Skip to content
2000
image of Chaperones as Potential Pharmacological Targets for Treating Protein Aggregation Illness

Abstract

The three-dimensional structure of proteins, achieved through the folding of the nascent polypeptide chain , is largely facilitated by molecular chaperones, which are crucial for determining protein functionality. In addition to aiding in the folding process, chaperones target misfolded proteins for degradation, acting as a quality control system within the cell. Defective protein folding has been implicated in a wide range of clinical conditions, including neurodegenerative and metabolic disorders. It is now well understood that the pathogenesis of neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, Amyotrophic Lateral Sclerosis, and Creutzfeldt-Jakob disease shares a common mechanism: the accumulation of misfolded proteins, which aggregate and become toxic to cells. Among the family of molecular chaperones, Heat Shock Proteins (HSPs) are highly expressed in response to cellular stress and play a pivotal role in preventing protein aggregation. Specific chaperones, particularly HSPs, are now recognized as critical in halting the accumulation and aggregation of misfolded proteins in these conditions. Consequently, these chaperones are increasingly considered promising pharmacological targets for the treatment of protein aggregation-related diseases. This review highlights research exploring the potential roles of specific molecular chaperones in disorders characterized by the accumulation of misfolded proteins.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037338028241230092414
2025-01-27
2025-05-20
Loading full text...

Full text loading...

References

  1. Nassar R. Dignon G.L. Razban R.M. Dill K.A. The protein folding problem: The role of theory. J. Mol. Biol. 2021 433 20 167126 10.1016/j.jmb.2021.167126 34224747
    [Google Scholar]
  2. Dobson C.M. Karplus M. The fundamentals of protein folding: Bringing together theory and experiment. Curr. Opin. Struct. Biol. 1999 9 1 92 101 10.1016/S0959‑440X(99)80012‑8 10047588
    [Google Scholar]
  3. Makhnovskii P.A. Zgoda V.G. Bokov R.O. Shagimardanova E.I. Gazizova G.R. Gusev O.A. Lysenko E.A. Kolpakov F.A. Vinogradova O.L. Popov D.V. Regulation of proteins in human skeletal muscle: The role of transcription. Sci. Rep. 2020 10 1 3514 10.1038/s41598‑020‑60578‑2 32103137
    [Google Scholar]
  4. Stan G. Lorimer G.H. Thirumalai D. Friends in need: How chaperonins recognize and remodel proteins that require folding assistance. Front. Mol. Biosci. 2022 9 1071168 10.3389/fmolb.2022.1071168 36479385
    [Google Scholar]
  5. Grantham J. The molecular chaperone CCT/TRiC: An essential component of proteostasis and a potential modulator of protein aggregation. Front. Genet. 2020 11 172 10.3389/fgene.2020.00172 32265978
    [Google Scholar]
  6. Dahiya V. Buchner J. Functional principles and regulation of molecular chaperones. Adv. Protein Chem. Struct. Biol. 2019 114 1 60 10.1016/bs.apcsb.2018.10.001 30635079
    [Google Scholar]
  7. Imamoglu R. Balchin D. Hayer-Hartl M. Hartl F.U. Bacterial Hsp70 resolves misfolded states and accelerates productive folding of a multi-domain protein. Nat. Commun. 2020 11 1 365 10.1038/s41467‑019‑14245‑4 31953415
    [Google Scholar]
  8. Chen B. Feder M.E. Kang L. Evolution of heat‐shock protein expression underlying adaptive responses to environmental stress. Mol. Ecol. 2018 27 15 3040 3054 10.1111/mec.14769 29920826
    [Google Scholar]
  9. Kaushik S. Cuervo A.M. The coming of age of chaperone-mediated autophagy. Nat. Rev. Mol. Cell Biol. 2018 19 6 365 381 10.1038/s41580‑018‑0001‑6 29626215
    [Google Scholar]
  10. Mogk A. Bukau B. Kampinga H.H. Cellular handling of protein aggregates by disaggregation machines. Mol. Cell 2018 69 2 214 226 10.1016/j.molcel.2018.01.004 29351843
    [Google Scholar]
  11. Oikonomou C. Hendershot L.M. Disposing of misfolded ER proteins: A troubled substrate’s way out of the ER. Mol. Cell. Endocrinol. 2020 500 110630 10.1016/j.mce.2019.110630 31669350
    [Google Scholar]
  12. Adams B.M. Canniff N.P. Guay K.P. Hebert D.N. The role of endoplasmic reticulum chaperones in protein folding and quality control. Cellular biology of the endoplasmic reticulum. Cham Springer International Publishing 2021 27 50
    [Google Scholar]
  13. Vaquer-Alicea J. Diamond M.I. Propagation of protein aggregation in neurodegenerative diseases. Annu. Rev. Biochem. 2019 88 1 785 810 10.1146/annurev‑biochem‑061516‑045049 30917002
    [Google Scholar]
  14. Caballero A.B. Gamez P. Nanochaperone‐Based Strategies to Control Protein Aggregation Linked to Conformational Diseases. Angew. Chem. Int. Ed. 2021 60 1 41 52 10.1002/anie.202007924 32706460
    [Google Scholar]
  15. Alaei L. Ashengroph M. Moosavi-Movahedi A.A. The concept of protein folding/unfolding and its impacts on human health. Adv. Protein Chem. Struct. Biol. 2021 126 227 278 10.1016/bs.apcsb.2021.01.007 34090616
    [Google Scholar]
  16. Tao Y.X. Conn P.M. Pharmacoperones as novel therapeutics for diverse protein conformational diseases. Physiol. Rev. 2018 98 2 697 725 10.1152/physrev.00029.2016 29442594
