Skip to content
2000
Volume 26, Issue 6
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

The three-dimensional structure of proteins, achieved through the folding of the nascent polypeptide chain , is largely facilitated by molecular chaperones, which are crucial for determining protein functionality. In addition to aiding in the folding process, chaperones target misfolded proteins for degradation, acting as a quality control system within the cell. Defective protein folding has been implicated in a wide range of clinical conditions, including neurodegenerative and metabolic disorders. It is now well understood that the pathogenesis of neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, Amyotrophic Lateral Sclerosis, and Creutzfeldt-Jakob disease shares a common mechanism: the accumulation of misfolded proteins, which aggregate and become toxic to cells. Among the family of molecular chaperones, Heat Shock Proteins (HSPs) are highly expressed in response to cellular stress and play a pivotal role in preventing protein aggregation. Specific chaperones, particularly HSPs, are now recognized as critical in halting the accumulation and aggregation of misfolded proteins in these conditions. Consequently, these chaperones are increasingly considered promising pharmacological targets for the treatment of protein aggregation-related diseases. This review highlights research exploring the potential roles of specific molecular chaperones in disorders characterized by the accumulation of misfolded proteins.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037338028241230092414
2025-01-27
2025-06-04
Loading full text...

Full text loading...

References

  1. NassarR. DignonG.L. RazbanR.M. DillK.A. The protein folding problem: The role of theory.J. Mol. Biol.20214332016712610.1016/j.jmb.2021.16712634224747
    [Google Scholar]
  2. DobsonC.M. KarplusM. The fundamentals of protein folding: Bringing together theory and experiment.Curr. Opin. Struct. Biol.1999919210110.1016/S0959‑440X(99)80012‑810047588
    [Google Scholar]
  3. MakhnovskiiP.A. ZgodaV.G. BokovR.O. ShagimardanovaE.I. GazizovaG.R. GusevO.A. LysenkoE.A. KolpakovF.A. VinogradovaO.L. PopovD.V. Regulation of proteins in human skeletal muscle: The role of transcription.Sci. Rep.2020101351410.1038/s41598‑020‑60578‑232103137
    [Google Scholar]
  4. StanG. LorimerG.H. ThirumalaiD. Friends in need: How chaperonins recognize and remodel proteins that require folding assistance.Front. Mol. Biosci.20229107116810.3389/fmolb.2022.107116836479385
    [Google Scholar]
  5. GranthamJ. The molecular chaperone CCT/TRiC: An essential component of proteostasis and a potential modulator of protein aggregation.Front. Genet.20201117210.3389/fgene.2020.0017232265978
    [Google Scholar]
  6. DahiyaV. BuchnerJ. Functional principles and regulation of molecular chaperones.Adv. Protein Chem. Struct. Biol.201911416010.1016/bs.apcsb.2018.10.00130635079
    [Google Scholar]
  7. ImamogluR. BalchinD. Hayer-HartlM. HartlF.U. Bacterial Hsp70 resolves misfolded states and accelerates productive folding of a multi-domain protein.Nat. Commun.202011136510.1038/s41467‑019‑14245‑431953415
    [Google Scholar]
  8. ChenB. FederM.E. KangL. Evolution of heat-shock protein expression underlying adaptive responses to environmental stress.Mol. Ecol.201827153040305410.1111/mec.1476929920826
    [Google Scholar]
  9. KaushikS. CuervoA.M. The coming of age of chaperone-mediated autophagy.Nat. Rev. Mol. Cell Biol.201819636538110.1038/s41580‑018‑0001‑629626215
    [Google Scholar]
  10. MogkA. BukauB. KampingaH.H. Cellular handling of protein aggregates by disaggregation machines.Mol. Cell201869221422610.1016/j.molcel.2018.01.00429351843
    [Google Scholar]
  11. OikonomouC. HendershotL.M. Disposing of misfolded ER proteins: A troubled substrate’s way out of the ER.Mol. Cell. Endocrinol.202050011063010.1016/j.mce.2019.11063031669350
    [Google Scholar]
  12. AdamsB.M. CanniffN.P. GuayK.P. HebertD.N. The role of endoplasmic reticulum chaperones in protein folding and quality control.Cellular biology of the endoplasmic reticulum.ChamSpringer International Publishing20212750
    [Google Scholar]
  13. Vaquer-AliceaJ. DiamondM.I. Propagation of protein aggregation in neurodegenerative diseases.Annu. Rev. Biochem.201988178581010.1146/annurev‑biochem‑061516‑04504930917002
    [Google Scholar]
  14. CaballeroA.B. GamezP. Nanochaperone-based strategies to control protein aggregation linked to conformational diseases.Angew. Chem. Int. Ed.2021601415210.1002/anie.20200792432706460
    [Google Scholar]
  15. AlaeiL. AshengrophM. Moosavi-MovahediA.A. The concept of protein folding/unfolding and its impacts on human health.Adv. Protein Chem. Struct. Biol.202112622727810.1016/bs.apcsb.2021.01.00734090616
    [Google Scholar]
