Skip to content
2000
Volume 26, Issue 6
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

Background

Cathepsin D is a lysosomal enzyme that plays a critical role in the process of protein catabolism. In marine organisms, research has primarily concentrated on the identification of the enzyme. However, in crustaceans and molluscs, it is known to have digestive functions, as it is the sole enzyme responsible for protein degradation at extremely acidic pH in the hepatopancreas. In the Japanese clam (), cathepsin D was purified and partially characterised from the hepatopancreas.

Methods

To evaluate changes in secondary structure, circular dichroism (CD) was employed under a range of 5-70°C and pH of 1-7.5. Following dissection, the enzyme was purified from the hepatopancreas by ultrafiltration and affinity chromatography. SDS-PAGE was used to verify the sample purity, and gel filtration was used to determine the molecular weight. CD spectra were obtained at a concentration of 0.125 mg/mL, expressed as mean ellipticity per residue.

Results

The purified cathepsin D demonstrated a specific activity of 5,553 ± 220 U/mg and a molecular weight of 36.5 kDa. The enzyme demonstrated optimal activity within a temperature range of 45-50°C and a pH range of 3-3.5. CD analyses demonstrated alterations in the secondary structure at elevated temperatures and pH fluctuations, which were correlated with a reduction in enzyme activity.

Conclusion

Cathepsin D from exhibited high thermostability up to 50°C and activity at pH 2-4. Its stability and characteristics are comparable to those of other species, which opens avenues in biotechnology for protein hydrolysis and peptide production.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037244173241206055736
2025-01-30
2025-06-06
Loading full text...

Full text loading...