    [Google Scholar]
  17. Gandhi J. Antonelli A.C. Afridi A. Vatsia S. Joshi G. Romanov V. Murray I.V.J. Khan S.A. Protein misfolding and aggregation in neurodegenerative diseases: A review of pathogeneses, novel detection strategies, and potential therapeutics. Rev. Neurosci. 2019 30 4 339 358 10.1515/revneuro‑2016‑0035 30742586
    [Google Scholar]
  18. Zhou Y. Raju R. Alves C. Gilbert A. Debottlenecking protein secretion and reducing protein aggregation in the cellular host. Curr. Opin. Biotechnol. 2018 53 151 157 10.1016/j.copbio.2018.01.007 29414073
    [Google Scholar]
  19. Margulis B. Tsimokha A. Zubova S. Guzhova I. Molecular chaperones and proteolytic machineries regulate protein homeostasis in aging cells. Cells 2020 9 5 1308 10.3390/cells9051308 32456366
    [Google Scholar]
  20. Lévy E. El Banna N. Baïlle D. Heneman-Masurel A. Truchet S. Rezaei H. Huang M.E. Béringue V. Martin D. Vernis L. Causative links between protein aggregation and oxidative stress: A review. Int. J. Mol. Sci. 2019 20 16 3896 10.3390/ijms20163896 31405050
    [Google Scholar]
  21. Hussain R. Zubair H. Pursell S. Shahab M. Neurodegenerative diseases: Regenerative mechanisms and novel therapeutic approaches. Brain Sci. 2018 8 9 177 10.3390/brainsci8090177 30223579
    [Google Scholar]
  22. Sivandzade F. Prasad S. Bhalerao A. Cucullo L. NRF2 and NF-қB interplay in cerebrovascular and neurodegenerative disorders: Molecular mechanisms and possible therapeutic approaches. Redox Biol. 2019 21 101059 10.1016/j.redox.2018.11.017 30576920
    [Google Scholar]
  23. Nascimento D.S.M. Potes C.S. Soares M.L. Ferreira A.C. Malcangio M. Castro-Lopes J.M. Neto F.L.M. Drug-induced HSP90 inhibition alleviates pain in monoarthritic rats and alters the expression of new putative pain players at the DRG. Mol. Neurobiol. 2018 55 5 3959 3975 28550532
    [Google Scholar]
  24. Wankhede N.L. Kale M.B. Upaganlawar A.B. Taksande B.G. Umekar M.J. Behl T. Abdellatif A.A.H. Bhaskaran P.M. Dachani S.R. Sehgal A. Singh S. Sharma N. Makeen H.A. Albratty M. Dailah H.G. Bhatia S. Al-Harrasi A. Bungau S. Involvement of molecular chaperone in protein-misfolding brain diseases. Biomed. Pharmacother. 2022 147 112647 10.1016/j.biopha.2022.112647 35149361
    [Google Scholar]
  25. Hofmann C. Katus H.A. Doroudgar S. Protein misfolding in cardiac disease. Circulation 2019 139 18 2085 2088 10.1161/CIRCULATIONAHA.118.037417 31034286
    [Google Scholar]
  26. Hervás R. Oroz J. Mechanistic insights into the role of molecular chaperones in protein misfolding diseases: From molecular recognition to amyloid disassembly. Int. J. Mol. Sci. 2020 21 23 9186 10.3390/ijms21239186 33276458
    [Google Scholar]
  27. Ogunmokun G. Dewanjee S. Chakraborty P. Valupadas C. Chaudhary A. Kolli V. Anand U. Vallamkondu J. Goel P. Paluru H.P.R. Gill K.D. Reddy P.H. De Feo V. Kandimalla R. The potential role of cytokines and growth factors in the pathogenesis of Alzheimer’s disease. Cells 2021 10 10 2790 10.3390/cells10102790 34685770
    [Google Scholar]
  28. Chaudhury S. Keegan B.M. Blagg B.S.J. The role and therapeutic potential of Hsp90, Hsp70, and smaller heat shock proteins in peripheral and central neuropathies. Med. Res. Rev. 2021 41 1 202 222 10.1002/med.21729 32844464
    [Google Scholar]
  29. Sajjad R. Arif R. Shah A.A. Manzoor I. Mustafa G. Pathogenesis of Alzheimer’s disease: Role of amyloid-beta and hyperphosphorylated tau protein. Indian J. Pharm. Sci. 2018 80 4 581 591 10.4172/pharmaceutical‑sciences.1000397
    [Google Scholar]
  30. Turab Naqvi A.A. Hasan G.M. Hassan M.I. Targeting Tau hyperphosphorylation via kinase inhibition: Strategy to address alzheimer’s disease. Curr. Top. Med. Chem. 2020 20 12 1059 1073 10.2174/1568026620666200106125910 31903881
    [Google Scholar]
  31. Stefanoska K. Gajwani M. Tan A.R.P. Ahel H.I. Asih P.R. Volkerling A. Poljak A. Ittner A. Alzheimer’s disease: Ablating single master site abolishes tau hyperphosphorylation. Sci. Adv. 2022 8 27 eabl8809 10.1126/sciadv.abl8809 35857446
    [Google Scholar]
  32. Rao C.V. Asch A.S. Carr D.J.J. Yamada H.Y. “Amyloid‐beta accumulation cycle” as a prevention and/or therapy target for Alzheimer’s disease. Aging Cell 2020 19 3 e13109 10.1111/acel.13109 31981470
    [Google Scholar]
  33. Cheignon C. Tomas M. Bonnefont-Rousselot D. Faller P. Hureau C. Collin F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol. 2018 14 450 464 10.1016/j.redox.2017.10.014 29080524
    [Google Scholar]
  34. Karmakar S. Sharma L.G. Roy A. Patel A. Pandey L.M. Neuronal SNARE complex: A protein folding system with intricate protein-protein interactions, and its common neuropathological hallmark, SNAP25. Neurochem. Int. 2019 122 196 207 10.1016/j.neuint.2018.12.001 30517887
    [Google Scholar]
  35. Mondragón-Rodríguez S. Salas-Gallardo A. González-Pereyra P. Macías M. Ordaz B. Peña-Ortega F. Aguilar-Vázquez A. Orta-Salazar E. Díaz-Cintra S. Perry G. Williams S. Phosphorylation of Tau protein correlates with changes in hippocampal theta oscillations and reduces hippocampal excitability in Alzheimer’s model. J. Biol. Chem. 2018 293 22 8462 8472 10.1074/jbc.RA117.001187 29632073
