Skip to content
2000
image of Exploring the Potent Anticancer Activity of Novel Phytoconstituent Derived from Zanthoxylum Nitidum Using an In-Silico Approach

Abstract

Background

Cancer is one of the serious health issues and the leading cause of mortality worldwide. Several studies have demonstrated that the overexpression of growth factors and receptors, the triggering of oncogenes, and the deactivation of tumor suppressor genes are the main causes of aggressive and resistant forms of cancer. The epidermal growth factor receptor (EGFR) is a receptor that medications target for cancer treatment.

Objective

The present study employs computational approaches to explore the anti-cancer activity of newly identified indole alkaloids from against EGFR kinase.

Method

Computational techniques, including molecular docking, density functional theory (DFT), and pharmacokinetic studies, were employed to evaluate the ligand-target interactions. Additionally, drug-likeness was assessed using the Lipinski rule of five.

Result and Discussion

We evaluated their pharmacokinetics, binding interactions, and stability using molecular docking, drug-likeness prediction, absorption, distribution, metabolism, and excretion (ADMET) profiling, simulations study, and density functional theory (DFT) study. Nitidumalkaloid C showed remarkable binding affinity (-9.7 kcal/mol) to epidermal growth factor receptor tyrosine kinase, while that of standard drugs showed dacomitinib (-9.0 kcal/mol) and osimertinib (-7.9 kcal/mol). The molecular dynamics MD simulation study revealed stable interactions, with nitidumalkaloid C exhibiting the highest stability. These findings indicate indole alkaloids as potentially effective anticancer medicines, with nitidumalkaloid C demanding further modification for pharmaceutical development. This research informs nitidumalkaloid C as a potential indole alkaloid by providing insights into molecular characteristics and binding energies.

Conclusión

These parameters allow consideration of the most promising candidate, nitidumalkaloid C, for novel anticancer drug development to overcome gene mutations or resistance in EGFR-TK.

Loading

Article metrics loading...

/content/journals/cppm/10.2174/0118756921374184250311061415
2025-03-17
2025-05-17
Loading full text...

Full text loading...

