Skip to content
2000
image of Effect of Phytochemical Extracts on the Inflammatory Pathway

Abstract

Background

The research highlights the effect of phytochemical compounds on the correlation of cellular pathways of cytokines and antioxidant enzymes at the molecular levels.

Objective

This work examines the effects of phytochemical substances on the expression of () genes present in different amounts in garlic, grape seed, and pomegranate extracts in various amounts. Within the same framework, genes () expressing themselves genetically are responsible for the cellular pathways that carry out oxidative and redox reactions in cells.

Methods

Extracts of grape seeds (1.2% or 2.4%), pomegranates (1.2% or 2.4%), and garlic (0.5% or 1.2%) were applied to human peripheral blood leukocyte cultures. Real-time polymerase chain reaction (PCR) was utilised to evaluate the expression of genes.

Results

We found that the level transcription of the gene negatively correlates with the level transcription of cytokines when grape seed extract (2.4%) is added to the medium for culturing human blood cells. Furthermore, with the addition of 1.2% and 2.4% grape seed extract, there is a link between the expression of the genes. We found a positive correlation between the expression of the and genes after adding pomegranate extract (1.2%). Finally, following the addition of grape seed extract (1.2%) and garlic extract (1.2%), there is a link observed between the transcription level of the and genes.

Conclusion

The importance of the study lies in revealing the effect of phytochemicals on the intersection of the two pathways: the inflammatory pathway and the oxidative pathway. Whereas, it gives a clearer picture of the mechanism of action of these compounds as antioxidants and anti-inflammatories, depending on the close relationship between inflammatory properties and oxidative properties.

Loading

Article metrics loading...

/content/journals/cppm/10.2174/0118756921342503241227115121
2025-02-04
2025-05-24
Loading full text...

Full text loading...