    [Google Scholar]
  36. Wegmann S. Biernat J. Mandelkow E. A current view on Tau protein phosphorylation in Alzheimer’s disease. Curr. Opin. Neurobiol. 2021 69 131 138 10.1016/j.conb.2021.03.003 33892381
    [Google Scholar]
  37. Chidambaram H. Chinnathambi S. G-protein coupled receptors and tau-different roles in Alzheimer’s disease. Neuroscience 2020 438 198 214 10.1016/j.neuroscience.2020.04.019 32335218
    [Google Scholar]
  38. Rawat P. Sehar U. Bisht J. Selman A. Culberson J. Reddy P.H. Phosphorylated tau in Alzheimer’s disease and other tauopathies. Int. J. Mol. Sci. 2022 23 21 12841 10.3390/ijms232112841 36361631
    [Google Scholar]
  39. Sakahira H. Breuer P. Hayer-Hartl M.K. Hartl F.U. Molecular chaperones as modulators of polyglutamine protein aggregation and toxicity. Proc. Natl. Acad. Sci. USA 2002 99 Suppl 4 Suppl. 4 16412 16418 10.1073/pnas.182426899 12189209
    [Google Scholar]
  40. Ben-Zvi A.P. Goloubinoff P. Review: Mechanisms of disaggregation and refolding of stable protein aggregates by molecular chaperones. J. Struct. Biol. 2001 135 2 84 93 10.1006/jsbi.2001.4352 11580258
    [Google Scholar]
  41. Otero-Garcia M. Mahajani S.U. Wakhloo D. Tang W. Xue Y.Q. Morabito S. Pan J. Oberhauser J. Madira A.E. Shakouri T. Deng Y. Allison T. He Z. Lowry W.E. Kawaguchi R. Swarup V. Cobos I. Molecular signatures underlying neurofibrillary tangle susceptibility in Alzheimer’s disease. Neuron 2022 110 18 2929 2948.e8 10.1016/j.neuron.2022.06.021 35882228
    [Google Scholar]
  42. Rahman M.M. Lendel C. Extracellular protein components of amyloid plaques and their roles in Alzheimer’s disease pathology. Mol. Neurodegener. 2021 16 1 59 10.1186/s13024‑021‑00465‑0 34454574
    [Google Scholar]
  43. Yang H. Li X. Zhu L. Wu X. Zhang S. Huang F. Feng X. Shi L. Heat shock protein inspired nanochaperones restore amyloid‐β homeostasis for preventative therapy of Alzheimer’s disease. Adv. Sci. (Weinh.) 2019 6 22 1901844 10.1002/advs.201901844 31763156
    [Google Scholar]
  44. Carvalho D. Diaz-Amarilla P. Dapueto R. Santi M.D. Duarte P. Savio E. Engler H. Abin-Carriquiry J.A. Arredondo F. Transcriptomic analyses of neurotoxic astrocytes derived from adult triple transgenic alzheimer’s disease mice. J. Mol. Neurosci. 2023 73 7-8 487 515 10.1007/s12031‑023‑02105‑2 37318736
    [Google Scholar]
  45. Chandel T.I. Zaman M. Khan M.V. Ali M. Rabbani G. Ishtikhar M. Khan R.H. A mechanistic insight into protein-ligand interaction, folding, misfolding, aggregation and inhibition of protein aggregates: An overview. Int. J. Biol. Macromol. 2018 106 1115 1129 10.1016/j.ijbiomac.2017.07.185 28890370
    [Google Scholar]
  46. Dubey M. Kushwaha M. Amaan M. Dangi M.S. Kesharwani S. Review on mechanism of action of Alzheimer disease. Int. J. Med. Pharm. Res. 2023 7 5 67 73
    [Google Scholar]
  47. Jiménez J.S. Macromolecular structures and proteins interacting with the microtubule associated tau protein. Neuroscience 2023 518 70 82 10.1016/j.neuroscience.2022.05.023 35609757
    [Google Scholar]
  48. Nehlin J.O. Krøll J. Model of Chaperones in Aging. Conn’s Handbook of Models for Human Aging. Academic Press 2018 1095 1115
    [Google Scholar]
  49. Chaari A. Molecular chaperones biochemistry and role in neurodegenerative diseases. Int. J. Biol. Macromol. 2019 131 396 411 10.1016/j.ijbiomac.2019.02.148 30853582
    [Google Scholar]
  50. Campanella C. Pace A. Caruso Bavisotto C. Marzullo P. Marino Gammazza A. Buscemi S. Palumbo Piccionello A. Heat shock proteins in Alzheimer’s disease: Role and targeting. Int. J. Mol. Sci. 2018 19 9 2603 10.3390/ijms19092603 30200516
    [Google Scholar]
  51. Zhang J. Li H. Liu Y. Zhao K. Wei S. Sugarman E.T. Liu L. Zhang G. Targeting HSP90 as a Novel Therapy for Cancer: Mechanistic Insights and Translational Relevance. Cells 2022 11 18 2778 10.3390/cells11182778 36139353
    [Google Scholar]
  52. Yamamoto Y. Hosoda K. Imahori T. Tanaka J. Matsuo K. Nakai T. Irino Y. Shinohara M. Sato N. Sasayama T. Tanaka K. Nagashima H. Kohta M. Kohmura E. Pentose phosphate pathway activation via HSP27 phosphorylation by ATM kinase: A putative endogenous antioxidant defense mechanism during cerebral ischemia-reperfusion. Brain Res. 2018 1687 82 94 10.1016/j.brainres.2018.03.001 29510140
    [Google Scholar]
  53. Beretta G. Shala A.L. Impact of heat shock proteins in neurodegeneration: Possible therapeutical targets. Ann. Neurosci. 2022 29 1 71 82 10.1177/09727531211070528 35875428
    [Google Scholar]
  54. Tittelmeier J. Sandhof C.A. Ries H.M. Druffel-Augustin S. Mogk A. Bukau B. Nussbaum-Krammer C. The HSP110/HSP70 disaggregation system generates spreading‐competent toxic α‐synuclein species. EMBO J. 2020 39 13 e103954 10.15252/embj.2019103954 32449565
    [Google Scholar]
  55. Hayashi J. Carver J.A. The multifaceted nature of αB-crystallin. Cell Stress Chaperones 2020 25 4 639 654 10.1007/s12192‑020‑01098‑w 32383140
    [Google Scholar]
  56. Hu C. Yang J. Qi Z. Wu H. Wang B. Zou F. Mei H. Liu J. Wang W. Liu Q. Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. MedComm 2022 3 3 e161 10.1002/mco2.161 35928554