References

  1. Kocarnik J.M. Compton K. Dean F.E. Fu W. Gaw B.L. Harvey J.D. Henrikson H.J. Lu D. Pennini A. Xu R. Ababneh E. Abbasi-Kangevari M. Abbastabar H. Abd-Elsalam S.M. Abdoli A. Abedi A. Abidi H. Abolhassani H. Adedeji I.A. Adnani Q.E.S. Advani S.M. Afzal M.S. Aghaali M. Ahinkorah B.O. Ahmad S. Ahmad T. Ahmadi A. Ahmadi S. Rashid A.T. Salih A.Y. Akalu G.T. Aklilu A. Akram T. Akunna C.J. Hamad A.H. Alahdab F. Al-Aly Z. Ali S. Alimohamadi Y. Alipour V. Aljunid S.M. Alkhayyat M. Almasi-Hashiani A. Almasri N.A. Al-Maweri S.A.A. Almustanyir S. Alonso N. Alvis-Guzman N. Amu H. Anbesu E.W. Ancuceanu R. Ansari F. Ansari-Moghaddam A. Antwi M.H. Anvari D. Anyasodor A.E. Aqeel M. Arabloo J. Arab-Zozani M. Aremu O. Ariffin H. Aripov T. Arshad M. Artaman A. Arulappan J. Asemi Z. Jafarabadi A.M. Ashraf T. Atorkey P. Aujayeb A. Ausloos M. Awedew A.F. Quintanilla A.B.P. Ayenew T. Azab M.A. Azadnajafabad S. Jafari A.A. Azarian G. Azzam A.Y. Badiye A.D. Bahadory S. Baig A.A. Baker J.L. Balakrishnan S. Banach M. Bärnighausen T.W. Barone-Adesi F. Barra F. Barrow A. Behzadifar M. Belgaumi U.I. Bezabhe W.M.M. Bezabih Y.M. Bhagat D.S. Bhagavathula A.S. Bhardwaj N. Bhardwaj P. Bhaskar S. Bhattacharyya K. Bhojaraja V.S. Bibi S. Bijani A. Biondi A. Bisignano C. Bjørge T. Bleyer A. Blyuss O. Bolarinwa O.A. Bolla S.R. Braithwaite D. Brar A. Brenner H. Bustamante-Teixeira M.T. Butt N.S. Butt Z.A. Caetano dos Santos F.L. Cao Y. Carreras G. Catalá-López F. Cembranel F. Cerin E. Cernigliaro A. Chakinala R.C. Chattu S.K. Chattu V.K. Chaturvedi P. Chimed-Ochir O. Cho D.Y. Christopher D.J. Chu D.T. Chung M.T. Conde J. Cortés S. Cortesi P.A. Costa V.M. Cunha A.R. Dadras O. Dagnew A.B. Dahlawi S.M.A. Dai X. Dandona L. Dandona R. Darwesh A.M. Neves D.J. Hoz L.D.F.P. Demis A.B. Denova-Gutiérrez E. Dhamnetiya D. Dhimal M.L. Dhimal M. Dianatinasab M. Diaz D. Djalalinia S. Do H.P. Doaei S. Dorostkar F. dos Santos Figueiredo F.W. Driscoll T.R. Ebrahimi H. Eftekharzadeh S. Tantawi E.M. El-Abid H. Elbarazi I. Elhabashy H.R. Elhadi M. El-Jaafary S.I. Eshrati B. Eskandarieh S. Esmaeilzadeh F. Etemadi A. Ezzikouri S. Faisaluddin M. Faraon E.J.A. Fares J. Farzadfar F. Feroze A.H. Ferrero S. Desideri F.L. Filip I. Fischer F. Fisher J.L. Foroutan M. Fukumoto T. Gaal P.A. Gad M.M. Gadanya M.A. Gallus S. Fonseca G.M. Obsa G.A. Ghafourifard M. Ghashghaee A. Ghith N. Gholamalizadeh M. Gilani S.A. Ginindza T.G. Gizaw A.T.T. Glasbey J.C. Golechha M. Goleij P. Gomez R.S. Gopalani S.V. Gorini G. Goudarzi H. Grosso G. Gubari M.I.M. Guerra M.R. Guha A. Gunasekera D.S. Gupta B. Gupta V.B. Gupta V.K. Gutiérrez R.A. Hafezi-Nejad N. Haider M.R. Haj-Mirzaian A. Halwani R. Hamadeh R.R. Hameed S. Hamidi S. Hanif A. Haque S. Harlianto N.I. Haro J.M. Hasaballah A.I. Hassanipour S. Hay R.J. Hay S.I. Hayat K. Heidari G. Heidari M. Herrera-Serna B.Y. Herteliu C. Hezam K. Holla R. Hossain M.M. Hossain M.B.H. Hosseini M.S. Hosseini M. Hosseinzadeh M. Hostiuc M. Hostiuc S. Househ M. Hsairi M. Huang J. Hugo F.N. Hussain R. Hussein N.R. Hwang B.F. Iavicoli I. Ibitoye S.E. Ida F. Ikuta K.S. Ilesanmi O.S. Ilic I.M. Ilic M.D. Irham L.M. Islam J.Y. Islam R.M. Islam S.M.S. Ismail N.E. Isola G. Iwagami M. Jacob L. Jain V. Jakovljevic M.B. Javaheri T. Jayaram S. Jazayeri S.B. Jha R.P. Jonas J.B. Joo T. Joseph N. Joukar F. Jürisson M. Kabir A. Kahrizi D. Kalankesh L.R. Kalhor R. Kaliyadan F. Kalkonde Y. Kamath A. Kameran Al-Salihi N. Kandel H. Kapoor N. Karch A. Kasa A.S. Katikireddi S.V. Kauppila J.H. Kavetskyy T. Kebede S.A. Keshavarz P. Keykhaei M. Khader Y.S. Khalilov R. Khan G. Khan M. Khan M.N. Khan M.A.B. Khang Y.H. Khater A.M. Khayamzadeh M. Kim G.R. Kim Y.J. Kisa A. Kisa S. Kissimova-Skarbek K. Kopec J.A. Koteeswaran R. Koul P.A. Laxminarayana K.S.L. Koyanagi A. Bicer K.B. Kugbey N. Kumar G.A. Kumar N. Kumar N. Kurmi O.P. Kutluk T. Vecchia L.C. Lami F.H. Landires I. Lauriola P. Lee S. Lee S.W.H. Lee W.C. Lee Y.H. Leigh J. Leong E. Li J. Li