References

  1. ChengD. ZhangW. JiangS. XiongY. JinS. PanF. ZhuJ. GongY. WuY. QiaoH. FuH. Cathepsin D plays a vital role in Macrobrachium nipponense of ovary maturation: identification, characterization, and function analysis.Genes (Basel)2022138149510.3390/genes1308149536011406
    [Google Scholar]
  2. MijanovicO. PetushkovaA.I. BrankovicA. TurkB. SolovievaA.B. NikitkinaA.I. BolevichS. TimashevP.S. ParodiA. ZamyatninA.A.Jr Cathepsin D—managing the delicate balance.Pharmaceutics202113683710.3390/pharmaceutics1306083734198733
    [Google Scholar]
  3. CrabtreeD. DodsonM. OuyangX. Boyer-GuittautM. LiangQ. BallestasM.E. FinebergN. ZhangJ. Over-expression of an inactive mutant cathepsin D increases endogenous alpha-synuclein and cathepsin B activity in SH - SY 5Y cells.J. Neurochem.2014128695096110.1111/jnc.1249724138030
    [Google Scholar]
  4. XiaoR. ZhangZ. WangH. HanY. GouM. LiB. DuanD. WangJ. LiuX. LiQ. Identification and characterization of a cathepsin D homologue from lampreys (Lampetra japonica).Dev. Comp. Immunol.201549114915610.1016/j.dci.2014.10.01425450905
    [Google Scholar]
  5. KhawarM.B. FatimaN. AbbasiM.H. Role and molecular mechanisms of lysosomes and cathepsins in neuropathology and aging: New insights.J. Neurodegener. Dis.202141113121
    [Google Scholar]
  6. Martínez-AlarcónD. SaborowskiR. Rojo-ArreolaL. García-CarreñoF. Is digestive cathepsin D the rule in decapod crustaceans?Comp. Biochem. Physiol. B Biochem. Mol. Biol.2018215313810.1016/j.cbpb.2017.09.00629032300
    [Google Scholar]
  7. KellyS.M. JessT.J. PriceN.C. How to study proteins by circular dichroism.Biochim. Biophys. Acta. Proteins Proteomics20051751211913910.1016/j.bbapap.2005.06.005
    [Google Scholar]
  8. VenugopalA. Siva KumarN. Biochemical characterization of cathepsin D from the mussel Lamellidens corrianus.Comp. Biochem. Physiol. B Biochem. Mol. Biol.2014169253010.1016/j.cbpb.2013.12.00324365170
    [Google Scholar]
  9. RojoL. Sotelo-MundoR. García-CarreñoF. GráfL. Isolation, biochemical characterization, and molecular modeling of American lobster digestive cathepsin D1.Comp. Biochem. Physiol. B Biochem. Mol. Biol.2010157439440010.1016/j.cbpb.2010.08.00920817002
    [Google Scholar]
  10. FranciscoC.C. LuisC.L.J. MarinaE.B.J. JavierC.M.F. AlexisL.Z.A. del CarmenS.O.H. AlfredoR.E.I. Effect of temperature and ph on the secondary structure and denaturation process of jumbo squid hepatopancreas cathepsin D.Protein Pept. Lett.201926753254110.2174/092986652666619040512435330950340
    [Google Scholar]
  11. SunH. LouX. ShanQ. ZhangJ. ZhuX. ZhangJ. WangY. XieY. XuN. LiuS. Proteolytic characteristics of cathepsin D related to the recognition and cleavage of its target proteins.PLoS One201386e65733e6573310.1371/journal.pone.006573323840360
    [Google Scholar]
  12. FernandoI.P.S. JayawardenaT.U. WuJ. Marine proteins and peptides: Production, biological activities, and potential applications.Food Innov. Adv.202322698410.48130/FIA‑2023‑0009
    [Google Scholar]
  13. HuS. ZhouG. XuX. ZhangW. LiC. Insight into the impacts of Jinhua ham processing conditions on cathepsin B activity and conformation changes based on molecular simulation.Lebensm. Wiss. Technol.202317411445910.1016/j.lwt.2023.114459
    [Google Scholar]
  14. RojoL. CarreñoF. Cold-adapted digestive aspartic protease of the clawed lobsters Homarus americanus and Homarus gammarus: biochemical characterization.Mar. Biotechnol. (NY)2013151879610.1007/s10126‑012‑9461‑422648335
    [Google Scholar]
  15. KhiariZ. Enzymes from fishery and aquaculture waste: Research trends in the era of artificial intelligence and circular bio-economy.Mar. Drugs202422941110.3390/md2209041139330292
    [Google Scholar]
  16. LopezC. RuizJ. Fresh cheeses: Properties, determination methods and factors that affect their quality.Selec. Food Engin. Top.201262131148
    [Google Scholar]
  17. HouY. WuZ. DaiZ. WangG. WuG. Protein hydrolysates in animal nutrition: Industrial production, bioactive peptides, and functional significance.J. Animal Sci. Biotechnol.20228209232