  16. TaoY.X. ConnP.M. Pharmacoperones as novel therapeutics for diverse protein conformational diseases.Physiol. Rev.201898269772510.1152/physrev.00029.201629442594
    [Google Scholar]
  17. GandhiJ. AntonelliA.C. AfridiA. VatsiaS. JoshiG. RomanovV. MurrayI.V.J. KhanS.A. Protein misfolding and aggregation in neurodegenerative diseases: A review of pathogeneses, novel detection strategies, and potential therapeutics.Rev. Neurosci.201930433935810.1515/revneuro‑2016‑003530742586
    [Google Scholar]
  18. ZhouY. RajuR. AlvesC. GilbertA. Debottlenecking protein secretion and reducing protein aggregation in the cellular host.Curr. Opin. Biotechnol.20185315115710.1016/j.copbio.2018.01.00729414073
    [Google Scholar]
  19. MargulisB. TsimokhaA. ZubovaS. GuzhovaI. Molecular chaperones and proteolytic machineries regulate protein homeostasis in aging cells.Cells202095130810.3390/cells905130832456366
    [Google Scholar]
  20. LévyE. El BannaN. BaïlleD. Heneman-MasurelA. TruchetS. RezaeiH. HuangM.E. BéringueV. MartinD. VernisL. Causative links between protein aggregation and oxidative stress: A review.Int. J. Mol. Sci.20192016389610.3390/ijms2016389631405050
    [Google Scholar]
  21. HussainR. ZubairH. PursellS. ShahabM. Neurodegenerative diseases: Regenerative mechanisms and novel therapeutic approaches.Brain Sci.20188917710.3390/brainsci809017730223579
    [Google Scholar]
  22. SivandzadeF. PrasadS. BhaleraoA. CuculloL. NRF2 and NF-қB interplay in cerebrovascular and neurodegenerative disorders: Molecular mechanisms and possible therapeutic approaches.Redox Biol.20192110105910.1016/j.redox.2018.11.01730576920
    [Google Scholar]
  23. NascimentoD.S.M. PotesC.S. SoaresM.L. FerreiraA.C. MalcangioM. Castro-LopesJ.M. NetoF.L.M. Drug-induced HSP90 inhibition alleviates pain in monoarthritic rats and alters the expression of new putative pain players at the DRG.Mol. Neurobiol.20185553959397528550532
    [Google Scholar]
  24. WankhedeN.L. KaleM.B. UpaganlawarA.B. TaksandeB.G. UmekarM.J. BehlT. AbdellatifA.A.H. BhaskaranP.M. DachaniS.R. SehgalA. SinghS. SharmaN. MakeenH.A. AlbrattyM. DailahH.G. BhatiaS. Al-HarrasiA. BungauS. Involvement of molecular chaperone in protein-misfolding brain diseases.Biomed. Pharmacother.202214711264710.1016/j.biopha.2022.11264735149361
    [Google Scholar]
  25. HofmannC. KatusH.A. DoroudgarS. Protein misfolding in cardiac disease.Circulation2019139182085208810.1161/CIRCULATIONAHA.118.03741731034286
    [Google Scholar]
  26. HervásR. OrozJ. Mechanistic insights into the role of molecular chaperones in protein misfolding diseases: From molecular recognition to amyloid disassembly.Int. J. Mol. Sci.20202123918610.3390/ijms2123918633276458
    [Google Scholar]
  27. OgunmokunG. DewanjeeS. ChakrabortyP. ValupadasC. ChaudharyA. KolliV. AnandU. VallamkonduJ. GoelP. PaluruH.P.R. GillK.D. ReddyP.H. De FeoV. KandimallaR. The potential role of cytokines and growth factors in the pathogenesis of Alzheimer’s disease.Cells20211010279010.3390/cells1010279034685770
    [Google Scholar]
  28. ChaudhuryS. KeeganB.M. BlaggB.S.J. The role and therapeutic potential of Hsp90, Hsp70, and smaller heat shock proteins in peripheral and central neuropathies.Med. Res. Rev.202141120222210.1002/med.2172932844464
    [Google Scholar]
  29. SajjadR. ArifR. ShahA.A. ManzoorI. MustafaG. Pathogenesis of Alzheimer’s disease: Role of amyloid-beta and hyperphosphorylated tau protein.Indian J. Pharm. Sci.201880458159110.4172/pharmaceutical‑sciences.1000397
    [Google Scholar]
  30. Turab NaqviA.A. HasanG.M. HassanM.I. Targeting Tau hyperphosphorylation via kinase inhibition: Strategy to address Alzheimer’s disease.Curr. Top. Med. Chem.202020121059107310.2174/156802662066620010612591031903881
    [Google Scholar]
  31. StefanoskaK. GajwaniM. TanA.R.P. AhelH.I. AsihP.R. VolkerlingA. PoljakA. IttnerA. Alzheimer’s disease: Ablating single master site abolishes tau hyperphosphorylation.Sci. Adv.2022827eabl880910.1126/sciadv.abl880935857446
    [Google Scholar]
  32. RaoC.V. AschA.S. CarrD.J.J. YamadaH.Y. “Amyloid-beta accumulation cycle” as a prevention and/or therapy target for Alzheimer’s disease.Aging Cell2020193e1310910.1111/acel.1310931981470
    [Google Scholar]
  33. CheignonC. TomasM. Bonnefont-RousselotD. FallerP. HureauC. CollinF. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease.Redox Biol.20181445046410.1016/j.redox.2017.10.01429080524
    [Google Scholar]
  34. KarmakarS. SharmaL.G. RoyA. PatelA. PandeyL.M. Neuronal SNARE complex: A protein folding system with intricate protein-protein interactions, and its common neuropathological hallmark, SNAP25.Neurochem. Int.201912219620710.1016/j.neuint.2018.12.00130517887
    [Google Scholar]
  35. Mondragón-RodríguezS. Salas-GallardoA. González-PereyraP. MacíasM. OrdazB. Peña-OrtegaF. Aguilar-VázquezA. Orta-SalazarE. Díaz-CintraS. PerryG. WilliamsS. Phosphorylation of Tau protein correlates with changes in hippocampal theta oscillations and reduces hippocampal excitability in Alzheimer’s model.J. Biol. Chem.2018293228462847210.1074/jbc.RA117.00118729632073