M.C. Liu X. Loureiro J.A. Lunevicius R. Magdy Abd El Razek M. Majeed A. Makki A. Male S. Malik A.A. Mansournia M.A. Martini S. Masoumi S.Z. Mathur P. McKee M. Mehrotra R. Mendoza W. Menezes R.G. Mengesha E.W. Mesregah M.K. Mestrovic T. Jonasson M.J. Miazgowski B. Miazgowski T. Michalek I.M. Miller T.R. Mirzaei H. Mirzaei H.R. Misra S. Mithra P. Moghadaszadeh M. Mohammad K.A. Mohammad Y. Mohammadi M. Mohammadi S.M. Mohammadian-Hafshejani A. Mohammed S. Moka N. Mokdad A.H. Molokhia M. Monasta L. Moni M.A. Moosavi M.A. Moradi Y. Moraga P. Morgado-da-Costa J. Morrison S.D. Mosapour A. Mubarik S. Mwanri L. Nagarajan A.J. Nagaraju S.P. Nagata C. Naimzada M.D. Nangia V. Naqvi A.A. Swamy N.S. Ndejjo R. Nduaguba S.O. Negoi I. Negru S.M. Kandel N.S. Nguyen C.T. Nguyen H.L.T. Niazi R.K. Nnaji C.A. Noor N.M. Nuñez-Samudio V. Nzoputam C.I. Oancea B. Ochir C. Odukoya O.O. Ogbo F.A. Olagunju A.T. Olakunde B.O. Omar E. Bali O.A. Omonisi A.E.E. Ong S. Onwujekwe O.E. Orru H. Ortega-Altamirano D.V. Otstavnov N. Otstavnov S.S. Owolabi M.O. A P.M. Padubidri J.R. Pakshir K. Pana A. Panagiotakos D. Panda-Jonas S. Pardhan S. Park E.C. Park E.K. Kan P.F. Patel H.K. Patel J.R. Pati S. Pattanshetty S.M. Paudel U. Pereira D.M. Pereira R.B. Perianayagam A. Pillay J.D. Pirouzpanah S. Pishgar F. Podder I. Postma M.J. Pourjafar H. Prashant A. Preotescu L. Rabiee M. Rabiee N. Radfar A. Radhakrishnan R.A. Radhakrishnan V. Rafiee A. Rahim F. Rahimzadeh S. Rahman M. Rahman M.A. Rahmani A.M. Rajai N. Rajesh A. Rakovac I. Ram P. Ramezanzadeh K. Ranabhat K. Ranasinghe P. Rao C.R. Rao S.J. Rawassizadeh R. Razeghinia M.S. Renzaho A.M.N. Rezaei N. Rezaei N. Rezapour A. Roberts T.J. Rodriguez J.A.B. Rohloff P. Romoli M. Ronfani L. Roshandel G. Rwegerera G.M. S M. Sabour S. Saddik B. Saeed U. Sahebkar A. Sahoo H. Salehi S. Salem M.R. Salimzadeh H. Samaei M. Samy A.M. Sanabria J. Sankararaman S. Santric-Milicevic M.M. Sardiwalla Y. Sarveazad A. Sathian B. Sawhney M. Saylan M. Schneider I.J.C. Sekerija M. Seylani A. Shafaat O. Shaghaghi Z. Shaikh M.A. Shamsoddin E. Shannawaz M. Sharma R. Sheikh A. Sheikhbahaei S. Shetty A. Shetty J.K. Shetty P.H. Shibuya K. Shirkoohi R. Shivakumar K.M. Shivarov V. Siabani S. Malleshappa S.S.K. Silva D.A.S. Singh J.A. Sintayehu Y. Skryabin V.Y. Skryabina A.A. Soeberg M.J. Sofi-Mahmudi A. Sotoudeh H. Steiropoulos P. Straif K. Subedi R. Sufiyan M.B. Sultan I. Sultana S. Sur D. Szerencsés V. Szócska M. Tabarés-Seisdedos R. Tabuchi T. Tadbiri H. Taherkhani A. Takahashi K. Talaat I.M. Tan K.K. Tat V.Y. Tedla B.A.A. Tefera Y.G. Tehrani-Banihashemi A. Temsah M.H. Tesfay F.H. Tessema G.A. Thapar R. Thavamani A. Chandrasekar T.V. Thomas N. Tohidinik H.R. Touvier M. Tovani-Palone M.R. Traini E. Tran B.X. Tran K.B. Tran M.T.N. Tripathy J.P. Tusa B.S. Ullah I. Ullah S. Umapathi K.K. Unnikrishnan B. Upadhyay E. Vacante M. Vaezi M. Tahbaz V.S. Velazquez D.Z. Veroux M. Violante F.S. Vlassov V. Vo B. Volovici V. Vu G.T. Waheed Y. Wamai R.G. Ward P. Wen Y.F. Westerman R. Winkler A.S. Yadav L. Jabbari Y.S.H. Yang L. Yaya S. Yazie T.S.Y. Yeshaw Y. Yonemoto N. Younis M.Z. Yousefi Z. Yu C. Yuce D. Yunusa I. Zadnik V. Zare F. Zastrozhin M.S. Zastrozhina A. Zhang J. Zhong C. Zhou L. Zhu C. Ziapour A. Zimmermann I.R. Fitzmaurice C. Murray C.J.L. Force L.M. Cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life years for 29 cancer groups from 2010 to 2019. JAMA Oncol. 2022 8 3 420 444 10.1001/jamaoncol.2021.6987 34967848
    [Google Scholar]
  2. Siegel R.L. Giaquinto A.N. Jemal A. Jemal A. Cancer statistics, 2024. CA Cancer J. Clin. 2024 74 1 12 49 10.3322/caac.21820 38230766
    [Google Scholar]
  3. Seshacharyulu P. Ponnusamy M.P. Haridas D. Jain M. Ganti A.K. Batra S.K. Targeting the EGFR signaling pathway in cancer therapy. Expert Opin. Ther. Targets 2012 16 1 15 31 10.1517/14728222.2011.648617 22239438
    [Google Scholar]
  4. Shi X. P. Guan R. Q. Zhang M. D. Progress in the study of zanthoxylum alkaloids.. