Skip to content
2000
image of The Expression Characteristics and Interrelationships of FNDC5 and Pyroptosis-Associated Molecules in the Peripheral Blood of Patients with Coronary Heart Disease

Abstract

Objectives

The aim of this study was to investigate the expression characteristics and interrelationships of FNDC5 and pyroptosis-associated molecules in peripheral blood mononuclear cells of patients with coronary heart disease (CHD).

Methods

Patients were divided into stable angina (SA), unstable angina (UA), and acute myocardial infarction (AMI) groups based on different clinical symptoms. According to the Gensini score, they were then divided into mild, moderate, and severe lesion groups. The control (NC) group was also set. ELISA assay was employed to detect the levels of Irisin, IL-1β, and IL-18, and the levels of pyroptosis-associated molecules, NF-κB p50, NF-κB p65, and FNDC5 were detected and compared by qRT-PCR and Western blot (WB). Logistic regression and Spearman's partial correlation analysis were used to analyze the pathogenic factors of CHD and explore the interrelationships between FNDC5 and the molecules.

Results

IL-1β and IL-18 of CHD patients were increased, while the Irisin was decreased. With the aggravation of symptoms and severity of coronary artery stenosis, the former increased, and the Irisin gradually decreased (0.05). About qRT-PCR and WB: With the aggravation of symptoms, the levels of pyroptosis-associated molecules and other indicators were increased, and FNDC5 was decreased (0.05). NLRP3, Caspase-1, and NF-κB p50 protein were positively correlated with the incidence of CHD, and FNDC5 was also negatively correlated with that of CHD.

Spearman's Partial Correlation Analysis

Even when common risk factors for CHD were taken into account, FNDC5 and NLRP3 were still found to be negatively connected.

Conclusion

The decreased expression level of FNDC5 and the increased level of pyroptosis-associated molecules may be related to CHD.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037338952241113104224
2025-01-10
2025-03-13
Loading full text...

Full text loading...

