thermal and pH Variations on the Structure of Cathepsin D in the Hepatopancreas of Japanese Clam (Ruditapes philippinarum)

Abstract

Background

Cathepsin D is a lysosomal enzyme that plays a critical role in the process of protein catabolism. In marine organisms, research has primarily concentrated on the identification of the enzyme. However, in crustaceans and molluscs, it is known to have digestive functions, as it is the sole enzyme responsible for protein degradation at extremely acidic pH in the hepatopancreas. In the Japanese clam (), cathepsin D was purified and partially characterised by the hepatopancreas.

Methods

To evaluate changes in secondary structure, circular dichroism (CD) was employed under a range of 5-70°C and pH of 1-7.5. Following dissection, the enzyme was purified from the hepatopancreas by ultrafiltration and affinity chromatography. SDS-PAGE was used to verify the sample purity, and gel filtration was used to determine the molecular weight.. CD spectra were obtained at a concentration of 0.125 mg/mL, expressed as mean ellipticity per residue.

Results

The purified cathepsin D demonstrated a specific activity of 5,553 ± 220 U/mg and a molecular weight of 36.5 kDa. The enzyme demonstrated optimal activity within a temperature range of 45-50°C and a pH range of 3-3.5. CD analyses demonstrated alterations in the secondary structure at elevated temperatures and pH fluctuations, which were correlated with a reduction in enzyme activity.

Conclusion

cathepsin D from R. philippinarum exhibited high thermostability up to 50°C and activity at pH 2-4. Its stability and characteristics are comparable to those of other species, which opens avenues in biotechnology for protein hydrolysis and peptide production.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037244173241206055736
2025-01-30
2025-05-18
Loading full text...

Full text loading...