    [Google Scholar]
  57. Breijyeh Z. Karaman R. Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules 2020 25 24 5789 10.3390/molecules25245789 33302541
    [Google Scholar]
  58. Dominguez-Meijide A. Vasili E. Outeiro T.F. Pharmacological modulators of tau aggregation and spreading. Brain Sci. 2020 10 11 858 10.3390/brainsci10110858 33203009
    [Google Scholar]
  59. Rutledge B.S. Choy W.Y. Duennwald M.L. Folding or holding?—Hsp70 and Hsp90 chaperoning of misfolded proteins in neurodegenerative disease. J. Biol. Chem. 2022 298 5 101905 10.1016/j.jbc.2022.101905 35398094
    [Google Scholar]
  60. Wang L. Bergkvist L. Kumar R. Winblad B. Pavlov P.F. Targeting chaperone/Co-chaperone interactions with small molecules: A novel approach to tackle neurodegenerative diseases. Cells 2021 10 10 2596 10.3390/cells10102596 34685574
    [Google Scholar]
  61. Lyon M.S. Milligan C. Extracellular heat shock proteins in neurodegenerative diseases: New perspectives. Neurosci. Lett. 2019 711 134462 10.1016/j.neulet.2019.134462 31476356
    [Google Scholar]
  62. Koren J Blagg BS The right tool for the job: An overview of Hsp90 inhibitors. HSF1 and Molecular Chaperones in Biology and Cancer 2020 135 46 10.1007/978‑3‑030‑40204‑4_9
    [Google Scholar]
  63. Dutta Gupta S. Pan C.H. Recent update on discovery and development of Hsp90 inhibitors as senolytic agents. Int. J. Biol. Macromol. 2020 161 1086 1098 10.1016/j.ijbiomac.2020.06.115 32561284
    [Google Scholar]
  64. Chatterjee B.K. Jayaraj A. Kumar V. Blagg B. Davis R.E. Jayaram B. Deep S. Chaudhuri T.K. Stimulation of heat shock protein 90 chaperone function through binding of a novobiocin analog KU-32. J. Biol. Chem. 2019 294 16 6450 6467 10.1074/jbc.RA118.002502 30792306
    [Google Scholar]
  65. Maiti P. Dunbar G. Use of curcumin, a natural polyphenol for targeting molecular pathways in treating age-related neurodegenerative diseases. Int. J. Mol. Sci. 2018 19 6 1637 10.3390/ijms19061637 29857538
    [Google Scholar]
  66. Takke A. Shende P. Nanotherapeutic silibinin: An insight of phytomedicine in healthcare reformation. Nanomedicine 2019 21 102057 10.1016/j.nano.2019.102057 31340181
    [Google Scholar]
  67. Sinyor B. Mineo J. Ochner C. Alzheimer’s disease, inflammation, and the role of antioxidants. J. Alzheimers Dis. Rep. 2020 4 1 175 183 10.3233/ADR‑200171 32715278
    [Google Scholar]
  68. He Y. Li H. Huang J. Huang S. Bai Y. Li Y. Huang W. Efficacy of antidepressant drugs in the treatment of depression in Alzheimer disease patients: A systematic review and network meta-analysis. J. Psychopharmacol. 2021 35 8 901 909 10.1177/02698811211030181 34238048
    [Google Scholar]
  69. Dumurgier J. Tzourio C. Epidemiology of neurological diseases in older adults. Rev. Neurol. (Paris) 2020 176 9 642 648 10.1016/j.neurol.2020.01.356 32145981
    [Google Scholar]
  70. Wentink A. Nussbaum-Krammer C. Bukau B. Modulation of amyloid states by molecular chaperones. Cold Spring Harb. Perspect. Biol. 2019 11 7 a033969 10.1101/cshperspect.a033969 30755450
    [Google Scholar]
  71. Haque M.E. Akther M. Azam S. Kim I.S. Lin Y. Lee Y.H. Choi D.K. Targeting α‐synuclein aggregation and its role in mitochondrial dysfunction in Parkinson’s disease. Br. J. Pharmacol. 2022 179 1 23 45 10.1111/bph.15684 34528272
    [Google Scholar]
  72. Marsh A.P. Molecular mechanisms of proteinopathies across neurodegenerative disease: A review. Neurol. Res. Pract. 2019 1 1 35 10.1186/s42466‑019‑0039‑8 33324900
    [Google Scholar]
  73. Ryder B.D. Wydorski P.M. Hou Z. Joachimiak L.A. Chaperoning shape-shifting tau in disease. Trends Biochem. Sci. 2022 47 4 301 313 10.1016/j.tibs.2021.12.009 35045944
    [Google Scholar]
  74. Le S. Fu X. Pang M. Zhou Y. Yin G. Zhang J. Fan D. The antioxidative role of chaperone-mediated autophagy as a downstream regulator of oxidative stress in human diseases. Technol. Cancer Res. Treat. 2022 21 15330338221114178 10.1177/15330338221114178 36131551
    [Google Scholar]
  75. Trinh J. Zeldenrust F.M.J. Huang J. Kasten M. Schaake S. Petkovic S. Madoev H. Grünewald A. Almuammar S. König I.R. Lill C.M. Lohmann K. Klein C. Marras C. Genotype‐phenotype relations for the Parkinson’s disease genes SNCA, LRRK2, VPS35: MDSGene systematic review. Mov. Disord. 2018 33 12 1857 1870 10.1002/mds.27527 30357936
    [Google Scholar]
  76. Elmansy M.F. Reidl C.T. Rahaman M. Özdinler P.H. Silverman R.B. Small molecules targeting different cellular pathologies for the treatment of amyotrophic lateral sclerosis. Med. Res. Rev. 2023 43 6 2260 2302 10.1002/med.21974 37243319
    [Google Scholar]
  77. Sinnige T Yu A Morimoto RI Challenging proteostasis: Role of the chaperone network to control aggregation-prone proteins in human disease. HSF1 and Molecular Chaperones in Biology and Cancer 2020 53 68 10.1007/978‑3‑030‑40204‑4_4
    [Google Scholar]
  78. Prymaczok N.C. Riek R. Gerez J. More than a rumor spreads in Parkinson’s disease. Front. Hum. Neurosci. 2016 10 608 10.3389/fnhum.2016.00608 27994545
    [Google Scholar]