References

  1. Huang Y. Peng L. Zhang Z. Progress in cell pyroptosis and inflammatory response. Hainan Medical 2016 27 21 3533 3535
    [Google Scholar]
  2. Zhu X. Gao W. Chi Y. Wang Z.Y. Shao J.J. Close correlations between carotid arterial mean blood flow velocity, body mass index, and temperature in normal individuals. World J. Tradit. Chin. Med. 2023 9 4 469 474 10.4103/2311‑8571.391117
    [Google Scholar]
  3. Wolf D. Ley K. Immunity and inflammation in atherosclerosis. Circ. Res. 2019 124 2 315 327 10.1161/CIRCRESAHA.118.313591 30653442
    [Google Scholar]
  4. Hopkins P.N. Molecular biology of atherosclerosis. Physiol. Rev. 2013 93 3 1317 1542 10.1152/physrev.00004.2012 23899566
    [Google Scholar]
  5. Zheng Y. Gardner S.E. Clarke M.C.H. Cell death, damage-associated molecular patterns, and sterile inflammation in cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 2011 31 12 2781 2786 10.1161/ATVBAHA.111.224907 22096097
    [Google Scholar]
  6. Zheng F. Gong Z. Xing S. Xing Q. Overexpression of caspase-1 in aorta of patients with coronary atherosclerosis. Heart Lung Circ. 2014 23 11 1070 1074 10.1016/j.hlc.2014.04.256 24954757
    [Google Scholar]
  7. Sollberger G. Strittmatter G.E. Garstkiewicz M. Sand J. Beer H.D. Caspase-1: The inflammasome and beyond. Innate Immun. 2014 20 2 115 125 10.1177/1753425913484374 23676582
    [Google Scholar]
  8. Shi J. Zhao Y. Wang K. Shi X. Wang Y. Huang H. Zhuang Y. Cai T. Wang F. Shao F. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 2015 526 7575 660 665 10.1038/nature15514 26375003
    [Google Scholar]
  9. Boström P. Wu J. Jedrychowski M.P. Korde A. Ye L. Lo J.C. Rasbach K.A. Boström E.A. Choi J.H. Long J.Z. Kajimura S. Zingaretti M.C. Vind B.F. Tu H. Cinti S. Højlund K. Gygi S.P. Spiegelman B.M. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 2012 481 7382 463 468 10.1038/nature10777 22237023
    [Google Scholar]
  10. Baykuş H.E. Güç A.A. Karabaş Ç. Çalış H.T. Efficacy of hypnotherapy in the management of fibromyalgia:Aprospective randomized controlled study. World J. Tradit. Chin. Med. 2023 9 4 447 453 10.4103/2311‑8571.391116
    [Google Scholar]
  11. Aslaner H. Çalış H.T. Karabaşc Ç. Benli A.R. Hemogram parameters in fibromyalgia and effects of wet cupping therapy on hemogram parameters. World J. Tradit. Chin. Med. 2022 8 4 497 501 10.4103/wjtcm.wjtcm_73_21
    [Google Scholar]
  12. Rabbani F. Yazdiniapour Z. Ghanadian M. Zolfaghari B. Maleki M. Shafiee F. Cytotoxicity and apoptosis assay of novel cyclomyrsinol diterpenes against breast cancer cell lines. World J. Tradit. Chin. Med. 2022 8 2 273 277 10.4103/wjtcm.wjtcm_6_21
    [Google Scholar]
  13. He Q. Liu D. Juan T. Observation of serum irisin levels in patients with coronary heart disease. Shandong Pharma 2020 60 6 69 71
    [Google Scholar]
  14. Xu Y.J. Zheng L. Hu Y.W. Wang Q. Pyroptosis and its relationship to atherosclerosis. Clin. Chim. Acta 2018 476 28 37 10.1016/j.cca.2017.11.005 29129476
    [Google Scholar]
  15. Winkler S. Rösen-Wolff A. Caspase-1: an integral regulator of innate immunity. Semin. Immunopathol. 2015 37 4 419 427 10.1007/s00281‑015‑0494‑4 26059719
    [Google Scholar]
  16. Jiao T. Wang Y. Wei W. Expression of serum NLRP3 inflammasome, NF- κ B in patients with CHD and its relationship with Gensini score. Clin. Med. (Northfield Ill.) 2021 41 7 1 4
    [Google Scholar]
  17. Jagwani M. Sharma G. Sharma H. Kafle T.K. Tewani G.R. Nair P.M.K. Investigation of the test–retest reliability and inter-rater agreement of traditional Chinese medicine-based pulse diagnosis among Indian traditional Chinese medicine practitioners. World J. Tradit. Chin. Med. 2023 9 4 415 418 10.4103/2311‑8571.388728
    [Google Scholar]
  18. Liu Y. Pyroptosis: A new focus on programmed death. J. Clin. Pathol 2016 7 36 1006 1011
    [Google Scholar]
  19. Afrasyab A. Qu P. Zhao Y. Peng K. Wang H. Lou D. Niu N. Yuan D. Correlation of NLRP3 with severity and prognosis of coronary atherosclerosis in acute coronary syndrome patients. Heart Vessels 2016 31 8 1218 1229 10.1007/s00380‑015‑0723‑8 26290166
    [Google Scholar]
  20. Zhang D. Qian J. Zhang P. Li H. Shen H. Li X. Chen G. Gasdermin D serves as a key executioner of pyroptosis in experimental cerebral ischemia and reperfusion model both in vivo and in vitro J. Neurosci. Res. 2019 97 6 645 660 10.1002/jnr.24385 30600840