    [Google Scholar]
  18. SajibM. Valorization of Herring Filleting Co-Products to Silage: Control of Protein Hydrolysis and Lipid Oxidation During Ensilaging and Possibilities for Separating Herring Silage into Multiple Products.SwedenChalmers Tekniska Hogskola2021
    [Google Scholar]
  19. LikharV. ChudasamaB.J. Seafood enzymes and their potential industrial applications.J. Entomol. Zool. Stud.20219114101417
    [Google Scholar]
  20. BarzkarN. SohailM. An overview on marine cellulolytic enzymes and their potential applications.Appl. Microbiol. Biotechnol.2020104166873689210.1007/s00253‑020‑10692‑y32556412
    [Google Scholar]
  21. YuX.M. ChenJ.L. AbbasM.N. GulI. KausarS. DaiL.S. Characterization of the cathepsin D in Procambarus clarkii and its biological role in innate immune responses.Dev. Comp. Immunol.202011110376610.1016/j.dci.2020.10376632525034
    [Google Scholar]
  22. Celis-GuerreroL.E. García-CarreñoF.L. del ToroM.A.N. Characterization of proteases in the digestive system of spiny lobster (Panulirus interruptus).Mar. Biotechnol. (NY)20046326226910.1007/s10126‑003‑0032‑615136918
    [Google Scholar]
  23. YasudaY. KageyamaT. AkamineA. ShibataM. KominamiE. UchiyamaY. YamamotoK. Characterization of new fluorogenic substrates for the rapid and sensitive assay of cathepsin E and cathepsin D.J. Biochem.199912561137114310.1093/oxfordjournals.jbchem.a02239610348917
    [Google Scholar]
  24. BradfordM.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem.1976721-224825410.1016/0003‑2697(76)90527‑3942051
    [Google Scholar]
  25. AlaviF. CiftciO.N. Purification and fractionation of bioactive peptides through membrane filtration: A critical and application review.Trends Food Sci. Technol.202313111812810.1016/j.tifs.2022.11.024
    [Google Scholar]
  26. LaemmliU.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature1970227525968068510.1038/227680a05432063
    [Google Scholar]
  27. AndrewsP. Estimation of the molecular weights of proteins by Sephadex gel-filtration.Biochem. J.196491222223310.1042/bj09102224158310
    [Google Scholar]
  28. Díaz-LópezM. Moyano-LópezF.J. Alarcón-LópezF.J. García-CarreñoF.L. Navarrete del ToroM.A. Characterization of fish acid proteases by substrate–gel electrophoresis.Comp. Biochem. Physiol. B Biochem. Mol. Biol.1998121436937710.1016/S0305‑0491(98)10123‑29972308
    [Google Scholar]
  29. BarrettA.J. Cathepsin D. Purification of isoenzymes from human and chicken liver.Biochem. J.1970117360160710.1042/bj11706015419752
    [Google Scholar]
  30. Ibarra-MoleroB. NaganathanA.N. Sanchez-RuizJ.M. MuñozV. Chapter twelve - modern analysis of protein folding by differential scanning calorimetry.Methods in Enzymology. FeigA.L. Academic Press2016Vol. 567281318
    [Google Scholar]
  31. PrivalovP.L. MateoP.L. KhechinashviliN.N. StepanovV.M. RevinaL.P. Comparative thermodynamic study of pepsinogen and pepsin structure.J. Mol. Biol.1981152244546410.1016/0022‑2836(81)90253‑96799654
    [Google Scholar]
  32. GreenfieldN.J. Methods to estimate the conformation of proteins and polypeptides from circular dichroism data.Anal. Biochem.1996235111010.1006/abio.1996.00848850540
    [Google Scholar]
  33. JohnsonW.C. Analyzing protein circular dichroism spectra for accurate secondary structures.Proteins199935330731210.1002/(SICI)1097‑0134(19990515)35:3<307::AID‑PROT4>3.0.CO;2‑310328265
    [Google Scholar]
  34. JiangJ. ChenJ. XiongY.L. Structural and emulsifying properties of soy protein isolate subjected to acid and alkaline pH-shifting processes.J. Agric. Food Chem.200957167576758310.1021/jf901585n19601630
    [Google Scholar]
  35. YeamanM.R. YountN.Y. Mechanisms of antimicrobial peptide action and resistance.Pharmacol. Rev.2003551275510.1124/pr.55.1.212615953
    [Google Scholar]
  36. GopalR. ParkJ.S. SeoC.H. ParkY. Applications of circular dichroism for structural analysis of gelatin and antimicrobial peptides.Int. J. Mol. Sci.20121333229324410.3390/ijms1303322922489150