  79. Shen L. Wang C. Chen L. Leung K.L. Lo E. Lakso M. Wong G. TDP-1/TDP-43 potentiates human α-Synuclein (HASN) neurodegeneration in Caenorhabditis elegans. Biochim. Biophys. Acta Mol. Basis Dis. 2020 1866 10 165876 10.1016/j.bbadis.2020.165876 32531261
    [Google Scholar]
  80. Jia C. Ma X. Liu Z. Gu J. Zhang X. Li D. Zhang S. Different heat shock proteins bind α-Synuclein with distinct mechanisms and synergistically prevent its amyloid aggregation. Front. Neurosci. 2019 13 1124 10.3389/fnins.2019.01124 31749672
    [Google Scholar]
  81. Cox D. Whiten D.R. Brown J.W.P. Horrocks M.H. San Gil R. Dobson C.M. Klenerman D. van Oijen A.M. Ecroyd H. The small heat shock protein Hsp27 binds α-synuclein fibrils, preventing elongation and cytotoxicity. J. Biol. Chem. 2018 293 12 4486 4497 10.1074/jbc.M117.813865 29382725
    [Google Scholar]
  82. Miranda H.V. Chegão A. Oliveira M. Gomes B.F. Enguita F.J. Outeiro T.F. Hsp27 reduces glycation-induced toxicity and aggregation of α-synuclein. bioRxiv 2020 2020 03 10.1101/2020.03.03.975037
    [Google Scholar]
  83. Outeiro T.F. Klucken J. Strathearn K.E. Liu F. Nguyen P. Rochet J.C. Hyman B.T. McLean P.J. Small heat shock proteins protect against α-synuclein-induced toxicity and aggregation. Biochem. Biophys. Res. Commun. 2006 351 3 631 638 10.1016/j.bbrc.2006.10.085 17081499
    [Google Scholar]
  84. Zourlidou A. Payne Smith M.D. Latchman D.S. HSP27 but not HSP70 has a potent protective effect against α‐synuclein‐induced cell death in mammalian neuronal cells. J. Neurochem. 2004 88 6 1439 1448 10.1046/j.1471‑4159.2003.02273.x 15009645
    [Google Scholar]
  85. Bruinsma I.B. Bruggink K.A. Kinast K. Versleijen A.A.M. Segers-Nolten I.M.J. Subramaniam V. Bea Kuiperij H. Boelens W. de Waal R.M.W. Verbeek M.M. Inhibition of α‐synuclein aggregation by small heat shock proteins. Proteins 2011 79 10 2956 2967 10.1002/prot.23152 21905118
    [Google Scholar]
  86. Arkan S. Ljungberg M. Kirik D. Hansen C. DNAJB6 suppresses alpha-synuclein induced pathology in an animal model of Parkinson’s disease. Neurobiol. Dis. 2021 158 105477 10.1016/j.nbd.2021.105477 34390836
    [Google Scholar]
  87. Burmann B.M. Gerez J.A. Matečko-Burmann I. Campioni S. Kumari P. Ghosh D. Mazur A. Aspholm E.E. Šulskis D. Wawrzyniuk M. Bock T. Schmidt A. Rüdiger S.G.D. Riek R. Hiller S. Regulation of α-synuclein by chaperones in mammalian cells. Nature 2020 577 7788 127 132 10.1038/s41586‑019‑1808‑9 31802003
    [Google Scholar]
  88. Bohush A. Filipek A. HSP90 co-chaperone, CacyBP/SIP, protects α-synuclein from aggregation. Cells 2020 9 10 2254 10.3390/cells9102254 33049998
    [Google Scholar]
  89. Lassen L.B. Reimer L. Ferreira N. Betzer C. Jensen P.H. Protein partners of α‐synuclein in health and disease. Brain Pathol. 2016 26 3 389 397 10.1111/bpa.12374 26940507
    [Google Scholar]
  90. Kabakov A. Yakimova A. Matchuk O. Molecular chaperones in cancer stem cells: Determinants of stemness and potential targets for antitumor therapy. Cells 2020 9 4 892 10.3390/cells9040892 32268506
    [Google Scholar]
  91. Shevtsov M. Multhoff G. Mikhaylova E. Shibata A. Guzhova I. Margulis B. Combination of anti-cancer drugs with molecular chaperone inhibitors. Int. J. Mol. Sci. 2019 20 21 5284 10.3390/ijms20215284 31652993
    [Google Scholar]
  92. Bae E.J. Kim D.K. Kim C. Mante M. Adame A. Rockenstein E. Ulusoy A. Klinkenberg M. Jeong G.R. Bae J.R. Lee C. Lee H.J. Lee B.D. Di Monte D.A. Masliah E. Lee S.J. LRRK2 kinase regulates α-synuclein propagation via RAB35 phosphorylation. Nat. Commun. 2018 9 1 3465 10.1038/s41467‑018‑05958‑z 30150626
    [Google Scholar]
  93. Lang M. Pramstaller P.P. Pichler I. Crosstalk of organelles in Parkinson’s disease – MiT family transcription factors as central players in signaling pathways connecting mitochondria and lysosomes. Mol. Neurodegener. 2022 17 1 50 10.1186/s13024‑022‑00555‑7 34991663
    [Google Scholar]
  94. Stathopoulos C. Giarimoglou N. Kouvela A. Alexiou A. Stamatopoulou V. MicroRNAs in Neurodegenerative Diseases. Handbook of Computational Neurodegeneration. Cham Springer International Publishing 2021 1 47
    [Google Scholar]
  95. Wetzel R. Exploding the repeat length paradigm while exploring amyloid toxicity in Huntington’s disease. Acc. Chem. Res. 2020 53 10 2347 2357 10.1021/acs.accounts.0c00450 32975927
    [Google Scholar]
  96. Wanker E.E. Ast A. Schindler F. Trepte P. Schnoegl S. The pathobiology of perturbed mutant huntingtin protein–protein interactions in Huntington’s disease. J. Neurochem. 2019 151 4 507 519 10.1111/jnc.14853 31418858
    [Google Scholar]
  97. Kumar V. Sami N. Kashav T. Islam A. Ahmad F. Hassan M.I. Protein aggregation and neurodegenerative diseases: From theory to therapy. Eur. J. Med. Chem. 2016 124 1105 1120 10.1016/j.ejmech.2016.07.054 27486076
    [Google Scholar]
  98. Kakkar V. Kuiper E.F.E. Pandey A. Braakman I. Kampinga H.H. Versatile members of the DNAJ family show Hsp70 dependent anti-aggregation activity on RING1 mutant parkin C289G. Sci. Rep. 2016 6 1 34830 10.1038/srep34830 27713507
    [Google Scholar]
  99. Takeuchi T. Nagai Y. Protein misfolding and aggregation as a therapeutic target for polyglutamine diseases. Brain Sci. 2017 7 10 128 10.3390/brainsci7100128 29019918