References

  1. Cheng D. Zhang W. Jiang S. Xiong Y. Jin S. Pan F. Zhu J. Gong Y. Wu Y. Qiao H. Fu H. Cathepsin D plays a vital role in Macrobrachium nipponense of ovary maturation: identification, characterization, and function analysis. Genes (Basel) 2022 13 8 1495 10.3390/genes13081495 36011406
    [Google Scholar]
  2. Mijanovic O. Petushkova A.I. Brankovic A. Turk B. Solovieva A.B. Nikitkina A.I. Bolevich S. Timashev P.S. Parodi A. Zamyatnin A.A. Jr Cathepsin D—managing the delicate balance. Pharmaceutics 2021 13 6 837 10.3390/pharmaceutics13060837 34198733
    [Google Scholar]
  3. Crabtree D. Dodson M. Ouyang X. Boyer-Guittaut M. Liang Q. Ballestas M.E. Fineberg N. Zhang J. Over‐expression of an inactive mutant cathepsin D increases endogenous alpha‐synuclein and cathepsin B activity in SH ‐ SY 5Y cells. J. Neurochem. 2014 128 6 950 961 10.1111/jnc.12497 24138030
    [Google Scholar]
  4. Xiao R. Zhang Z. Wang H. Han Y. Gou M. Li B. Duan D. Wang J. Liu X. Li Q. Identification and characterization of a cathepsin D homologue from lampreys (Lampetra japonica). Dev. Comp. Immunol. 2015 49 1 149 156 10.1016/j.dci.2014.10.014 25450905
    [Google Scholar]
  5. Khawar M.B. Fatima N. Abbasi M.H. Role and molecular mechanisms of lysosomes and cathepsins in neuropathology and aging: New insights. J. Neurodegener. Dis. 2021 4 1 113 121
    [Google Scholar]
  6. Martínez-Alarcón D. Saborowski R. Rojo-Arreola L. García-Carreño F. Is digestive cathepsin D the rule in decapod crustaceans? Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2018 215 31 38 10.1016/j.cbpb.2017.09.006 29032300
    [Google Scholar]
  7. Kelly S.M. Jess T.J. Price N.C. How to study proteins by circular dichroism. Biochim. Biophys. Acta. Proteins Proteomics 2005 1751 2 119 139 10.1016/j.bbapap.2005.06.005
    [Google Scholar]
  8. Venugopal A. Siva Kumar N. Biochemical characterization of cathepsin D from the mussel Lamellidens corrianus. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2014 169 25 30 10.1016/j.cbpb.2013.12.003 24365170
    [Google Scholar]
  9. Rojo L. Sotelo-Mundo R. García-Carreño F. Gráf L. Isolation, biochemical characterization, and molecular modeling of American lobster digestive cathepsin D1. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2010 157 4 394 400 10.1016/j.cbpb.2010.08.009 20817002
    [Google Scholar]
  10. Francisco C.C. Luis C.L.J. Marina E.B.J. Javier C.M.F. Alexis L.Z.A. del Carmen S.O.H. Alfredo R.E.I. Effect of Temperature and pH on the Secondary Structure and Denaturation Process of Jumbo Squid Hepatopancreas Cathepsin D. Protein Pept. Lett. 2019 26 7 532 541 10.2174/0929866526666190405124353 30950340
    [Google Scholar]
  11. Sun H. Lou X. Shan Q. Zhang J. Zhu X. Zhang J. Wang Y. Xie Y. Xu N. Liu S. Proteolytic characteristics of cathepsin D related to the recognition and cleavage of its target proteins. PLoS One 2013 8 6 e65733 e65733 10.1371/journal.pone.0065733 23840360
    [Google Scholar]
  12. Fernando I.P.S. Jayawardena T.U. Wu J. Marine proteins and peptides: Production, biological activities, and potential applications. Food Innovation and Advances 2023 2 2 69 84 10.48130/FIA‑2023‑0009
    [Google Scholar]
  13. Hu S. Zhou G. Xu X. Zhang W. Li C. Insight into the impacts of Jinhua ham processing conditions on cathepsin B activity and conformation changes based on molecular simulation. Lebensm. Wiss. Technol. 2023 174 114459 10.1016/j.lwt.2023.114459
    [Google Scholar]
  14. Rojo L. Carreño F. Cold-adapted digestive aspartic protease of the clawed lobsters Homarus americanus and Homarus gammarus: biochemical characterization. Mar. Biotechnol. (NY) 2013 15 1 87 96 10.1007/s10126‑012‑9461‑4 22648335
    [Google Scholar]
  15. Khiari Z. Enzymes from fishery and aquaculture waste: Research trends in the era of artificial intelligence and circular bio-economy. Mar. Drugs 2024 22 9 411 10.3390/md22090411 39330292
    [Google Scholar]
  16. Lopez C. Ruiz J. Fresh cheeses: Properties, determination methods and factors that affect their quality. Selec. Food Engin. Top. 2012 6 2 131 148
    [Google Scholar]