References

  1. Mashkina E.V. Alkhaddour A. The effect of phytochemical extracts on cytokine gene expression. Curr. Pharmacogenomics Person. Med. 2021 18 2 107 115 10.2174/1875692118666210923142013
    [Google Scholar]
  2. Gerstgrasser A. Melhem H. Leonardi I. Atrott K. Schäfer M. Werner S. Rogler G. Frey-Wagner I. Cell-specific activation of the Nrf2 antioxidant pathway increases mucosal inflammation in acute but not in chronic colitis. J. Crohn’s Colitis 2017 11 4 485 499 27683801
    [Google Scholar]
  3. Fontana M.F. Baccarella A. Pancholi N. Pufall M.A. Herbert D.R. Kim C.C. JUNB is a key transcriptional modulator of macrophage activation. J. Immunol. 2015 194 1 177 186 10.4049/jimmunol.1401595 25472994
    [Google Scholar]
  4. Frank J. Fukagawa N.K. Bilia A.R. Johnson E.J. Kwon O. Prakash V. Miyazawa T. Clifford M.N. Kay C.D. Crozier A. Erdman J.W. Jr Shao A. Williamson G. Terms and nomenclature used for plant-derived components in nutrition and related research: Efforts toward harmonization. Nutr. Rev. 2020 78 6 451 458 10.1093/nutrit/nuz081 31769838
    [Google Scholar]
  5. Park K. The role of dietary phytochemicals: Evidence from epidemiological studies. Nutrients. 2023 15 1371 10.3390/nu15061371
    [Google Scholar]
  6. Crozier A Yokota T Jaganath IB Marks S Saltmarsh M Clifford MN Secondary metabolites in fruits, vegetables, beverages and other plant-based dietary components. Plant Secondary Metabolites: Occurrence, Structure and Role in the Human Diet Wiley 2006 208 302 10.1002/9780470988558.ch7
    [Google Scholar]
  7. Montagnese C. Santarpia L. Buonifacio M. Nardelli A. Caldara A.R. Silvestri E. Contaldo F. Pasanisi F. European food-based dietary guidelines: A comparison and update. Nutrition 2015 31 7-8 908 915 10.1016/j.nut.2015.01.002 26015390
    [Google Scholar]
  8. Pandey K.B. Rizvi S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009 2 5 270 278 10.4161/oxim.2.5.9498 20716914
    [Google Scholar]
  9. Sies H. Berndt C. Jones D.P. Oxidative stress. Annu Rev Biochem. 2017 86 715 748
    [Google Scholar]
  10. He J. Giusti M.M. Anthocyanins: Natural colorants with health-promoting properties. Annu. Rev. Food Sci. Technol. 2010 1 1 163 187 10.1146/annurev.food.080708.100754 22129334
    [Google Scholar]
  11. Skrovankova S. Sumczynski D. Mlcek J. Jurikova T. Sochor J. Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci. 2015 16 10 24673 24706 10.3390/ijms161024673 26501271
    [Google Scholar]
  12. Ak T. Gülçin İ. Antioxidant and radical scavenging properties of curcumin. Chem. Biol. Interact. 2008 174 1 27 37 10.1016/j.cbi.2008.05.003 18547552
    [Google Scholar]
  13. Clifford T. Acton J.P. Cocksedge S.P. Davies K.A.B. Bailey S.J. The effect of dietary phytochemicals on nuclear factor erythroid 2-related factor 2 (Nrf2) activation: A systematic review of human intervention trials. Mol. Biol. Rep. 2021 48 2 1745 1761 10.1007/s11033‑020‑06041‑x 33515348
    [Google Scholar]
  14. Kocyigit A. Guler E.M. Dikilitas M. Role of antioxidant phytochemicals in prevention, formation and treatment of cancer. Reactive Oxygen Species (ROS) in Living Cells IntechOpen London 2018 21 45 10.5772/intechopen.72217
    [Google Scholar]
  15. Zhang Y.J. Gan R.Y. Li S. Zhou Y. Li A.N. Xu D.P. Li H.B. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules 2015 20 12 21138 21156 10.3390/molecules201219753 26633317
    [Google Scholar]
  16. Cuadrado A. Rojo A.I. Wells G. Hayes J.D. Cousin S.P. Rumsey W.L. Attucks O.C. Franklin S. Levonen A.L. Kensler T.W. Dinkova-Kostova A.T. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat. Rev. Drug Discov. 2019 18 4 295 317 10.1038/s41573‑018‑0008‑x 30610225
    [Google Scholar]
  17. Haida Z. Hakiman M. A comprehensive review on the determination of enzymatic assay and nonenzymatic antioxidant activities. Food Sci. Nutr. 2019 7 5 1555 1563 10.1002/fsn3.1012 31139368