    [Google Scholar]
  36. WegmannS. BiernatJ. MandelkowE. A current view on Tau protein phosphorylation in Alzheimer’s disease.Curr. Opin. Neurobiol.20216913113810.1016/j.conb.2021.03.00333892381
    [Google Scholar]
  37. ChidambaramH. ChinnathambiS. G-protein coupled receptors and tau-different roles in Alzheimer’s disease.Neuroscience202043819821410.1016/j.neuroscience.2020.04.01932335218
    [Google Scholar]
  38. RawatP. SeharU. BishtJ. SelmanA. CulbersonJ. ReddyP.H. Phosphorylated tau in Alzheimer’s disease and other tauopathies.Int. J. Mol. Sci.202223211284110.3390/ijms23211284136361631
    [Google Scholar]
  39. SakahiraH. BreuerP. Hayer-HartlM.K. HartlF.U. Molecular chaperones as modulators of polyglutamine protein aggregation and toxicity.Proc. Natl. Acad. Sci. USA200299 Suppl 4Suppl. 4164121641810.1073/pnas.18242689912189209
    [Google Scholar]
  40. Ben-ZviA.P. GoloubinoffP. Review: Mechanisms of disaggregation and refolding of stable protein aggregates by molecular chaperones.J. Struct. Biol.20011352849310.1006/jsbi.2001.435211580258
    [Google Scholar]
  41. Otero-GarciaM. MahajaniS.U. WakhlooD. TangW. XueY.Q. MorabitoS. PanJ. OberhauserJ. MadiraA.E. ShakouriT. DengY. AllisonT. HeZ. LowryW.E. KawaguchiR. SwarupV. CobosI. Molecular signatures underlying neurofibrillary tangle susceptibility in Alzheimer’s disease.Neuron20221101829292948.e810.1016/j.neuron.2022.06.02135882228
    [Google Scholar]
  42. RahmanM.M. LendelC. Extracellular protein components of amyloid plaques and their roles in Alzheimer’s disease pathology.Mol. Neurodegener.20211615910.1186/s13024‑021‑00465‑034454574
    [Google Scholar]
  43. YangH. LiX. ZhuL. WuX. ZhangS. HuangF. FengX. ShiL. Heat shock protein inspired nanochaperones restore amyloid-β homeostasis for preventative therapy of Alzheimer’s disease.Adv. Sci. (Weinh.)2019622190184410.1002/advs.20190184431763156
    [Google Scholar]
  44. CarvalhoD. Diaz-AmarillaP. DapuetoR. SantiM.D. DuarteP. SavioE. EnglerH. Abin-CarriquiryJ.A. ArredondoF. Transcriptomic analyses of neurotoxic astrocytes derived from adult triple transgenic alzheimer’s disease mice.J. Mol. Neurosci.2023737-848751510.1007/s12031‑023‑02105‑237318736
    [Google Scholar]
  45. ChandelT.I. ZamanM. KhanM.V. AliM. RabbaniG. IshtikharM. KhanR.H. A mechanistic insight into protein-ligand interaction, folding, misfolding, aggregation and inhibition of protein aggregates: An overview.Int. J. Biol. Macromol.20181061115112910.1016/j.ijbiomac.2017.07.18528890370
    [Google Scholar]
  46. DubeyM. KushwahaM. AmaanM. DangiM.S. KesharwaniS. Review on mechanism of action of Alzheimer disease.Int. J. Med. Pharm. Res.2023756773
    [Google Scholar]
  47. JiménezJ.S. Macromolecular structures and proteins interacting with the microtubule associated tau protein.Neuroscience2023518708210.1016/j.neuroscience.2022.05.02335609757
    [Google Scholar]
  48. NehlinJ.O. KrøllJ. Model of Chaperones in Aging.Conn’s Handbook of Models for Human Aging.Academic Press201810951115
    [Google Scholar]
  49. ChaariA. Molecular chaperones biochemistry and role in neurodegenerative diseases.Int. J. Biol. Macromol.201913139641110.1016/j.ijbiomac.2019.02.14830853582
    [Google Scholar]
  50. CampanellaC. PaceA. Caruso BavisottoC. MarzulloP. Marino GammazzaA. BuscemiS. Palumbo PiccionelloA. Heat shock proteins in Alzheimer’s disease: Role and targeting.Int. J. Mol. Sci.2018199260310.3390/ijms1909260330200516
    [Google Scholar]
  51. ZhangJ. LiH. LiuY. ZhaoK. WeiS. SugarmanE.T. LiuL. ZhangG. Targeting HSP90 as a novel therapy for cancer: Mechanistic insights and translational relevance.Cells20221118277810.3390/cells1118277836139353
    [Google Scholar]
  52. YamamotoY. HosodaK. ImahoriT. TanakaJ. MatsuoK. NakaiT. IrinoY. ShinoharaM. SatoN. SasayamaT. TanakaK. NagashimaH. KohtaM. KohmuraE. Pentose phosphate pathway activation via HSP27 phosphorylation by ATM kinase: A putative endogenous antioxidant defense mechanism during cerebral ischemia-reperfusion.Brain Res.20181687829410.1016/j.brainres.2018.03.00129510140
    [Google Scholar]
  53. BerettaG. ShalaA.L. Impact of heat shock proteins in neurodegeneration: Possible therapeutical targets.Ann. Neurosci.2022291718210.1177/0972753121107052835875428
    [Google Scholar]
  54. TittelmeierJ. SandhofC.A. RiesH.M. Druffel-AugustinS. MogkA. BukauB. Nussbaum-KrammerC. The HSP110/HSP70 disaggregation system generates spreading-competent toxic α-synuclein species.EMBO J.20203913e10395410.15252/embj.201910395432449565
    [Google Scholar]
  55. HayashiJ. CarverJ.A. The multifaceted nature of αB-crystallin.Cell Stress Chaperones202025463965410.1007/s12192‑020‑01098‑w32383140
    [Google Scholar]