  17. Hou Y. Wu Z. Dai Z. Wang G. Wu G. Protein hydrolysates in animal nutrition: Industrial production, bioactive peptides, and functional significance. J. Animal Sci. Biotechnol. 2022 8 209 232
    [Google Scholar]
  18. Sajib M. Valorization of Herring Filleting Co-Products to Silage: Control of Protein Hydrolysis and Lipid Oxidation During Ensilaging and Possibilities for Separating Herring Silage into Multiple Products. Sweden Chalmers Tekniska Hogskola 2021
    [Google Scholar]
  19. Likhar V. Chudasama B.J. Seafood enzymes and their potential industrial applications. J. Entomol. Zool. Stud. 2021 9 1 1410 1417
    [Google Scholar]
  20. Barzkar N. Sohail M. An overview on marine cellulolytic enzymes and their potential applications. Appl. Microbiol. Biotechnol. 2020 104 16 6873 6892 10.1007/s00253‑020‑10692‑y 32556412
    [Google Scholar]
  21. Yu X.M. Chen J.L. Abbas M.N. Gul I. Kausar S. Dai L.S. Characterization of the cathepsin D in Procambarus clarkii and its biological role in innate immune responses. Dev. Comp. Immunol. 2020 111 103766 10.1016/j.dci.2020.103766 32525034
    [Google Scholar]
  22. Celis-Guerrero L.E. García-Carreño F.L. del Toro M.A.N. Characterization of proteases in the digestive system of spiny lobster (Panulirus interruptus). Mar. Biotechnol. (NY) 2004 6 3 262 269 10.1007/s10126‑003‑0032‑6 15136918
    [Google Scholar]
  23. Yasuda Y. Kageyama T. Akamine A. Shibata M. Kominami E. Uchiyama Y. Yamamoto K. Characterization of new fluorogenic substrates for the rapid and sensitive assay of cathepsin E and cathepsin D. J. Biochem. 1999 125 6 1137 1143 10.1093/oxfordjournals.jbchem.a022396 10348917
    [Google Scholar]
  24. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976 72 1-2 248 254 10.1016/0003‑2697(76)90527‑3 942051
    [Google Scholar]
  25. Alavi F. Ciftci O.N. Purification and fractionation of bioactive peptides through membrane filtration: A critical and application review. Trends Food Sci. Technol. 2023 131 118 128 10.1016/j.tifs.2022.11.024
    [Google Scholar]
  26. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970 227 5259 680 685 10.1038/227680a0 5432063
    [Google Scholar]
  27. Andrews P. Estimation of the molecular weights of proteins by Sephadex gel-filtration. Biochem. J. 1964 91 2 222 233 10.1042/bj0910222 4158310
    [Google Scholar]
  28. Díaz-López M. Moyano-López F.J. Alarcón-López F.J. García-Carreño F.L. Navarrete del Toro M.A. Characterization of fish acid proteases by substrate–gel electrophoresis. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1998 121 4 369 377 10.1016/S0305‑0491(98)10123‑2 9972308
    [Google Scholar]
  29. Barrett A.J. Cathepsin D. Purification of isoenzymes from human and chicken liver. Biochem. J. 1970 117 3 601 607 10.1042/bj1170601 5419752
    [Google Scholar]
  30. Ibarra-Molero B. Naganathan A.N. Sanchez-Ruiz J.M. Muñoz V. Chapter twelve - modern analysis of protein folding by differential scanning calorimetry. Methods in Enzymology. Feig A.L. Academic Press 2016 Vol. 567 281 318
    [Google Scholar]
  31. Privalov P.L. Mateo P.L. Khechinashvili N.N. Stepanov V.M. Revina L.P. Comparative thermodynamic study of pepsinogen and pepsin structure. J. Mol. Biol. 1981 152 2 445 464 10.1016/0022‑2836(81)90253‑9 6799654
    [Google Scholar]
  32. Greenfield N.J. Methods to estimate the conformation of proteins and polypeptides from circular dichroism data. Anal. Biochem. 1996 235 1 1 10 10.1006/abio.1996.0084 8850540
    [Google Scholar]
  33. Johnson W.C. Analyzing protein circular dichroism spectra for accurate secondary structures. Proteins 1999 35 3 307 312 10.1002/(SICI)1097‑0134(19990515)35:3<307::AID‑PROT4>3.0.CO;2‑3 10328265
    [Google Scholar]
  34. Jiang J. Chen J. Xiong Y.L. Structural and emulsifying properties of soy protein isolate subjected to acid and alkaline pH-shifting processes. J. Agric. Food Chem. 2009 57 16 7576 7583 10.1021/jf901585n 19601630
    [Google Scholar]
  35. Yeaman M.R. Yount N.Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 2003 55 1 27 55 10.1124/pr.55.1.2 12615953
    [Google Scholar]
  36. Gopal R. Park J.S. Seo C.H. Park Y. Applications of circular dichroism for structural analysis of gelatin and antimicrobial peptides. Int. J. Mol. Sci. 2012 13 3 3229 3244 10.3390/ijms13033229 22489150