    [Google Scholar]
  100. Kevei É. Pokrzywa W. Hoppe T. Repair or destruction—an intimate liaison between ubiquitin ligases and molecular chaperones in proteostasis. FEBS Lett. 2017 591 17 2616 2635 10.1002/1873‑3468.12750 28699655
    [Google Scholar]
  101. Kampinga H.H. Bergink S. Heat shock proteins as potential targets for protective strategies in neurodegeneration. Lancet Neurol. 2016 15 7 748 759 10.1016/S1474‑4422(16)00099‑5 27106072
    [Google Scholar]
  102. Davis A.K. Pratt W.B. Lieberman A.P. Osawa Y. Targeting Hsp70 facilitated protein quality control for treatment of polyglutamine diseases. Cell. Mol. Life Sci. 2020 77 6 977 996 10.1007/s00018‑019‑03302‑2 31552448
    [Google Scholar]
  103. Kuiper E.F.E. de Mattos E.P. Jardim L.B. Kampinga H.H. Bergink S. Chaperones in polyglutamine aggregation: Beyond the Q-stretch. Front. Neurosci. 2017 11 145 10.3389/fnins.2017.00145 28386214
    [Google Scholar]
  104. Arghavani P. Pirhaghi M. Moosavi-Movahedi F. Mamashli F. Hosseini E. Moosavi-Movahedi A.A. Amyloid management by chaperones: The mystery underlying protein oligomers’ dual functions. Curr. Res. Struct. Biol. 2022 4 356 364 10.1016/j.crstbi.2022.11.002 36523328
    [Google Scholar]
  105. Mannini B. Chiti F. Chaperones as suppressors of protein misfolded oligomer toxicity. Front. Mol. Neurosci. 2017 10 98 10.3389/fnmol.2017.00098 28424588
    [Google Scholar]
  106. Priya S. Sharma S.K. Goloubinoff P. Molecular chaperones as enzymes that catalytically unfold misfolded polypeptides. FEBS Lett. 2013 587 13 1981 1987 10.1016/j.febslet.2013.05.014 23684649
    [Google Scholar]
  107. Tam S. Geller R. Spiess C. Frydman J. The chaperonin TRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions. Nat. Cell Biol. 2006 8 10 1155 1162 10.1038/ncb1477 16980959
    [Google Scholar]
  108. Williams A.J. Paulson H.L. Polyglutamine neurodegeneration: Protein misfolding revisited. Trends Neurosci. 2008 31 10 521 528 10.1016/j.tins.2008.07.004 18778858
    [Google Scholar]
  109. Kurop M.K. Huyen C.M. Kelly J.H. Blagg B.S.J. The heat shock response and small molecule regulators. Eur. J. Med. Chem. 2021 226 113846 10.1016/j.ejmech.2021.113846 34563965
    [Google Scholar]
  110. Yadav K. Yadav A. Vashistha P. Pandey V.P. Dwivedi U.N. Protein misfolding diseases and therapeutic approaches. Curr. Protein Pept. Sci. 2019 20 12 1226 1245 10.2174/1389203720666190610092840 31187709
    [Google Scholar]
  111. Mathis S. Goizet C. Soulages A. Vallat J.M. Masson G.L. Genetics of amyotrophic lateral sclerosis: A review. J. Neurol. Sci. 2019 399 217 226 10.1016/j.jns.2019.02.030 30870681
    [Google Scholar]
  112. Felgoise S.H. Feinberg R. Stephens H.E. Barkhaus P. Boylan K. Caress J. Clawson L.L. Elman L. Goutman S.A. Mccluskey L. Russell J. Tiryaki E. Weiss M. Simmons Z. Amyotrophic lateral sclerosis–specific quality of life–short form (ALSSQOL‐SF): A brief, reliable, and valid version of the ALSSQOL‐R. Muscle Nerve 2018 58 5 646 654 10.1002/mus.26203 30028537
    [Google Scholar]
  113. Brenner D. Freischmidt A. Update on genetics of amyotrophic lateral sclerosis. Curr. Opin. Neurol. 2022 35 5 672 677 10.1097/WCO.0000000000001093 35942673
    [Google Scholar]
  114. López-Pingarrón L. Almeida H. Soria-Aznar M. Reyes-Gonzales M.C. Terrón M.P. García J.J. Role of Oxidative Stress on the Etiology and Pathophysiology of Amyotrophic Lateral Sclerosis (ALS) and Its Relation with the Enteric Nervous System. Curr. Issues Mol. Biol. 2023 45 4 3315 3332 10.3390/cimb45040217 37185741
    [Google Scholar]
  115. Morgan S. Orrell R.W. Pathogenesis of amyotrophic lateral sclerosis. Br. Med. Bull. 2016 119 1 87 98 10.1093/bmb/ldw026 27450455
    [Google Scholar]
  116. Maragakis N.J. Galvez-Jimenez N. Eichler A.F. Epidemiology and pathogenesis of amyotrophic lateral sclerosis. Uptodate. 2018
    [Google Scholar]
  117. Meriin A.B. Sherman M.Y. Role of molecular chaperones in neurodegenerative disorders. Int. J. Hyperthermia 2005 21 5 403 419 10.1080/02656730500041871 16048838
    [Google Scholar]
  118. Takeuchi H. Kobayashi Y. Yoshihara T. Niwa J. Doyu M. Ohtsuka K. Sobue G. Hsp70 and Hsp40 improve neurite outgrowth and suppress intracytoplasmic aggregate formation in cultured neuronal cells expressing mutant SOD1. Brain Res. 2002 949 1-2 11 22 10.1016/S0006‑8993(02)02568‑4 12213295
    [Google Scholar]
  119. Yerbury J.J. Gower D. Vanags L. Roberts K. Lee J.A. Ecroyd H. The small heat shock proteins αB-crystallin and Hsp27 suppress SOD1 aggregation in vitro. Cell Stress Chaperones 2013 18 2 251 257 10.1007/s12192‑012‑0371‑1 22993064
    [Google Scholar]
  120. Kalmar B. Kieran D. Greensmith L. Molecular chaperones as therapeutic targets in amyotrophic lateral sclerosis. Biochem. Soc. Trans. 2005 33 Pt 4 551 2 10.1042/BST0330551
    [Google Scholar]
  121. Brown P. Environmentally acquired transmissible spongiform encephalopathy. Prions and Diseases 2023 Springer International Publishing Cham 10.1007/978‑3‑031‑20565‑1_11
    [Google Scholar]