    [Google Scholar]
  21. Ji Q. Zeng Q. Huang Y. Shi Y. Lin Y. Lu Z. Meng K. Wu B. Yu K. Chai M. Liu Y. Zhou Y. Elevated plasma IL-37, IL-18, and IL-18BP concentrations in patients with acute coronary syndrome. Mediators Inflamm. 2014 2014 1 9 10.1155/2014/165742 24733959
    [Google Scholar]
  22. Ridker P.M. Thuren T. Zalewski A. Libby P. Interleukin-1β inhibition and the prevention of recurrent cardiovascular events: Rationale and design of the Canakinumab anti-inflammatory thrombosis outcomes study (CANTOS). Am. Heart J. 2011 162 4 597 605 10.1016/j.ahj.2011.06.012 21982649
    [Google Scholar]
  23. Åkerblom A. James S.K. Lakic T.G. Becker R.C. Cannon C.P. Steg P.G. Himmelmann A. Katus H.A. Storey R.F. Wallentin L. Weaver W.D. Siegbahn A. PLATO Investigators Interleukin‐18 in patients with acute coronary syndromes. Clin. Cardiol. 2019 42 12 1202 1209 10.1002/clc.23274 31596518
    [Google Scholar]
  24. Wang C. Shi N. Ping X. Role of the proteasome in the progression of atherosclerosis. Chin. Med. Guide. 2011 13 06 948 949
    [Google Scholar]
  25. Xanthoulea S. Curfs D.M.J. Hofker M.H. de Winther M.P.J. Nuclear factor kappaB signaling in macrophage function and atherogenesis. Curr. Opin. Lipidol. 2005 16 5 536 542 10.1097/01.mol.0000180167.15820.ae 16148538
    [Google Scholar]
  26. Mahanty J. Rasheed S.H. Kumar S. Singh H. Sharma A. Potential of essential oils as alternative permeation enhancersfor transdermal delivery. World J. Tradit. Chin. Med. 2023 9 3 258 269 10.4103/2311‑8571.351508
    [Google Scholar]
  27. Wang J. Xu X. Li P. Zhang B. Zhang J. HDAC3 protects against atherosclerosis through inhibition of inflammation via the microRNA-19b/PPARγ/NF-κB axis. Atherosclerosis 2021 323 1 12 10.1016/j.atherosclerosis.2021.02.013 33756273
    [Google Scholar]
  28. Wang X. Yang L. Zheng J. Changes and significance of serum NF-KB levels in patients with coronary heart disease. CJEBM 2012 4 3 204 207
    [Google Scholar]
  29. Ritchie M.E. Clinical investigation and reports nuclear factor- κ B is selectively and markedly activated in humans with unstable angina pectoris. Clin. Investig. Rep 1998 98 1703 1731
    [Google Scholar]
  30. Yu Q. Kou W. Xu X. Zhou S. Luan P. Xu X. Li H. Zhuang J. Wang J. Zhao Y. Xu Y. Peng W. FNDC5/Irisin inhibits pathological cardiac hypertrophy. Clin. Sci. (Lond.) 2019 133 5 611 627 10.1042/CS20190016 30782608
    [Google Scholar]
  31. Korta P. Pocheć E. Mazur-Biały A. Irisin as a multifunctional protein: Implications for health and certain diseases. Medicina (Kaunas) 2019 55 8 485 10.3390/medicina55080485
    [Google Scholar]
  32. Ming H. Guangsheng D. Ling B. Correlation study between serum irisin, hs-CRP, and TNF- α levels and the degree of heart failure. Chin. Pract. Med. 2021 16 25 23 25
    [Google Scholar]
  33. Rui W. Min J. Zhang J. Correlation between serum Irisin levels and the severity of coronary artery lesions. Hear. J. 2016 28 01 43 45
    [Google Scholar]
  34. Li Q. Zhang M. Zhao Y. Irisin protects against lps-stressed cardiac damage through inhibiting inflammation, apoptosis, and pyroptosis. Shock 2021 6 56 1009 1018
    [Google Scholar]
  35. Zhou X. Xu M. Bryant J.L. Ma J. Xu X. Exercise-induced myokine FNDC5/irisin functions in cardiovascular protection and intracerebral retrieval of synaptic plasticity. Cell Biosci. 2019 9 1 32 10.1186/s13578‑019‑0294‑y 30984367
    [Google Scholar]
  36. Khorasani Z.M. Bagheri R.K. Yaghoubi M.A. Chobkar S. Aghaee M.A. Abbaszadegan M.R. Sahebkar A. The association between serum irisin levels and cardiovascular disease in diabetic patients. Diabetes Metab. Syndr. 2019 13 1 786 790 10.1016/j.dsx.2018.11.050 30641808
    [Google Scholar]
  37. Tan Y. Chen L. Qu H. Shi D.Z. Ma X.J. Elucidation of the mechanism of Gualou-Xiebai-Banxia decoction for the treatment of unstable angina based on network pharmacology and molecular docking. World J. Tradit. Chin. Med. 2023 9 1 53 60 10.4103/2311‑8571.364411
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037338952241113104224
Loading
/content/journals/cpps/10.2174/0113892037338952241113104224
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: endothelial cells ; FNDC5 ; pyroptosis ; qRT-PCR ; Irisin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test