    [Google Scholar]
  37. KellyS.M. PriceN.C. The application of circular dichroism to studies of protein folding and unfolding.Biochim. Biophys. Acta Protein Struct. Mol. Enzymol.19971338216118510.1016/S0167‑4838(96)00190‑29128135
    [Google Scholar]
  38. Louis-JeuneC. Andrade-NavarroM.A. Perez-IratxetaC. Prediction of protein secondary structure from circular dichroism using theoretically derived spectra.Proteins201280237438110.1002/prot.2318822095872
    [Google Scholar]
  39. AndradeM.A. ChacónP. MereloJ.J. MoránF. Evaluation of secondary structure of proteins from UV circular dichroism spectra using an unsupervised learning neural network.Protein Eng. Des. Sel.19936438339010.1093/protein/6.4.3838332596
    [Google Scholar]
  40. KomaiT. KawabataC. AmanoM. LeeB.R. IchishimaE. Todarepsin, a new cathepsin D from hepatopancreas of Japanese common squid (Todarodes pacificus).Comp. Biochem. Physiol. B Biochem. Mol. Biol.2004137337338210.1016/j.cbpc.2004.01.00615050524
    [Google Scholar]
  41. GildbergA. Purification and characterisation of cathepsin D from the digestive gland of the pelagic squid Todarodes sagittatus.J. Sci. Food Agric.1987391859410.1002/jsfa.2740390110
    [Google Scholar]
  42. ChenH.C. ZallR.R. Partial Purification and Characterization of Cathepsin D-Like and B-Like Acid Proteases from Surf Clam Viscera.J. Food Sci.1986511717510.1111/j.1365‑2621.1986.tb10838.x
    [Google Scholar]
  43. KelleyL.A. MezulisS. YatesC.M. WassM.N. SternbergM.J.E. The Phyre2 web portal for protein modeling, prediction and analysis.Nat. Protoc.201510684585810.1038/nprot.2015.05325950237
    [Google Scholar]
  44. Goldman-LevkovitzS. RimonA. RimonS. Purification properties and specificity of cathepsin D from Cyprinus carpio.Comp. Biochem. Physiol. B Biochem. Mol. Biol.1995112114715110.1016/0305‑0491(95)00036‑87584842
    [Google Scholar]
  45. BaltiR. HmidetN. JellouliK. Nedjar-ArroumeN. GuillochonD. NasriM. Cathepsin D from the hepatopancreas of the cuttlefish (Sepia officinalis): purification and characterization.J. Agric. Food Chem.20105819106231063010.1021/jf102233d20843039
    [Google Scholar]
  46. HaardN.F. SimpsonB.K. Seafood enzymes: utilization and influence on postharvest seafood quality.CRC Press200010.1201/9781482289916
    [Google Scholar]
  47. PetersonM.E. DanielR.M. DansonM.J. EisenthalR. The dependence of enzyme activity on temperature: determination and validation of parameters.Biochem. J.2007402233133710.1042/BJ2006114317092210
    [Google Scholar]
  48. DanielR.M. DansonM.J. EisenthalR. The temperature optima of enzymes: a new perspective on an old phenomenon.Trends Biochem. Sci.200126422322510.1016/S0968‑0004(01)01803‑511295553
    [Google Scholar]
  49. NelsonD. CoxM. Lehninger Principles of Biochemistry.International EditionMacmillan Learning2017
    [Google Scholar]
  50. VoetD. VoetJ.G. Biochemistry.4th edJohn Wiley & Sons2004
    [Google Scholar]
  51. Espinosa SilvaY.R. Study of cold denaturation of proteins by computational simulations.PhD thesis, National University of La Plata, 2016.
    [Google Scholar]
  52. CapassoC. LeesW.E. CapassoA. ScudieroR. CarginaleV. KilleP. KayJ. ParisiE. Cathepsin D from the liver of the antarctic icefish (Chionodraco hamatus) exhibits unusual activity and stability at high temperatures1.Protein Struct. Molecul. Enzymol.1999143116473
    [Google Scholar]
  53. ZhaoL. M BudgeS. E GhalyA. S BrooksM. DaveD. Extraction, purification and characterization of fish pepsin: a critical review.J. Food Process. Technol.20112611410.4172/2157‑7110.1000126
    [Google Scholar]
  54. ZhangH. TanK. ZhengH. Characterization of a novel cathepsin D and its immunity response in noble scallop Chlamys nobilis with different total carotenoids content.Aquacult. Res.202152126434644310.1111/are.15508
    [Google Scholar]