    [Google Scholar]
  18. Tonelli C. Chio I.I.C. Tuveson D.A. Transcriptional regulation by Nrf2. Antioxid. Redox Signal. 2018 29 17 1727 1745 10.1089/ars.2017.7342 28899199
    [Google Scholar]
  19. Альхаддур А. Машкина Е.В. Influence of phytochemical extracts on the expression OF NFE2L2, JUN, SOD1 genes in human cells. J Aerosp Eco. Med. 1995 56 3 40 46
    [Google Scholar]
  20. Brown J.R. Nigh E. Lee R.J. Ye H. Thompson M.A. Saudou F. Pestell R.G. Greenberg M.E. Fos family members induce cell cycle entry by activating cyclin D1. Mol. Cell. Biol. 1998 18 9 5609 5619 10.1128/MCB.18.9.5609 9710644
    [Google Scholar]
  21. Wisdom R. AP-1: One switch for many signals. Exp. Cell Res. 1999 253 1 180 185 10.1006/excr.1999.4685 10579922
    [Google Scholar]
  22. Halazonetis T.D. Georgopoulos K. Greenberg M.E. Leder P. C-Jun dimerizes with itself and with c-Fos, forming complexes of different DNA binding affinities. Cell 1988 55 5 917 924 10.1016/0092‑8674(88)90147‑X 3142692
    [Google Scholar]
  23. Chiu R. Angel P. Karin M. Jun-B differs in its biological properties from, and is a negative regulator of, c-Jun. Cell 1989 59 6 979 986 10.1016/0092‑8674(89)90754‑X 2513128
    [Google Scholar]
  24. Shaulian E. Karin M. AP-1 in cell proliferation and survival. Oncogene 2001 20 19 2390 2400 10.1038/sj.onc.1204383 11402335
    [Google Scholar]
  25. Hazan U. Thomas D. Alcami J. Bachelerie F. Israel N. Yssel H. Virelizier J.L. Arenzana-Seisdedos F. Stimulation of a human T-cell clone with anti-CD3 or tumor necrosis factor induces NF-kappa B translocation but not human immunodeficiency virus 1 enhancer-dependent transcription. Proc. Natl. Acad. Sci. USA 1990 87 20 7861 7865 10.1073/pnas.87.20.7861 2146676
    [Google Scholar]
  26. Pahl H.L. Activators and target genes of Rel/NF-κB transcription factors. Oncogene 1999 18 49 6853 6866 10.1038/sj.onc.1203239 10602461
    [Google Scholar]
  27. Song Y.S. Lee Y.S. Narasimhan P. Chan P.H. Reduced oxidative stress promotes NF-kappaB-mediated neuroprotective gene expression after transient focal cerebral ischemia: Lymphocytotrophic cytokines and antiapoptotic factors. J. Cereb. Blood Flow Metab. 2007 27 4 764 775 10.1038/sj.jcbfm.9600379 16868554
    [Google Scholar]
  28. Nam N.H. Naturally occurring NF-kappaB inhibitors. Mini Rev. Med. Chem. 2006 6 8 945 951 10.2174/138955706777934937 16918500
    [Google Scholar]
  29. Thiefes A. Wolter S. Mushinski J.F. Hoffmann E. Dittrich-Breiholz O. Graue N. Dörrie A. Schneider H. Wirth D. Luckow B. Resch K. Kracht M. Simultaneous blockade of NFkappaB, JNK, and p38 MAPK by a kinase-inactive mutant of the protein kinase TAK1 sensitizes cells to apoptosis and affects a distinct spectrum of tumor necrosis factor [corrected] target genes. J. Biol. Chem. 2005 280 30 27728 27741 10.1074/jbc.M411657200 15837794
    [Google Scholar]
  30. Karin M. The regulation of AP-1 activity by mitogen-activated protein kinases. J. Biol. Chem. 1995 270 28 16483 16486 10.1074/jbc.270.28.16483 7622446
    [Google Scholar]
  31. Hoffmann E. Ashouri J. Wolter S. Doerrie A. Dittrich-Breiholz O. Schneider H. Wagner E.F. Troppmair J. Mackman N. Kracht M. Transcriptional regulation of EGR-1 by the interleukin-1-JNK-MKK7-c-Jun pathway. J. Biol. Chem. 2008 283 18 12120 12128 10.1074/jbc.M800583200 18281687
    [Google Scholar]
  32. Seguí J. Gil F. Gironella M. Alvarez M. Gimeno M. Coronel P. Closa D. Piqué J.M. Panés J. Down-regulation of endothelial adhesion molecules and leukocyte adhesion by treatment with superoxide dismutase is beneficial in chronic immune experimental colitis. Inflamm. Bowel Dis. 2005 11 10 872 882 10.1097/01.MIB.0000183420.25186.7a 16189416
    [Google Scholar]