  56. HuC. YangJ. QiZ. WuH. WangB. ZouF. MeiH. LiuJ. WangW. LiuQ. Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities.MedComm202233e16110.1002/mco2.16135928554
    [Google Scholar]
  57. BreijyehZ. KaramanR. Comprehensive review on Alzheimer’s disease: Causes and treatment.Molecules20202524578910.3390/molecules2524578933302541
    [Google Scholar]
  58. Dominguez-MeijideA. VasiliE. OuteiroT.F. Pharmacological modulators of tau aggregation and spreading.Brain Sci.2020101185810.3390/brainsci1011085833203009
    [Google Scholar]
  59. RutledgeB.S. ChoyW.Y. DuennwaldM.L. Folding or holding?—Hsp70 and Hsp90 chaperoning of misfolded proteins in neurodegenerative disease.J. Biol. Chem.2022298510190510.1016/j.jbc.2022.10190535398094
    [Google Scholar]
  60. WangL. BergkvistL. KumarR. WinbladB. PavlovP.F. Targeting chaperone/Co-chaperone interactions with small molecules: A novel approach to tackle neurodegenerative diseases.Cells20211010259610.3390/cells1010259634685574
    [Google Scholar]
  61. LyonM.S. MilliganC. Extracellular heat shock proteins in neurodegenerative diseases: New perspectives.Neurosci. Lett.201971113446210.1016/j.neulet.2019.13446231476356
    [Google Scholar]
  62. KorenJ. BlaggB.S. The right tool for the job: An overview of Hsp90 inhibitors.Adv. Exp. Med. Biol.202013514610.1007/978‑3‑030‑40204‑4_9
    [Google Scholar]
  63. Dutta GuptaS. PanC.H. Recent update on discovery and development of Hsp90 inhibitors as senolytic agents.Int. J. Biol. Macromol.20201611086109810.1016/j.ijbiomac.2020.06.11532561284
    [Google Scholar]
  64. ChatterjeeB.K. JayarajA. KumarV. BlaggB. DavisR.E. JayaramB. DeepS. ChaudhuriT.K. Stimulation of heat shock protein 90 chaperone function through binding of a novobiocin analog KU-32.J. Biol. Chem.2019294166450646710.1074/jbc.RA118.00250230792306
    [Google Scholar]
  65. MaitiP. DunbarG. Use of curcumin, a natural polyphenol for targeting molecular pathways in treating age-related neurodegenerative diseases.Int. J. Mol. Sci.2018196163710.3390/ijms1906163729857538
    [Google Scholar]
  66. TakkeA. ShendeP. Nanotherapeutic silibinin: An insight of phytomedicine in healthcare reformation.Nanomedicine20192110205710.1016/j.nano.2019.10205731340181
    [Google Scholar]
  67. SinyorB. MineoJ. OchnerC. Alzheimer’s disease, inflammation, and the role of antioxidants.J. Alzheimers Dis. Rep.20204117518310.3233/ADR‑20017132715278
    [Google Scholar]
  68. HeY. LiH. HuangJ. HuangS. BaiY. LiY. HuangW. Efficacy of antidepressant drugs in the treatment of depression in Alzheimer disease patients: A systematic review and network meta-analysis.J. Psychopharmacol.202135890190910.1177/0269881121103018134238048
    [Google Scholar]
  69. DumurgierJ. TzourioC. Epidemiology of neurological diseases in older adults.Rev. Neurol. (Paris)2020176964264810.1016/j.neurol.2020.01.35632145981
    [Google Scholar]
  70. WentinkA. Nussbaum-KrammerC. BukauB. Modulation of amyloid states by molecular chaperones.Cold Spring Harb. Perspect. Biol.2019117a03396910.1101/cshperspect.a03396930755450
    [Google Scholar]
  71. HaqueM.E. AktherM. AzamS. KimI.S. LinY. LeeY.H. ChoiD.K. Targeting α-synuclein aggregation and its role in mitochondrial dysfunction in Parkinson’s disease.Br. J. Pharmacol.20221791234510.1111/bph.1568434528272
    [Google Scholar]
  72. MarshA.P. Molecular mechanisms of proteinopathies across neurodegenerative disease: A review.Neurol. Res. Pract.2019113510.1186/s42466‑019‑0039‑833324900
    [Google Scholar]
  73. RyderB.D. WydorskiP.M. HouZ. JoachimiakL.A. Chaperoning shape-shifting tau in disease.Trends Biochem. Sci.202247430131310.1016/j.tibs.2021.12.00935045944
    [Google Scholar]
  74. LeS. FuX. PangM. ZhouY. YinG. ZhangJ. FanD. The antioxidative role of chaperone-mediated autophagy as a downstream regulator of oxidative stress in human diseases.Technol. Cancer Res. Treat.2022211533033822111417810.1177/1533033822111417836131551
    [Google Scholar]
  75. TrinhJ. ZeldenrustF.M.J. HuangJ. KastenM. SchaakeS. PetkovicS. MadoevH. GrünewaldA. AlmuammarS. KönigI.R. LillC.M. LohmannK. KleinC. MarrasC. Genotype-phenotype relations for the Parkinson’s disease genes SNCA, LRRK2, VPS35: MDSGene systematic review.Mov. Disord.201833121857187010.1002/mds.2752730357936
    [Google Scholar]
  76. ElmansyM.F. ReidlC.T. RahamanM. ÖzdinlerP.H. SilvermanR.B. Small molecules targeting different cellular pathologies for the treatment of amyotrophic lateral sclerosis.Med. Res. Rev.20234362260230210.1002/med.2197437243319
    [Google Scholar]
  77. SinnigeT. YuA. MorimotoR.I. Challenging proteostasis: Role of the chaperone network to control aggregation-prone proteins in human disease.dv. Exp. Med. Biol.2020A20201243536810.1007/978‑3‑030‑40204‑4_4
    [Google Scholar]
  78. PrymaczokN.C. RiekR. GerezJ. More than a rumor spreads in Parkinson’s disease.Front. Hum. Neurosci.20161060810.3389/fnhum.2016.0060827994545
    [Google Scholar]