  55. JamdarS.N. HarikumarP. Purification, identification and characterization of aspartic proteases of chicken intestine.J. Food Biochem.201640445146210.1111/jfbc.12237
    [Google Scholar]
  56. WangP.A. StenvikJ. LarsenR. MæhreH. OlsenR.L. Cathepsin D from Atlantic cod (Gadus morhua L.) liver. Isolation and comparative studies.Comp. Biochem. Physiol. B Biochem. Mol. Biol.2007147350451110.1016/j.cbpb.2007.03.00417428719
    [Google Scholar]
  57. JiangS.T. NeiF.P. ChenH.C. WangJ.H. Comparative study on the cathepsin D from banded shrimp (Penaeus japonicus) and grass shrimp (Penaeus monodon).J. Agric. Food Chem.199240696196610.1021/jf00018a009
    [Google Scholar]
  58. O’BrienE.P. BrooksB.R. ThirumalaiD. Effects of pH on proteins: predictions for ensemble and single-molecule pulling experiments.J. Am. Chem. Soc.2012134297998710.1021/ja206557y22148729
    [Google Scholar]
  59. ShawK.L. GrimsleyG.R. YakovlevG.I. MakarovA.A. PaceC.N. The effect of net charge on the solubility, activity, and stability of ribonuclease.Protein sci.200110612061215
    [Google Scholar]
  60. Ramírez-DuarteW.F. JinJ. KurobeT. TehS.J. Effects of prolonged exposure to low pH on enzymatic and non-enzymatic antioxidants in Japanese Medaka (Oryzias latipes).Sci. Total Environ.2016568263210.1016/j.scitotenv.2016.05.17927285793
    [Google Scholar]
  61. LeeA.Y. GulnikS.V. EricksonJ.W. Conformational switching in an aspartic proteinase.Nat. Struct. Biol.199851086687110.1038/23069783744
    [Google Scholar]
  62. Díaz-VillanuevaJ. Díaz-MolinaR. García-GonzálezV. Protein folding and mechanisms of proteostasis.Int. J. Mol. Sci.2015168171931723010.3390/ijms16081719326225966
    [Google Scholar]
  63. GhobadiS. Ashrafi-KooshkM.R. MahdiuniH. KhodarahmiR. Enhancement of intrinsic fluorescence of human carbonic anhydrase II upon topiramate binding: Some evidence for drug-induced molecular contraction of the protein.Int. J. Biol. Macromol.201810824024910.1016/j.ijbiomac.2017.12.01129217181
    [Google Scholar]
  64. ChenW. WangW. MaX. LvR. Balaso WatharkarR. DingT. YeX. LiuD. Effect of pH-shifting treatment on structural and functional properties of whey protein isolate and its interaction with (−)-epigallocatechin-3-gallate.Food Chem.201927423424110.1016/j.foodchem.2018.08.10630372932
    [Google Scholar]
  65. SiddiqueM.A.B. MarescaP. PataroG. FerrariG. Effect of pulsed light treatment on structural and functional properties of whey protein isolate.Food Res. Int.20168718919610.1016/j.foodres.2016.07.01729606241
    [Google Scholar]
  66. DraperA.M. ZeeceM.G. Thermal stability of cathepsin D.J. Food Sci.19895461651165210.1111/j.1365‑2621.1989.tb05181.x
    [Google Scholar]
  67. TrevisanR. MelloD.F. Redox control of antioxidants, metabolism, immunity, and development at the core of stress adaptation of the oyster Crassostrea gigas to the dynamic intertidal environment.Free Radic. Biol. Med.20242108510610.1016/j.freeradbiomed.2023.11.00337952585
    [Google Scholar]
  68. FabianH. SchultzC. NaumannD. LandtO. HahnU. SaengerW. Secondary structure and temperature-induced unfolding and refolding of ribonuclease T1 in aqueous solution. A Fourier transform infrared spectroscopic study.J. Mol. Biol.1993232396798110.1006/jmbi.1993.14428355280
    [Google Scholar]
  69. VillaverdeI.J. OrtegaH. EspejelI.A. ArreolaW. JiménezG.M. RíosE. Effect of temperature on the actomyosin-paramyosin structure from giant squid mantle (Dosidicus gigas).J. Sci. Food. Agricul.2019991252495609
    [Google Scholar]
  70. VillaverdeI.J. HigueraV. BrauerJ. SaucedaI. OrtegaH. LópezJ.L. OlibarriaG. RíosE. Physicochemical characterization of actomyosin–paramyosin from giant squid mantle (Dosidicus gigas).J. Sci. Food Agric.20189851787179310.1002/jsfa.865328862326
    [Google Scholar]
  71. TreviñoM.Á. López-SánchezR. MoyaM.R. Pantoja-UcedaD. MompeánM. LaurentsD.V. Insight into polyproline II helical bundle stability in an antifreeze protein denatured state.Biophys. J.2022121234560456810.1016/j.bpj.2022.10.03436815707
    [Google Scholar]