    [Google Scholar]
  37. Kelly S.M. Price N.C. The application of circular dichroism to studies of protein folding and unfolding. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1997 1338 2 161 185 10.1016/S0167‑4838(96)00190‑2 9128135
    [Google Scholar]
  38. Louis-Jeune C. Andrade-Navarro M.A. Perez-Iratxeta C. Prediction of protein secondary structure from circular dichroism using theoretically derived spectra. Proteins 2012 80 2 374 381 10.1002/prot.23188 22095872
    [Google Scholar]
  39. Andrade M.A. Chacón P. Merelo J.J. Morán F. Evaluation of secondary structure of proteins from UV circular dichroism spectra using an unsupervised learning neural network. Protein Eng. Des. Sel. 1993 6 4 383 390 10.1093/protein/6.4.383 8332596
    [Google Scholar]
  40. Komai T. Kawabata C. Amano M. Lee B.R. Ichishima E. Todarepsin, a new cathepsin D from hepatopancreas of Japanese common squid (Todarodes pacificus). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2004 137 3 373 382 10.1016/j.cbpc.2004.01.006 15050524
    [Google Scholar]
  41. Gildberg A. Purification and characterisation of cathepsin D from the digestive gland of the pelagic squid Todarodes sagittatus. J. Sci. Food Agric. 1987 39 1 85 94 10.1002/jsfa.2740390110
    [Google Scholar]
  42. Chen H.C. Zall R.R. Partial Purification and Characterization of Cathepsin D‐Like and B‐Like Acid Proteases from Surf Clam Viscera. J. Food Sci. 1986 51 1 71 75 10.1111/j.1365‑2621.1986.tb10838.x
    [Google Scholar]
  43. Kelley L.A. Mezulis S. Yates C.M. Wass M.N. Sternberg M.J.E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 2015 10 6 845 858 10.1038/nprot.2015.053 25950237
    [Google Scholar]
  44. Goldman-Levkovitz S. Rimon A. Rimon S. Purification properties and specificity of cathepsin D from Cyprinus carpio. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1995 112 1 147 151 10.1016/0305‑0491(95)00036‑8 7584842
    [Google Scholar]
  45. Balti R. Hmidet N. Jellouli K. Nedjar-Arroume N. Guillochon D. Nasri M. Cathepsin D from the hepatopancreas of the cuttlefish (Sepia officinalis): purification and characterization. J. Agric. Food Chem. 2010 58 19 10623 10630 10.1021/jf102233d 20843039
    [Google Scholar]
  46. Haard N.F. Simpson B.K. Seafood enzymes: utilization and influence on postharvest seafood quality. CRC Press 2000 10.1201/9781482289916
    [Google Scholar]
  47. Peterson M.E. Daniel R.M. Danson M.J. Eisenthal R. The dependence of enzyme activity on temperature: determination and validation of parameters. Biochem. J. 2007 402 2 331 337 10.1042/BJ20061143 17092210
    [Google Scholar]
  48. Daniel R.M. Danson M.J. Eisenthal R. The temperature optima of enzymes: a new perspective on an old phenomenon. Trends Biochem. Sci. 2001 26 4 223 225 10.1016/S0968‑0004(01)01803‑5 11295553
    [Google Scholar]
  49. Nelson D. Cox M. Lehninger Principles of Biochemistry. International Edition Macmillan Learning 2017
    [Google Scholar]
  50. Voet D. Voet J.G. Biochemistry. 4th ed John Wiley & Sons 2004
    [Google Scholar]
  51. Espinosa Silva Y.R. Study of cold denaturation of proteins by computational simulations. PhD thesis, National University of La Plata, 2016.
    [Google Scholar]
  52. Capasso C. Lees W.E. Capasso A. Scudiero R. Carginale V. Kille P. Kay J. Parisi E. Cathepsin D from the liver of the antarctic icefish (Chionodraco hamatus) exhibits unusual activity and stability at high temperatures1. Protein Struct. Molecul. Enzymol. 1999 1431 1 64 73
    [Google Scholar]
  53. Zhao L. M Budge S. E Ghaly A. S Brooks M. Dave D. Extraction, purification and characterization of fish pepsin: a critical review. J. Food Process. Technol. 2011 2 6 1 14 10.4172/2157‑7110.1000126
    [Google Scholar]
  54. Zhang H. Tan K. Zheng H. Characterization of a novel cathepsin D and its immunity response in noble scallop Chlamys nobilis with different total carotenoids content. Aquacult. Res. 2021 52 12 6434 6443 10.1111/are.15508
    [Google Scholar]
  55. Jamdar S.N. Harikumar P. Purification, identification and characterization of aspartic proteases of chicken intestine. J. Food Biochem. 2016 40 4 451 462 10.1111/jfbc.12237