  79. ShenL. WangC. ChenL. LeungK.L. LoE. LaksoM. WongG. TDP-1/TDP-43 potentiates human α-Synuclein (HASN) neurodegeneration in Caenorhabditis elegans.Biochim. Biophys. Acta Mol. Basis Dis.202018661016587610.1016/j.bbadis.2020.16587632531261
    [Google Scholar]
  80. JiaC. MaX. LiuZ. GuJ. ZhangX. LiD. ZhangS. Different heat shock proteins bind α-Synuclein with distinct mechanisms and synergistically prevent its amyloid aggregation.Front. Neurosci.201913112410.3389/fnins.2019.0112431749672
    [Google Scholar]
  81. CoxD. WhitenD.R. BrownJ.W.P. HorrocksM.H. San GilR. DobsonC.M. KlenermanD. van OijenA.M. EcroydH. The small heat shock protein Hsp27 binds α-synuclein fibrils, preventing elongation and cytotoxicity.J. Biol. Chem.2018293124486449710.1074/jbc.M117.81386529382725
    [Google Scholar]
  82. MirandaH.V. ChegãoA. OliveiraM. GomesB.F. EnguitaF.J. OuteiroT.F. Hsp27 reduces glycation-induced toxicity and aggregation of α-synuclein.bioRxiv202020200310.1101/2020.03.03.975037
    [Google Scholar]
  83. OuteiroT.F. KluckenJ. StrathearnK.E. LiuF. NguyenP. RochetJ.C. HymanB.T. McLeanP.J. Small heat shock proteins protect against α-synuclein-induced toxicity and aggregation.Biochem. Biophys. Res. Commun.2006351363163810.1016/j.bbrc.2006.10.08517081499
    [Google Scholar]
  84. ZourlidouA. Payne SmithM.D. LatchmanD.S. HSP27 but not HSP70 has a potent protective effect against α-synuclein-induced cell death in mammalian neuronal cells.J. Neurochem.20048861439144810.1046/j.1471‑4159.2003.02273.x15009645
    [Google Scholar]
  85. BruinsmaI.B. BrugginkK.A. KinastK. VersleijenA.A.M. Segers-NoltenI.M.J. SubramaniamV. Bea KuiperijH. BoelensW. de WaalR.M.W. VerbeekM.M. Inhibition of α-synuclein aggregation by small heat shock proteins.Proteins201179102956296710.1002/prot.2315221905118
    [Google Scholar]
  86. ArkanS. LjungbergM. KirikD. HansenC. DNAJB6 suppresses alpha-synuclein induced pathology in an animal model of Parkinson’s disease.Neurobiol. Dis.202115810547710.1016/j.nbd.2021.10547734390836
    [Google Scholar]
  87. BurmannB.M. GerezJ.A. Matečko-BurmannI. CampioniS. KumariP. GhoshD. MazurA. AspholmE.E. ŠulskisD. WawrzyniukM. BockT. SchmidtA. RüdigerS.G.D. RiekR. HillerS. Regulation of α-synuclein by chaperones in mammalian cells.Nature2020577778812713210.1038/s41586‑019‑1808‑931802003
    [Google Scholar]
  88. BohushA. FilipekA. HSP90 co-chaperone, CacyBP/SIP, protects α-synuclein from aggregation.Cells2020910225410.3390/cells910225433049998
    [Google Scholar]
  89. LassenL.B. ReimerL. FerreiraN. BetzerC. JensenP.H. Protein partners of α-synuclein in health and disease.Brain Pathol.201626338939710.1111/bpa.1237426940507
    [Google Scholar]
  90. KabakovA. YakimovaA. MatchukO. Molecular chaperones in cancer stem cells: Determinants of stemness and potential targets for antitumor therapy.Cells20209489210.3390/cells904089232268506
    [Google Scholar]
  91. ShevtsovM. MulthoffG. MikhaylovaE. ShibataA. GuzhovaI. MargulisB. Combination of anti-cancer drugs with molecular chaperone inhibitors.Int. J. Mol. Sci.20192021528410.3390/ijms2021528431652993
    [Google Scholar]
  92. BaeE.J. KimD.K. KimC. ManteM. AdameA. RockensteinE. UlusoyA. KlinkenbergM. JeongG.R. BaeJ.R. LeeC. LeeH.J. LeeB.D. Di MonteD.A. MasliahE. LeeS.J. LRRK2 kinase regulates α-synuclein propagation via RAB35 phosphorylation.Nat. Commun.201891346510.1038/s41467‑018‑05958‑z30150626
    [Google Scholar]
  93. LangM. PramstallerP.P. PichlerI. Crosstalk of organelles in Parkinson’s disease – MiT family transcription factors as central players in signaling pathways connecting mitochondria and lysosomes.Mol. Neurodegener.20221715010.1186/s13024‑022‑00555‑734991663
    [Google Scholar]
  94. StathopoulosC. GiarimoglouN. KouvelaA. AlexiouA. StamatopoulouV. MicroRNAs in Neurodegenerative Diseases.Handbook of Computational Neurodegeneration.ChamSpringer International Publishing2021147
    [Google Scholar]
  95. WetzelR. Exploding the repeat length paradigm while exploring amyloid toxicity in Huntington’s disease.Acc. Chem. Res.202053102347235710.1021/acs.accounts.0c0045032975927
    [Google Scholar]
  96. WankerE.E. AstA. SchindlerF. TrepteP. SchnoeglS. The pathobiology of perturbed mutant huntingtin protein–protein interactions in Huntington’s disease.J. Neurochem.2019151450751910.1111/jnc.1485331418858
    [Google Scholar]
  97. KumarV. SamiN. KashavT. IslamA. AhmadF. HassanM.I. Protein aggregation and neurodegenerative diseases: From theory to therapy.Eur. J. Med. Chem.20161241105112010.1016/j.ejmech.2016.07.05427486076
    [Google Scholar]
  98. KakkarV. KuiperE.F.E. PandeyA. BraakmanI. KampingaH.H. Versatile members of the DNAJ family show Hsp70 dependent anti-aggregation activity on RING1 mutant parkin C289G.Sci. Rep.2016613483010.1038/srep3483027713507
    [Google Scholar]
  99. TakeuchiT. NagaiY. Protein misfolding and aggregation as a therapeutic target for polyglutamine diseases.Brain Sci.201771012810.3390/brainsci710012829019918