  72. RuckerA.L. CreamerT.P. Polyproline II helical structure in protein unfolded states: Lysine peptides revisited.Protein Sci.200211498098510.1110/ps.455010211910041
    [Google Scholar]
  73. D’SouzaA.J.M. HartD.S. MiddaughC.R. GehrkeS.H. Characterization of the Changes in Secondary Structure and Architecture of Elastin−Mimetic Triblock Polypeptides during Thermal Gelation.Macromolecules200639207084709110.1021/ma060915j
    [Google Scholar]
  74. ChakravartyD. JaninJ. RobertC.H. ChakrabartiP. Changes in protein structure at the interface accompanying complex formation.IUCrJ20152664365210.1107/S205225251501525026594372
    [Google Scholar]
  75. QinZ. BuehlerM.J. Molecular dynamics simulation of the α-helix to β-sheet transition in coiled protein filaments: evidence for a critical filament length scale.Phys. Rev. Lett.20101041919830419830410.1103/PhysRevLett.104.19830420867006
    [Google Scholar]
  76. CreamerT.P. RoseG.D. Side-chain entropy opposes alpha-helix formation but rationalizes experimentally determined helix-forming propensities.Proc. Natl. Acad. Sci. USA199289135937594110.1073/pnas.89.13.59371631077
    [Google Scholar]
  77. CopelandR.A. Enzymes: a practical introduction to structure, mechanism, and data analysis.John Wiley & Sons202310.1002/9781119793304
    [Google Scholar]
  78. KangT.S. KiniR.M. Structural determinants of protein folding.Cell. Mol. Life Sci.200966142341236110.1007/s00018‑009‑0023‑519367367
    [Google Scholar]
  79. SalemmeF.R. WeatherfordD.W. Conformational and geometrical properties of β-sheets in proteins.J. Mol. Biol.1981146111914110.1016/0022‑2836(81)90369‑77265226
    [Google Scholar]
  80. Tello-SolísS.R. Schiavon-NietoS. Desplegamiento térmico de colágeno bovino tipo I.RevistaTendencias en Docencia e Investigación en Química201511219
    [Google Scholar]
  81. AhmadM. BenjakulS. Extraction and characterisation of pepsin-solubilised collagen from the skin of unicorn leatherjacket (Aluterus monocerous).Food Chem.2010120381782410.1016/j.foodchem.2009.11.019
    [Google Scholar]
  82. DillK.A. ShortleD. Denatured states of proteins.Annu. Rev. Biochem.199160179582510.1146/annurev.bi.60.070191.0040511883209
    [Google Scholar]
  83. WenJ. ArthurK. ChemmalilL. MuzammilS. GabrielsonJ. JiangY. Applications of differential scanning calorimetry for thermal stability analysis of proteins: qualification of DSC.J. Pharm. Sci.2012101395596410.1002/jps.2282022147423
    [Google Scholar]
  84. RüeggM. MoorU. BlancB. A calorimetric study of the thermal denaturation of whey proteins in simulated milk ultrafiltrate.J. Dairy Res.197744350952010.1017/S002202990002046X
    [Google Scholar]
  85. BaldwinB. Crystal structures of native and inhibited forms of human cathepsin D: Implications for lysosomal targeting and drug design.Proceed. Nat. Acad. Sci.199390146796680010.1073/pnas.90.14.6796
    [Google Scholar]
  86. RahmanS. IslamA. HassanM.I. KimJ. AhmadF. Unfoldness of the denatured state of proteins determines urea: Methylamine counteraction in terms of Gibbs free energy of stabilization.Int. J. Biol. Macromol.201913266667610.1016/j.ijbiomac.2019.03.23630946906
    [Google Scholar]
  87. MassonP. LushchekinaS. Conformational stability and denaturation processes of proteins investigated by electrophoresis under extreme conditions.Molecules20222720686110.3390/molecules2720686136296453
    [Google Scholar]
  88. SorokinaI. MushegianA.R. KooninE.V. Is protein folding a thermodynamically unfavorable, active, energy-dependent process?Int. J. Mol. Sci.202223152110.3390/ijms2301052135008947
    [Google Scholar]
  89. AnumallaB. PrabhuN.P. Counteracting effect of charged amino acids against the destabilization of proteins by arginine.Appl. Biochem. Biotechnol.2019189254155510.1007/s12010‑019‑03026‑w31056736
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037244173241206055736
Loading
/content/journals/cpps/10.2174/0113892037244173241206055736
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test