    [Google Scholar]
  56. Wang P.A. Stenvik J. Larsen R. Mæhre H. Olsen R.L. Cathepsin D from Atlantic cod (Gadus morhua L.) liver. Isolation and comparative studies. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2007 147 3 504 511 10.1016/j.cbpb.2007.03.004 17428719
    [Google Scholar]
  57. Jiang S.T. Nei F.P. Chen H.C. Wang J.H. Comparative study on the cathepsin D from banded shrimp (Penaeus japonicus) and grass shrimp (Penaeus monodon). J. Agric. Food Chem. 1992 40 6 961 966 10.1021/jf00018a009
    [Google Scholar]
  58. O’Brien E.P. Brooks B.R. Thirumalai D. Effects of pH on proteins: predictions for ensemble and single-molecule pulling experiments. J. Am. Chem. Soc. 2012 134 2 979 987 10.1021/ja206557y 22148729
    [Google Scholar]
  59. Shaw K.L. Grimsley G.R. Yakovlev G.I. Makarov A.A. Pace C.N. The effect of net charge on the solubility, activity, and stability of ribonuclease. Protein sci. 2001 10 6 1206 1215
    [Google Scholar]
  60. Ramírez-Duarte W.F. Jin J. Kurobe T. Teh S.J. Effects of prolonged exposure to low pH on enzymatic and non-enzymatic antioxidants in Japanese Medaka (Oryzias latipes). Sci. Total Environ. 2016 568 26 32 10.1016/j.scitotenv.2016.05.179 27285793
    [Google Scholar]
  61. Lee A.Y. Gulnik S.V. Erickson J.W. Conformational switching in an aspartic proteinase. Nat. Struct. Biol. 1998 5 10 866 871 10.1038/2306 9783744
    [Google Scholar]
  62. Díaz-Villanueva J. Díaz-Molina R. García-González V. Protein folding and mechanisms of proteostasis. Int. J. Mol. Sci. 2015 16 8 17193 17230 10.3390/ijms160817193 26225966
    [Google Scholar]
  63. Ghobadi S. Ashrafi-Kooshk M.R. Mahdiuni H. Khodarahmi R. Enhancement of intrinsic fluorescence of human carbonic anhydrase II upon topiramate binding: Some evidence for drug-induced molecular contraction of the protein. Int. J. Biol. Macromol. 2018 108 240 249 10.1016/j.ijbiomac.2017.12.011 29217181
    [Google Scholar]
  64. Chen W. Wang W. Ma X. Lv R. Balaso Watharkar R. Ding T. Ye X. Liu D. Effect of pH-shifting treatment on structural and functional properties of whey protein isolate and its interaction with (−)-epigallocatechin-3-gallate. Food Chem. 2019 274 234 241 10.1016/j.foodchem.2018.08.106 30372932
    [Google Scholar]
  65. Siddique M.A.B. Maresca P. Pataro G. Ferrari G. Effect of pulsed light treatment on structural and functional properties of whey protein isolate. Food Res. Int. 2016 87 189 196 10.1016/j.foodres.2016.07.017 29606241
    [Google Scholar]
  66. Draper A.M. Zeece M.G. Thermal stability of cathepsin D. J. Food Sci. 1989 54 6 1651 1652 10.1111/j.1365‑2621.1989.tb05181.x
    [Google Scholar]
  67. Trevisan R. Mello D.F. Redox control of antioxidants, metabolism, immunity, and development at the core of stress adaptation of the oyster Crassostrea gigas to the dynamic intertidal environment. Free Radic. Biol. Med. 2024 210 85 106 10.1016/j.freeradbiomed.2023.11.003 37952585
    [Google Scholar]
  68. Fabian H. Schultz C. Naumann D. Landt O. Hahn U. Saenger W. Secondary structure and temperature-induced unfolding and refolding of ribonuclease T1 in aqueous solution. A Fourier transform infrared spectroscopic study. J. Mol. Biol. 1993 232 3 967 981 10.1006/jmbi.1993.1442 8355280
    [Google Scholar]
  69. Villaverde I.J. Ortega H. Espejel I.A. Arreola W. Jiménez G.M. Ríos E. Effect of temperature on the actomyosin-paramyosin structure from giant squid mantle (Dosidicus gigas). J. Sci. Food. Agricul. 2019 99 12 5249 5609
    [Google Scholar]
  70. Villaverde I.J. Higuera V. Brauer J. Sauceda I. Ortega H. López J.L. Olibarria G. Ríos E. Physicochemical characterization of actomyosin–paramyosin from giant squid mantle (Dosidicus gigas). J. Sci. Food Agric. 2018 98 5 1787 1793 10.1002/jsfa.8653 28862326
    [Google Scholar]
  71. Treviño M.Á. López-Sánchez R. Moya M.R. Pantoja-Uceda D. Mompeán M. Laurents D.V. Insight into polyproline II helical bundle stability in an antifreeze protein denatured state. Biophys. J. 2022 121 23 4560 4568 10.1016/j.bpj.2022.10.034 36815707
    [Google Scholar]