  33. Hwang J. Jin J. Jeon S. Moon S.H. Park M.Y. Yum D.Y. Kim J.H. Kang J.E. Park M.H. Kim E.J. Pan J.G. Kwon O. Oh G.T. SOD1 suppresses pro-inflammatory immune responses by protecting against oxidative stress in colitis. Redox Biol. 2020 37 101760 10.1016/j.redox.2020.101760 33096425
    [Google Scholar]
  34. Kobayashi A. Ohta T. Yamamoto M. Unique function of the Nrf2-Keap1 pathway in the inducible expression of antioxidant and detoxifying enzymes. Methods Enzymol. 2004 378 273 286 10.1016/S0076‑6879(04)78021‑0 15038975
    [Google Scholar]
  35. Forcina L Miano C Scicchitano BM Rizzuto E Berardinelli MG De Benedetti F Pelos L Musarò A Increased circulating levels of interleukin-6 affect the redox balance in skeletal muscle. Oxid Med Cell Longev 2019 2019 3018584 10.1155/2019/3018584
    [Google Scholar]
  36. Marasco M.R. Conteh A.M. Reissaus C.A. Cupit J.E. V Appleman E.M. Mirmira R.G. Linnemann A.K. Interleukin-6 reduces β-cell oxidative stress by linking autophagy with the antioxidant response. Diabetes 2018 67 8 1576 1588 10.2337/db17‑1280 29784660
    [Google Scholar]
  37. Ramachandran B. Yu G. Gulick T. Nuclear respiratory factor 1 controls myocyte enhancer factor 2A transcription to provide a mechanism for coordinate expression of respiratory chain subunits. J. Biol. Chem. 2008 283 18 11935 11946 10.1074/jbc.M707389200 18222924
    [Google Scholar]
  38. Piantadosi C.A. Withers C.M. Bartz R.R. MacGarvey N.C. Fu P. Sweeney T.E. Welty-Wolf K.E. Suliman H.B. Heme oxygenase-1 couples activation of mitochondrial biogenesis to anti-inflammatory cytokine expression. J. Biol. Chem. 2011 286 18 16374 16385 10.1074/jbc.M110.207738 21454555
    [Google Scholar]
  39. Kumar GR Reddy KP Reduced nociceptive responses in mice with alloxan induced hyperglycemia after garlic (Allium sativum Linn.) treatment. Indian J Exp Biol 1999 37 7 662 10522154
    [Google Scholar]
  40. Masci A. Coccia A. Lendaro E. Mosca L. Paolicelli P. Cesa S. Evaluation of different extraction methods from pomegranate whole fruit or peels and the antioxidant and antiproliferative activity of the polyphenolic fraction. Food Chem. 2016 202 59 69 10.1016/j.foodchem.2016.01.106 26920266
    [Google Scholar]
  41. Lee S.Y. Park H.J. Best-Popescu C. Jang S. Park Y.K. The effects of ethanol on the morphological and biochemical properties of individual human red blood cells. PLoS One 2015 10 12 e0145327 10.1371/journal.pone.0145327 26690915
    [Google Scholar]
  42. Livak KJ Schmittgen TD Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001 25 4 402 408 10.1006/meth.2001.1262
    [Google Scholar]
  43. Naor S. Keren Z. Bronshtein T. Goren E. Machluf M. Melamed D. Development of ALS-like disease in SOD-1 mice deficient of B lymphocytes. J. Neurol. 2009 256 8 1228 1235 10.1007/s00415‑009‑5097‑3 19280101
    [Google Scholar]
  44. Phaniendra A. Jestadi D.B. Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem. 2015 30 1 11 26 10.1007/s12291‑014‑0446‑0 25646037
    [Google Scholar]
  45. Альхаддур А. Машкина Е.В. Influence of plant extracts on the level of free radical processes in human cells. Aerospace. Ecologist. Med. 2021 55 4 67 72
    [Google Scholar]
  46. Sun W. Yan C. Frost B. Wang X. Hou C. Zeng M. Gao H. Kang Y. Liu J. Pomegranate extract decreases oxidative stress and alleviates mitochondrial impairment by activating AMPK-Nrf2 in hypothalamic paraventricular nucleus of spontaneously hypertensive rats. Sci. Rep. 2016 6 1 34246 10.1038/srep34246 27713551
    [Google Scholar]
  47. Baird L. Dinkova-Kostova A.T. The cytoprotective role of the Keap1–Nrf2 pathway. Arch. Toxicol. 2011 85 4 241 272 10.1007/s00204‑011‑0674‑5 21365312
    [Google Scholar]