    [Google Scholar]
  100. KeveiÉ. PokrzywaW. HoppeT. Repair or destruction—an intimate liaison between ubiquitin ligases and molecular chaperones in proteostasis.FEBS Lett.2017591172616263510.1002/1873‑3468.1275028699655
    [Google Scholar]
  101. KampingaH.H. BerginkS. Heat shock proteins as potential targets for protective strategies in neurodegeneration.Lancet Neurol.201615774875910.1016/S1474‑4422(16)00099‑527106072
    [Google Scholar]
  102. DavisA.K. PrattW.B. LiebermanA.P. OsawaY. Targeting Hsp70 facilitated protein quality control for treatment of polyglutamine diseases.Cell. Mol. Life Sci.202077697799610.1007/s00018‑019‑03302‑231552448
    [Google Scholar]
  103. KuiperE.F.E. de MattosE.P. JardimL.B. KampingaH.H. BerginkS. Chaperones in polyglutamine aggregation: Beyond the Q-stretch.Front. Neurosci.20171114510.3389/fnins.2017.0014528386214
    [Google Scholar]
  104. ArghavaniP. PirhaghiM. Moosavi-MovahediF. MamashliF. HosseiniE. Moosavi-MovahediA.A. Amyloid management by chaperones: The mystery underlying protein oligomers’ dual functions.Curr. Res. Struct. Biol.2022435636410.1016/j.crstbi.2022.11.00236523328
    [Google Scholar]
  105. ManniniB. ChitiF. Chaperones as suppressors of protein misfolded oligomer toxicity.Front. Mol. Neurosci.2017109810.3389/fnmol.2017.0009828424588
    [Google Scholar]
  106. PriyaS. SharmaS.K. GoloubinoffP. Molecular chaperones as enzymes that catalytically unfold misfolded polypeptides.FEBS Lett.2013587131981198710.1016/j.febslet.2013.05.01423684649
    [Google Scholar]
  107. TamS. GellerR. SpiessC. FrydmanJ. The chaperonin TRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions.Nat. Cell Biol.20068101155116210.1038/ncb147716980959
    [Google Scholar]
  108. WilliamsA.J. PaulsonH.L. Polyglutamine neurodegeneration: Protein misfolding revisited.Trends Neurosci.2008311052152810.1016/j.tins.2008.07.00418778858
    [Google Scholar]
  109. KuropM.K. HuyenC.M. KellyJ.H. BlaggB.S.J. The heat shock response and small molecule regulators.Eur. J. Med. Chem.202122611384610.1016/j.ejmech.2021.11384634563965
    [Google Scholar]
  110. YadavK. YadavA. VashisthaP. PandeyV.P. DwivediU.N. Protein misfolding diseases and therapeutic approaches.Curr. Protein Pept. Sci.201920121226124510.2174/138920372066619061009284031187709
    [Google Scholar]
  111. MathisS. GoizetC. SoulagesA. VallatJ.M. MassonG.L. Genetics of amyotrophic lateral sclerosis: A review.J. Neurol. Sci.201939921722610.1016/j.jns.2019.02.03030870681
    [Google Scholar]
  112. FelgoiseS.H. FeinbergR. StephensH.E. BarkhausP. BoylanK. CaressJ. ClawsonL.L. ElmanL. GoutmanS.A. MccluskeyL. RussellJ. TiryakiE. WeissM. SimmonsZ. Amyotrophic lateral sclerosis–specific quality of life–short form (ALSSQOL-SF): A brief, reliable, and valid version of the ALSSQOL-R.Muscle Nerve201858564665410.1002/mus.2620330028537
    [Google Scholar]
  113. BrennerD. FreischmidtA. Update on genetics of amyotrophic lateral sclerosis.Curr. Opin. Neurol.202235567267710.1097/WCO.000000000000109335942673
    [Google Scholar]
  114. López-PingarrónL. AlmeidaH. Soria-AznarM. Reyes-GonzalesM.C. TerrónM.P. GarcíaJ.J. Role of oxidative stress on the etiology and pathophysiology of amyotrophic lateral sclerosis (ALS) and its relation with the enteric nervous system.Curr. Issues Mol. Biol.20234543315333210.3390/cimb4504021737185741
    [Google Scholar]
  115. MorganS. OrrellR.W. Pathogenesis of amyotrophic lateral sclerosis.Br. Med. Bull.20161191879810.1093/bmb/ldw02627450455
    [Google Scholar]
  116. MaragakisN.J. Galvez-JimenezN. EichlerA.F. Epidemiology and pathogenesis of amyotrophic lateral sclerosis.Uptodate.2018
    [Google Scholar]
  117. MeriinA.B. ShermanM.Y. Role of molecular chaperones in neurodegenerative disorders.Int. J. Hyperthermia200521540341910.1080/0265673050004187116048838
    [Google Scholar]
  118. TakeuchiH. KobayashiY. YoshiharaT. NiwaJ. DoyuM. OhtsukaK. SobueG. Hsp70 and Hsp40 improve neurite outgrowth and suppress intracytoplasmic aggregate formation in cultured neuronal cells expressing mutant SOD1.Brain Res.20029491-2112210.1016/S0006‑8993(02)02568‑412213295
    [Google Scholar]
  119. YerburyJ.J. GowerD. VanagsL. RobertsK. LeeJ.A. EcroydH. The small heat shock proteins αB-crystallin and Hsp27 suppress SOD1 aggregation in vitro.Cell Stress Chaperones201318225125710.1007/s12192‑012‑0371‑122993064
    [Google Scholar]
  120. KalmarB. KieranD. GreensmithL. Molecular chaperones as therapeutic targets in amyotrophic lateral sclerosis.Biochem. Soc. Trans.200533Pt 4551210.1042/BST0330551
    [Google Scholar]
  121. BrownP. Environmentally acquired transmissible spongiform encephalopathy.Prions and Diseases2023Springer International PublishingCham10.1007/978‑3‑031‑20565‑1_11
    [Google Scholar]