  72. Rucker A.L. Creamer T.P. Polyproline II helical structure in protein unfolded states: Lysine peptides revisited. Protein Sci. 2002 11 4 980 985 10.1110/ps.4550102 11910041
    [Google Scholar]
  73. D’Souza A.J.M. Hart D.S. Middaugh C.R. Gehrke S.H. Characterization of the Changes in Secondary Structure and Architecture of Elastin−Mimetic Triblock Polypeptides during Thermal Gelation. Macromolecules 2006 39 20 7084 7091 10.1021/ma060915j
    [Google Scholar]
  74. Chakravarty D. Janin J. Robert C.H. Chakrabarti P. Changes in protein structure at the interface accompanying complex formation. IUCrJ 2015 2 6 643 652 10.1107/S2052252515015250 26594372
    [Google Scholar]
  75. Qin Z. Buehler M.J. Molecular dynamics simulation of the α-helix to β-sheet transition in coiled protein filaments: evidence for a critical filament length scale. Phys. Rev. Lett. 2010 104 19 198304 198304 10.1103/PhysRevLett.104.198304 20867006
    [Google Scholar]
  76. Creamer T.P. Rose G.D. Side-chain entropy opposes alpha-helix formation but rationalizes experimentally determined helix-forming propensities. Proc. Natl. Acad. Sci. USA 1992 89 13 5937 5941 10.1073/pnas.89.13.5937 1631077
    [Google Scholar]
  77. Copeland R.A. Enzymes: a practical introduction to structure, mechanism, and data analysis. John Wiley & Sons 2023 10.1002/9781119793304
    [Google Scholar]
  78. Kang T.S. Kini R.M. Structural determinants of protein folding. Cell. Mol. Life Sci. 2009 66 14 2341 2361 10.1007/s00018‑009‑0023‑5 19367367
    [Google Scholar]
  79. Salemme F.R. Weatherford D.W. Conformational and geometrical properties of β-sheets in proteins. J. Mol. Biol. 1981 146 1 119 141 10.1016/0022‑2836(81)90369‑7 7265226
    [Google Scholar]
  80. Tello-Solís S.R. Schiavon-Nieto S. Desplegamiento térmico de colágeno bovino tipo I. RevistaTendencias en Docencia e Investigación en Química 2015 1 12 19
    [Google Scholar]
  81. Ahmad M. Benjakul S. Extraction and characterisation of pepsin-solubilised collagen from the skin of unicorn leatherjacket (Aluterus monocerous). Food Chem. 2010 120 3 817 824 10.1016/j.foodchem.2009.11.019
    [Google Scholar]
  82. Dill K.A. Shortle D. Denatured states of proteins. Annu. Rev. Biochem. 1991 60 1 795 825 10.1146/annurev.bi.60.070191.004051 1883209
    [Google Scholar]
  83. Wen J. Arthur K. Chemmalil L. Muzammil S. Gabrielson J. Jiang Y. Applications of differential scanning calorimetry for thermal stability analysis of proteins: qualification of DSC. J. Pharm. Sci. 2012 101 3 955 964 10.1002/jps.22820 22147423
    [Google Scholar]
  84. Rüegg M. Moor U. Blanc B. A calorimetric study of the thermal denaturation of whey proteins in simulated milk ultrafiltrate. J. Dairy Res. 1977 44 3 509 520 10.1017/S002202990002046X
    [Google Scholar]
  85. Baldwin B. Crystal structures of native and inhibited forms of human cathepsin D: Implications for lysosomal targeting and drug design. Proceed. Nat. Acad. Sci. 1993 90 14 6796 6800 10.1073/pnas.90.14.6796
    [Google Scholar]
  86. Rahman S. Islam A. Hassan M.I. Kim J. Ahmad F. Unfoldness of the denatured state of proteins determines urea: Methylamine counteraction in terms of Gibbs free energy of stabilization. Int. J. Biol. Macromol. 2019 132 666 676 10.1016/j.ijbiomac.2019.03.236 30946906
    [Google Scholar]
  87. Masson P. Lushchekina S. Conformational stability and denaturation processes of proteins investigated by electrophoresis under extreme conditions. Molecules 2022 27 20 6861 10.3390/molecules27206861 36296453
    [Google Scholar]
  88. Sorokina I. Mushegian A.R. Koonin E.V. Is protein folding a thermodynamically unfavorable, active, energy-dependent process? Int. J. Mol. Sci. 2022 23 1 521 10.3390/ijms23010521 35008947
    [Google Scholar]
  89. Anumalla B. Prabhu N.P. Counteracting effect of charged amino acids against the destabilization of proteins by arginine. Appl. Biochem. Biotechnol. 2019 189 2 541 555 10.1007/s12010‑019‑03026‑w 31056736
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037244173241206055736
Loading
/content/journals/cpps/10.2174/0113892037244173241206055736
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test