  48. Takaya K. Suzuki T. Motohashi H. Onodera K. Satomi S. Kensler T.W. Yamamoto M. Validation of the multiple sensor mechanism of the Keap1-Nrf2 system. Free Radic. Biol. Med. 2012 53 4 817 827 10.1016/j.freeradbiomed.2012.06.023 22732183
    [Google Scholar]
  49. Na H.K. Surh Y.J. Modulation of Nrf2-mediated antioxidant and detoxifying enzyme induction by the green tea polyphenol EGCG. Food Chem. Toxicol. 2008 46 4 1271 1278 10.1016/j.fct.2007.10.006 18082923
    [Google Scholar]
  50. Henríquez-Olguín C. Altamirano F. Valladares D. López J.R. Allen P.D. Jaimovich E. Altered ROS production, NF-κB activation and interleukin-6 gene expression induced by electrical stimulation in dystrophic mdx skeletal muscle cells. Biochim. Biophys. Acta Mol. Basis Dis. 2015 1852 7 1410 1419 10.1016/j.bbadis.2015.03.012 25857619
    [Google Scholar]
  51. Schreiber S. Nikolaus S. Hampe J. Activation of nuclear factor κ B in inflammatory bowel disease. Gut 1998 42 4 477 484 10.1136/gut.42.4.477 9616307
    [Google Scholar]
  52. Xiang M. Fan J. Fan J. Association of Toll-like receptor signaling and reactive oxygen species: A potential therapeutic target for posttrauma acute lung injury. Mediators Inflamm. 2010 2010 1 1 8 10.1155/2010/916425 20706658
    [Google Scholar]
  53. Ahmad R. Akhter N. Al-Roub A. Kochumon S. Wilson A. Thomas R. Ali S. Tuomilehto J. Sindhu S. MIP-1alpha induction by palmitate in the human monocytic cells implicates TLR4 signaling mechanism. Cell. Physiol. Biochem. 2019 52 2 212 224 10.33594/000000015 30816669
    [Google Scholar]
  54. Akhter N. Madhoun A. Arefanian H. Wilson A. Kochumon S. Thomas R. Shenouda S. Al-Mulla F. Ahmad R. Sindhu S. Oxidative stress induces expression of the toll-like receptors (TLRs) 2 and 4 in the human peripheral blood mononuclear cells: Implications for metabolic inflammation. Cell. Physiol. Biochem. 2019 53 1 1 18 10.33594/000000117 31162913
    [Google Scholar]
  55. Vickers N.J. Animal communication: When i’m calling you, will you answer too? Curr. Biol. 2017 27 14 R713 R715 10.1016/j.cub.2017.05.064 28743020
    [Google Scholar]
  56. Kim H. Kim J.Y. Song H.S. Park K.U. Mun K.C. Ha E. Grape seed proanthocyanidin extract inhibits interleukin-17-induced interleukin-6 production via MAPK pathway in human pulmonary epithelial cells. Naunyn Schmiedebergs Arch. Pharmacol. 2011 383 6 555 562 10.1007/s00210‑011‑0633‑y 21484436
    [Google Scholar]
  57. Jan A.T. Kamli M.R. Murtaza I. Singh J.B. Ali A. Haq Q.M.R. Dietary flavonoid quercetin and associated health benefits—an overview. Food Rev. Int. 2010 26 3 302 317 10.1080/87559129.2010.484285
    [Google Scholar]
  58. Park M.Y. Ji G.E. Sung M.K. Dietary kaempferol suppresses inflammation of dextran sulfate sodium-induced colitis in mice. Dig. Dis. Sci. 2012 57 2 355 363 10.1007/s10620‑011‑1883‑8 21901258
    [Google Scholar]
  59. Somani S.J. Modi K.P. Majumdar A.S. Sadarani B.N. Phytochemicals and their potential usefulness in inflammatory bowel disease. Phytother. Res. 2015 29 3 339 350 10.1002/ptr.5271 25572840
    [Google Scholar]
  60. Suzuki T. Hara H. Quercetin enhances intestinal barrier function through the assembly of zonula [corrected] occludens-2, occludin, and claudin-1 and the expression of claudin-4 in Caco-2 cells. J. Nutr. 2009 139 5 965 974 10.3945/jn.108.100867 19297429
    [Google Scholar]
  61. Wang H. Xue Y. Zhang H. Huang Y. Yang G. Du M. Zhu M.J. Dietary grape seed extract ameliorates symptoms of inflammatory bowel disease in IL 10‐deficient mice. Mol. Nutr. Food Res. 2013 57 12 2253 2257 10.1002/mnfr.201300146 23963706
    [Google Scholar]
  62. Pistol G.C. Marin D.E. Rotar M.C. Ropota M. Taranu I. Bioactive compounds from dietary whole grape seed meal improved colonic inflammation via inhibition of MAPKs and NF-kB signaling in pigs with DSS induced colitis. J. Funct. Foods 2020 66 103708 10.1016/j.jff.2019.103708
    [Google Scholar]