  122. Seed C.R. Hewitt P.E. Dodd R.Y. Houston F. Cervenakova L. Creutzfeldt‐Jakob disease and blood transfusion safety. Vox Sang. 2018 113 3 220 231 10.1111/vox.12631 29359329
    [Google Scholar]
  123. Kathiriya JB Shah NM Sindhi SH Trangadia BJ Tajapara MM Vagh AA Bhedi KR Transmissible spongiform encephalopathies: Emerging threats 2020 64 71
    [Google Scholar]
  124. Wang Z. Manca M. Foutz A. Camacho M.V. Raymond G.J. Race B. Orru C.D. Yuan J. Shen P. Li B. Lang Y. Dang J. Adornato A. Williams K. Maurer N.R. Gambetti P. Xu B. Surewicz W. Petersen R.B. Dong X. Appleby B.S. Caughey B. Cui L. Kong Q. Zou W.Q. Early preclinical detection of prions in the skin of prion-infected animals. Nat. Commun. 2019 10 1 247 10.1038/s41467‑018‑08130‑9 30651538
    [Google Scholar]
  125. Ironside J.W. Ritchie D.L. Head M.W. Prion diseases. Handb. Clin. Neurol. 2018 145 393 403 10.1016/B978‑0‑12‑802395‑2.00028‑6 28987186
    [Google Scholar]
  126. Brandel JP Knight R Variant Creutzfeldt–Jakob disease. Handb Clin Neurol 2018 153 191 205 10.1016/B978‑0‑444‑63945‑5.00011‑8
    [Google Scholar]
  127. Meier P. Genoud N. Prinz M. Maissen M. Rülicke T. Zurbriggen A. Raeber A.J. Aguzzi A. Soluble dimeric prion protein binds PrP(Sc) in vivo and antagonizes prion disease. Cell 2003 113 1 49 60 10.1016/S0092‑8674(03)00201‑0 12679034
    [Google Scholar]
  128. Goold R. Rabbanian S. Sutton L. Andre R. Arora P. Moonga J. Clarke A.R. Schiavo G. Jat P. Collinge J. Tabrizi S.J. Rapid cell-surface prion protein conversion revealed using a novel cell system. Nat. Commun. 2011 2 1 281 10.1038/ncomms1282 21505437
    [Google Scholar]
  129. Honda H. Mori S. Watanabe A. Sasagasako N. Sadashima S. Đồng T. Satoh K. Nishida N. Iwaki T. Abnormal prion protein deposits with high seeding activities in the skeletal muscle, femoral nerve, and scalp of an autopsied case of sporadic Creutzfeldt–Jakob disease. Neuropathology 2021 41 2 152 158 10.1111/neup.12717 33543531
    [Google Scholar]
  130. Joshi T. Ahuja N. The prion basis of progressive neurodegenerative disorders. Interdiscip. Perspect. Infect. Dis. 2023 2023 1 1 5 10.1155/2023/6687264 36825209
    [Google Scholar]
  131. Scheckel C. Aguzzi A. Prions, prionoids and protein misfolding disorders. Nat. Rev. Genet. 2018 19 7 405 418 10.1038/s41576‑018‑0011‑4 29713012
    [Google Scholar]
  132. Abrams J. Arhar T. Mok S.A. Taylor I.R. Kampmann M. Gestwicki J.E. Functional genomics screen identifies proteostasis targets that modulate prion protein (PrP) stability. Cell Stress Chaperones 2021 26 2 443 452 10.1007/s12192‑021‑01191‑8 33547632
    [Google Scholar]
  133. Hara H. Sakaguchi S. Virus infection, genetic mutations, and prion infection in prion protein conversion. Int. J. Mol. Sci. 2021 22 22 12439 10.3390/ijms222212439 34830321
    [Google Scholar]
  134. Spagnolli G. Rigoli M. Orioli S. Sevillano A.M. Faccioli P. Wille H. Biasini E. Requena J.R. Full atomistic model of prion structure and conversion. PLoS Pathog. 2019 15 7 e1007864 10.1371/journal.ppat.1007864 31295325
    [Google Scholar]
  135. Chandrasekaran P. Santosh Kumar C. Rangachari K. Sekar K. Disassociation of β1-α1-β2 from the α2-α3 domain of prion protein (PrP) is a prerequisite for the conformational conversion of PrPC into PrPSc: Driven by the free energy landscape. Int. J. Biol. Macromol. 2019 136 368 376 10.1016/j.ijbiomac.2019.06.099 31207327
    [Google Scholar]
  136. Feder M.E. Parsell D.A. Lindquist S.L. The stress response and stress proteins. Cell biology of trauma. CRC Press 2020 177 191
    [Google Scholar]
  137. Shim K.H. Sharma N. An S.S.A. Prion therapeutics: Lessons from the past. Prion 2022 16 1 265 294 10.1080/19336896.2022.2153551 36515657
    [Google Scholar]
  138. Staderini M. Vanni S. Baldeschi A.C. Giachin G. Zattoni M. Celauro L. Ferracin C. Bistaffa E. Moda F. Pérez D.I. Martínez A. Martín M.A. Martín-Cámara O. Cores Á. Bianchini G. Kammerer R. Menéndez J.C. Legname G. Bolognesi M.L. Bifunctional carbazole derivatives for simultaneous therapy and fluorescence imaging in prion disease murine cell models. Eur. J. Med. Chem. 2023 245 Pt 1 114923 10.1016/j.ejmech.2022.114923 36423450
    [Google Scholar]
  139. Voisine C. Pedersen J.S. Morimoto R.I. Chaperone networks: Tipping the balance in protein folding diseases. Neurobiol. Dis. 2010 40 1 12 20 10.1016/j.nbd.2010.05.007 20472062
    [Google Scholar]
  140. Blair L.J. Sabbagh J.J. Dickey C.A. Targeting Hsp90 and its co-chaperones to treat Alzheimer’s disease. Expert Opin. Ther. Targets 2014 18 10 1219 1232 10.1517/14728222.2014.943185 25069659
    [Google Scholar]
  141. Tan J.S.Y. Lee B. Lim J. Ma D.R. Goh J.X. Goh S.Y. Gulam M.Y. Koh S.M. Lee W.W. Feng L. Wang Q. Chao Y. Rötzschke O. Tan E.K. Parkinson’s disease-specific autoantibodies against the neuroprotective co-chaperone STIP1. Cells 2022 11 10 1649 10.3390/cells11101649 35626686
    [Google Scholar]
  142. Pratt W.B. Gestwicki J.E. Osawa Y. Lieberman A.P. Targeting Hsp90/Hsp70-based protein quality control for treatment of adult onset neurodegenerative diseases. Annu. Rev. Pharmacol. Toxicol. 2015 55 1 353 371 10.1146/annurev‑pharmtox‑010814‑124332 25292434
    [Google Scholar]