  122. SeedC.R. HewittP.E. DoddR.Y. HoustonF. CervenakovaL. Creutzfeldt-Jakob disease and blood transfusion safety.Vox Sang.2018113322023110.1111/vox.1263129359329
    [Google Scholar]
  123. KathiriyaJ.B. ShahN.M. SindhiS.H. TrangadiaB.J. TajaparaM.M. VaghA.A. BhediK.R. Transmissible spongiform encephalopathies: Emerging threatsIntern. J. Vetern. Sci. Ani. Husband.2020566471
    [Google Scholar]
  124. WangZ. MancaM. FoutzA. CamachoM.V. RaymondG.J. RaceB. OrruC.D. YuanJ. ShenP. LiB. LangY. DangJ. AdornatoA. WilliamsK. MaurerN.R. GambettiP. XuB. SurewiczW. PetersenR.B. DongX. ApplebyB.S. CaugheyB. CuiL. KongQ. ZouW.Q. Early preclinical detection of prions in the skin of prion-infected animals.Nat. Commun.201910124710.1038/s41467‑018‑08130‑930651538
    [Google Scholar]
  125. IronsideJ.W. RitchieD.L. HeadM.W. Prion diseases.Handb. Clin. Neurol.201814539340310.1016/B978‑0‑12‑802395‑2.00028‑628987186
    [Google Scholar]
  126. BrandelJ.P. KnightR. Variant Creutzfeldt–Jakob disease.Handb Clin Neurol201815319120510.1016/B978‑0‑444‑63945‑5.00011‑8
    [Google Scholar]
  127. MeierP. GenoudN. PrinzM. MaissenM. RülickeT. ZurbriggenA. RaeberA.J. AguzziA. Soluble dimeric prion protein binds PrP(Sc) in vivo and antagonizes prion disease.Cell20031131496010.1016/S0092‑8674(03)00201‑012679034
    [Google Scholar]
  128. GooldR. RabbanianS. SuttonL. AndreR. AroraP. MoongaJ. ClarkeA.R. SchiavoG. JatP. CollingeJ. TabriziS.J. Rapid cell-surface prion protein conversion revealed using a novel cell system.Nat. Commun.20112128110.1038/ncomms128221505437
    [Google Scholar]
  129. HondaH. MoriS. WatanabeA. SasagasakoN. SadashimaS. ĐồngT. SatohK. NishidaN. IwakiT. Abnormal prion protein deposits with high seeding activities in the skeletal muscle, femoral nerve, and scalp of an autopsied case of sporadic Creutzfeldt–Jakob disease.Neuropathology202141215215810.1111/neup.1271733543531
    [Google Scholar]
  130. JoshiT. AhujaN. The prion basis of progressive neurodegenerative disorders.Interdiscip. Perspect. Infect. Dis.2023202311510.1155/2023/668726436825209
    [Google Scholar]
  131. ScheckelC. AguzziA. Prions, prionoids and protein misfolding disorders.Nat. Rev. Genet.201819740541810.1038/s41576‑018‑0011‑429713012
    [Google Scholar]
  132. AbramsJ. ArharT. MokS.A. TaylorI.R. KampmannM. GestwickiJ.E. Functional genomics screen identifies proteostasis targets that modulate prion protein (PrP) stability.Cell Stress Chaperones202126244345210.1007/s12192‑021‑01191‑833547632
    [Google Scholar]
  133. HaraH. SakaguchiS. Virus infection, genetic mutations, and prion infection in prion protein conversion.Int. J. Mol. Sci.202122221243910.3390/ijms22221243934830321
    [Google Scholar]
  134. SpagnolliG. RigoliM. OrioliS. SevillanoA.M. FaccioliP. WilleH. BiasiniE. RequenaJ.R. Full atomistic model of prion structure and conversion.PLoS Pathog.2019157e100786410.1371/journal.ppat.100786431295325
    [Google Scholar]
  135. ChandrasekaranP. Santosh KumarC. RangachariK. SekarK. Disassociation of β1-α1-β2 from the α2-α3 domain of prion protein (PrP) is a prerequisite for the conformational conversion of PrPC into PrPSc: Driven by the free energy landscape.Int. J. Biol. Macromol.201913636837610.1016/j.ijbiomac.2019.06.09931207327
    [Google Scholar]
  136. FederM.E. ParsellD.A. LindquistS.L. The stress response and stress proteins.Cell biology of trauma.CRC Press2020177191
    [Google Scholar]
  137. ShimK.H. SharmaN. AnS.S.A. Prion therapeutics: Lessons from the past.Prion202216126529410.1080/19336896.2022.215355136515657
    [Google Scholar]
  138. StaderiniM. VanniS. BaldeschiA.C. GiachinG. ZattoniM. CelauroL. FerracinC. BistaffaE. ModaF. PérezD.I. MartínezA. MartínM.A. Martín-CámaraO. CoresÁ. BianchiniG. KammererR. MenéndezJ.C. LegnameG. BolognesiM.L. Bifunctional carbazole derivatives for simultaneous therapy and fluorescence imaging in prion disease murine cell models.Eur. J. Med. Chem.2023245Pt 111492310.1016/j.ejmech.2022.11492336423450
    [Google Scholar]
  139. VoisineC. PedersenJ.S. MorimotoR.I. Chaperone networks: Tipping the balance in protein folding diseases.Neurobiol. Dis.2010401122010.1016/j.nbd.2010.05.00720472062
    [Google Scholar]
  140. BlairL.J. SabbaghJ.J. DickeyC.A. Targeting Hsp90 and its co-chaperones to treat Alzheimer’s disease.Expert Opin. Ther. Targets201418101219123210.1517/14728222.2014.94318525069659
    [Google Scholar]
  141. TanJ.S.Y. LeeB. LimJ. MaD.R. GohJ.X. GohS.Y. GulamM.Y. KohS.M. LeeW.W. FengL. WangQ. ChaoY. RötzschkeO. TanE.K. Parkinson’s disease-specific autoantibodies against the neuroprotective co-chaperone STIP1.Cells20221110164910.3390/cells1110164935626686
    [Google Scholar]
  142. PrattW.B. GestwickiJ.E. OsawaY. LiebermanA.P. Targeting Hsp90/Hsp70-based protein quality control for treatment of adult onset neurodegenerative diseases.Annu. Rev. Pharmacol. Toxicol.201555135337110.1146/annurev‑pharmtox‑010814‑12433225292434