  63. Manna K. Khan Z.S. Saha M. Mishra S. Gaikwad N. Bhakta J.N. Banerjee K. Das Saha K. Manjari Medika grape seed extract protects methotrexate-induced hepatic inflammation: Involvement of NF-κB/NLRP3 and Nrf2/HO-1 signaling system. J. Inflamm. Res. 2023 16 467 492 10.2147/JIR.S338888 36785716
    [Google Scholar]
  64. Baker R.G. Hayden M.S. Ghosh S. NF-κB, inflammation, and metabolic disease. Cell Metab. 2011 13 1 11 22 10.1016/j.cmet.2010.12.008 21195345
    [Google Scholar]
  65. Awane M. Andres P.G. Li D.J. Reinecker H.C. NF-κ B-inducing kinase is a common mediator of IL-17-, TNF-α-, and IL-1 β-induced chemokine promoter activation in intestinal epithelial cells. J. Immunol. 1999 162 9 5337 5344 10.4049/jimmunol.162.9.5337 10228009
    [Google Scholar]
  66. Bhinge A. Namboori S.C. Zhang X. VanDongen A.M.J. Stanton L.W. Genetic correction of SOD1 mutant iPSCs reveals ERK and JNK activated AP1 as a driver of neurodegeneration in amyotrophic lateral sclerosis. Stem Cell Reports 2017 8 4 856 869 10.1016/j.stemcr.2017.02.019 28366453
    [Google Scholar]
  67. Suman S. Shukla Y. Diallyl sulfide and its role in chronic diseases prevention. Adv Exp Med Biol. 2016 127 144 10.1007/978‑3‑319‑41342‑6_6
    [Google Scholar]
  68. Chang H.P. Huang S.Y. Chen Y.H. Modulation of cytokine secretion by garlic oil derivatives is associated with suppressed nitric oxide production in stimulated macrophages. J. Agric. Food Chem. 2005 53 7 2530 2534 10.1021/jf048601n 15796590
    [Google Scholar]
  69. Schäfer G. Kaschula C. The immunomodulation and anti-inflammatory effects of garlic organosulfur compounds in cancer chemoprevention. Anticancer. Agents Med. Chem. 2014 14 2 233 240 10.2174/18715206113136660370 24237225
    [Google Scholar]
  70. Kim K.H. Park J.K. Choi Y.W. Kim Y.H. Lee E.N. Lee J.R. Kim H.S. Baek S.Y. Kim B.S. Lee K.S. Yoon S. Hexane extract of aged black garlic reduces cell proliferation and attenuates the expression of ICAM-1 and VCAM-1 in TNF-α-activated human endometrial stromal cells. Int. J. Mol. Med. 2013 32 1 67 78 10.3892/ijmm.2013.1362 23619991
    [Google Scholar]
  71. Dong M. Yang G. Liu H. Liu X. Lin S. Sun D. Wang Y. Aged black garlic extract inhibits HT29 colon cancer cell growth via the PI3K/Akt signaling pathway. Biomed. Rep. 2014 2 2 250 254 10.3892/br.2014.226 24649105
    [Google Scholar]
  72. Shin S.S. Song J.H. Hwang B. Noh D.H. Park S.L. Kim W.T. Park S.S. Kim W.J. Moon S.K. HSPA6 augments garlic extract-induced inhibition of proliferation, migration, and invasion of bladder cancer EJ cells; Implication for cell cycle dysregulation, signaling pathway alteration, and transcription factor-associated MMP-9 regulation. PLoS One 2017 12 2 e0171860 10.1371/journal.pone.0171860 28187175
    [Google Scholar]
  73. Kuan C.Y. Yang D.D. Roy D.R.S. Davis R.J. Rakic P. Flavell R.A. The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron 1999 22 4 667 676 10.1016/S0896‑6273(00)80727‑8 10230788
    [Google Scholar]
  74. Ferruzzi M.G. Lobo J.K. Janle E.M. Cooper B. Simon J.E. Wu Q.L. Welch C. Ho L. Weaver C. Pasinetti G.M. Bioavailability of gallic acid and catechins from grape seed polyphenol extract is improved by repeated dosing in rats: Implications for treatment in Alzheimer’s disease. J. Alzheimers Dis. 2009 18 1 113 124 10.3233/JAD‑2009‑1135 19625746
    [Google Scholar]
  75. Benedetti G. Zabini F. Tagliavento L. Meneguzzo F. Calderone V. Testai L. An overview of the health benefits, extraction methods and improving the properties of pomegranate. Antioxidants 2023 12 7 1351 10.3390/antiox12071351 37507891
    [Google Scholar]
/content/journals/cppm/10.2174/0118756921342503241227115121
Loading
/content/journals/cppm/10.2174/0118756921342503241227115121
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test