  143. Batulan Z. Taylor D.M. Aarons R.J. Minotti S. Doroudchi M.M. Nalbantoglu J. Durham H.D. Induction of multiple heat shock proteins and neuroprotection in a primary culture model of familial amyotrophic lateral sclerosis. Neurobiol. Dis. 2006 24 2 213 225 10.1016/j.nbd.2006.06.017 16950627
    [Google Scholar]
  144. Thackray A.M. Lam B. McNulty E.E. Nalls A.V. Mathiason C.K. Magadi S.S. Jackson W.S. Andréoletti O. Marrero-Winkens C. Schätzl H. Bujdoso R. Clearance of variant Creutzfeldt–Jakob disease prions in vivo by the Hsp70 disaggregase system. Brain 2022 145 9 3236 3249 10.1093/brain/awac144 35446941
    [Google Scholar]
  145. Stone D.L. Slavotinek A. Bouffard G.G. Banerjee-Basu S. Baxevanis A.D. Barr M. Biesecker L.G. Mutation of a gene encoding a putative chaperonin causes McKusick-Kaufman syndrome. Nat. Genet. 2000 25 1 79 82 10.1038/75637 10802661
    [Google Scholar]
  146. Gnanasekaran H. Chandrasekhar S.P. Kandeeban S. Periyasamy P. Bhende M. Khetan V. Gupta N. Kabra M. Namboothri S. Sen P. Sripriya S. Mutation profile of Bardet‐Biedl syndrome patients from India: Implicative role of multiallelic rare variants and oligogenic inheritance pattern. Clin. Genet. 2023 104 4 443 460 10.1111/cge.14398 37431782
    [Google Scholar]
  147. Winter L. Staszewska-Daca I. Zittrich S. Elhamine F. Zrelski M.M. Schmidt K. Fischer I. Jüngst C. Schauss A. Goldmann W.H. Stehle R. Wiche G. Z-disk-associated plectin (isoform 1d): spatial arrangement, interaction partners, and role in filamin C homeostasis. Cells 2023 12 9 1259 10.3390/cells12091259 37174658
    [Google Scholar]
  148. Khidiyatova I. Khidiyatova I. Zinchenko R. Marakhonov A. Karunas A. Avkhadeeva S. Aznzbaev M. Khusnutdinova E. Study of the molecular nature of congenital cataracts in patients from the volga–ural region. Curr. Issues Mol. Biol. 2023 45 6 5145 5163 10.3390/cimb45060327 37367076
    [Google Scholar]
  149. moody M. Hosseini M. Deezagi A. Yaghmaei P. Houshmand S.M. The Genetic Basis of Galactosemia in Iranian Patients: Identification of Twenty Novel Mutations in GALT, GALK1 and GALE Gene. 2023 10.21203/rs.3.rs‑3093450/v1
    [Google Scholar]
  150. Milano S. Maqoud F. Rutigliano M. Saponara I. Carmosino M. Gerbino A. Lucarelli G. Battaglia M. Svelto M. Procino G. β3 Adrenergic Receptor Agonist Mirabegron Increases AQP2 and NKCC2 Urinary Excretion in OAB Patients: A Pleiotropic Effect of Interest for Patients with X-Linked Nephrogenic Diabetes Insipidus. Int. J. Mol. Sci. 2023 24 2 1136 10.3390/ijms24021136 36674662
    [Google Scholar]
  151. Targovnik H.M. Citterio C.E. Rivolta C.M. Thyroglobulin gene mutations in congenital hypothyroidism. Horm. Res. Paediatr. 2011 75 5 311 321 10.1159/000324882 21372558
    [Google Scholar]
  152. Gulati A. Dahl N.K. Hartung E.A. Clark S.L. Moudgil A. Goodwin J. Somlo S. Hypomorphic PKD1 alleles impact disease variability in autosomal dominant polycystic kidney disease. Kidney360 2023 4 3 387 392 10.34067/KID.0000000000000064 36706243
    [Google Scholar]
  153. Zhang S. Zhu Y. Lu J. Liu Z. Lobato A.G. Zeng W. Liu J. Qiang J. Zeng S. Zhang Y. Liu C. Liu J. He Z. Zhai R.G. Li D. Specific binding of Hsp27 and phosphorylated Tau mitigates abnormal Tau aggregation-induced pathology. eLife 2022 11 e79898 10.7554/eLife.79898 36048712
    [Google Scholar]
  154. Mitchell C.L. Kurouski D. Novel strategies in Parkinson’s disease treatment: A review. Front. Mol. Neurosci. 2024 17 1431079 10.3389/fnmol.2024.1431079 39183754
    [Google Scholar]
  155. Roufayel R. Kadry S. Molecular chaperone HSP70 and key regulators of apoptosis-a review. Curr. Mol. Med. 2019 19 5 315 325 10.2174/1566524019666190326114720 30914024
    [Google Scholar]
  156. Rahman A. Saikia B. Gogoi C.R. Baruah A. Advances in the understanding of protein misfolding and aggregation through molecular dynamics simulation. Prog. Biophys. Mol. Biol. 2022 175 31 48 10.1016/j.pbiomolbio.2022.08.007 36044970
    [Google Scholar]
  157. Dhouafli Z. Cuanalo-Contreras K. Hayouni E.A. Mays C.E. Soto C. Moreno-Gonzalez I. Inhibition of protein misfolding and aggregation by natural phenolic compounds. Cell. Mol. Life Sci. 2018 75 19 3521 3538 10.1007/s00018‑018‑2872‑2 30030591
    [Google Scholar]
  158. Armiento V. Spanopoulou A. Kapurniotu A. Peptide‐based molecular strategies to interfere with protein misfolding, aggregation, and cell degeneration. Angew. Chem. Int. Ed. 2020 59 9 3372 3384 10.1002/anie.201906908 31529602
    [Google Scholar]
  159. Chopra G. Shabir S. Yousuf S. Kauts S. Bhat S.A. Mir A.H. Singh M.P. Proteinopathies: Deciphering physiology and mechanisms to develop effective therapies for neurodegenerative diseases. Mol. Neurobiol. 2022 59 12 7513 7540 10.1007/s12035‑022‑03042‑8 36205914
    [Google Scholar]
  160. Trepel J. Mollapour M. Giaccone G. Neckers L. Targeting the dynamic HSP90 complex in cancer. Nat. Rev. Cancer 2010 10 8 537 549 10.1038/nrc2887 20651736
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037338028241230092414
Loading
/content/journals/cpps/10.2174/0113892037338028241230092414
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test