    [Google Scholar]
  143. BatulanZ. TaylorD.M. AaronsR.J. MinottiS. DoroudchiM.M. NalbantogluJ. DurhamH.D. Induction of multiple heat shock proteins and neuroprotection in a primary culture model of familial amyotrophic lateral sclerosis.Neurobiol. Dis.200624221322510.1016/j.nbd.2006.06.01716950627
    [Google Scholar]
  144. ThackrayA.M. LamB. McNultyE.E. NallsA.V. MathiasonC.K. MagadiS.S. JacksonW.S. AndréolettiO. Marrero-WinkensC. SchätzlH. BujdosoR. Clearance of variant Creutzfeldt–Jakob disease prions in vivo by the Hsp70 disaggregase system.Brain202214593236324910.1093/brain/awac14435446941
    [Google Scholar]
  145. StoneD.L. SlavotinekA. BouffardG.G. Banerjee-BasuS. BaxevanisA.D. BarrM. BieseckerL.G. Mutation of a gene encoding a putative chaperonin causes McKusick-Kaufman syndrome.Nat. Genet.2000251798210.1038/7563710802661
    [Google Scholar]
  146. GnanasekaranH. ChandrasekharS.P. KandeebanS. PeriyasamyP. BhendeM. KhetanV. GuptaN. KabraM. NamboothriS. SenP. SripriyaS. Mutation profile of Bardet-Biedl syndrome patients from India: Implicative role of multiallelic rare variants and oligogenic inheritance pattern.Clin. Genet.2023104444346010.1111/cge.1439837431782
    [Google Scholar]
  147. WinterL. Staszewska-DacaI. ZittrichS. ElhamineF. ZrelskiM.M. SchmidtK. FischerI. JüngstC. SchaussA. GoldmannW.H. StehleR. WicheG. Z-disk-associated plectin (isoform 1d): spatial arrangement, interaction partners, and role in filamin C homeostasis.Cells2023129125910.3390/cells1209125937174658
    [Google Scholar]
  148. KhidiyatovaI. KhidiyatovaI. ZinchenkoR. MarakhonovA. KarunasA. AvkhadeevaS. AznzbaevM. KhusnutdinovaE. Study of the molecular nature of congenital cataracts in patients from the volga–ural region.Curr. Issues Mol. Biol.20234565145516310.3390/cimb4506032737367076
    [Google Scholar]
  149. MoodyM. HosseiniM. DeezagiA. YaghmaeiP. HoushmandS.M. The genetic basis of galactosemia in iranian patients: identification of twenty novel mutations in GALT, GALK1 and GALE gene.202310.21203/rs.3.rs‑3093450/v1
    [Google Scholar]
  150. MilanoS. MaqoudF. RutiglianoM. SaponaraI. CarmosinoM. GerbinoA. LucarelliG. BattagliaM. SveltoM. ProcinoG. β3 adrenergic receptor agonist mirabegron increases AQP2 and NKCC2 urinary excretion in OAB patients: A pleiotropic effect of interest for patients with X-linked nephrogenic diabetes insipidus.Int. J. Mol. Sci.2023242113610.3390/ijms2402113636674662
    [Google Scholar]
  151. TargovnikH.M. CitterioC.E. RivoltaC.M. Thyroglobulin gene mutations in congenital hypothyroidism.Horm. Res. Paediatr.201175531132110.1159/00032488221372558
    [Google Scholar]
  152. GulatiA. DahlN.K. HartungE.A. ClarkS.L. MoudgilA. GoodwinJ. SomloS. Hypomorphic PKD1 alleles impact disease variability in autosomal dominant polycystic kidney disease.Kidney36020234338739210.34067/KID.000000000000006436706243
    [Google Scholar]
  153. ZhangS. ZhuY. LuJ. LiuZ. LobatoA.G. ZengW. LiuJ. QiangJ. ZengS. ZhangY. LiuC. LiuJ. HeZ. ZhaiR.G. LiD. Specific binding of Hsp27 and phosphorylated Tau mitigates abnormal Tau aggregation-induced pathology.eLife202211e7989810.7554/eLife.7989836048712
    [Google Scholar]
  154. MitchellC.L. KurouskiD. Novel strategies in Parkinson’s disease treatment: A review.Front. Mol. Neurosci.202417143107910.3389/fnmol.2024.143107939183754
    [Google Scholar]
  155. RoufayelR. KadryS. Molecular chaperone HSP70 and key regulators of apoptosis-a review.Curr. Mol. Med.201919531532510.2174/156652401966619032611472030914024
    [Google Scholar]
  156. RahmanA. SaikiaB. GogoiC.R. BaruahA. Advances in the understanding of protein misfolding and aggregation through molecular dynamics simulation.Prog. Biophys. Mol. Biol.2022175314810.1016/j.pbiomolbio.2022.08.00736044970
    [Google Scholar]
  157. DhouafliZ. Cuanalo-ContrerasK. HayouniE.A. MaysC.E. SotoC. Moreno-GonzalezI. Inhibition of protein misfolding and aggregation by natural phenolic compounds.Cell. Mol. Life Sci.201875193521353810.1007/s00018‑018‑2872‑230030591
    [Google Scholar]
  158. ArmientoV. SpanopoulouA. KapurniotuA. Peptide-based molecular strategies to interfere with protein misfolding, aggregation, and cell degeneration.Angew. Chem. Int. Ed.20205993372338410.1002/anie.20190690831529602
    [Google Scholar]
  159. ChopraG. ShabirS. YousufS. KautsS. BhatS.A. MirA.H. SinghM.P. Proteinopathies: Deciphering physiology and mechanisms to develop effective therapies for neurodegenerative diseases.Mol. Neurobiol.202259127513754010.1007/s12035‑022‑03042‑836205914
    [Google Scholar]
  160. TrepelJ. MollapourM. GiacconeG. NeckersL. Targeting the dynamic HSP90 complex in cancer.Nat. Rev. Cancer201010853754910.1038/nrc288720651736
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037338028241230092414
Loading
/content/journals/cpps/10.2174/0113892037338028241230092414
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test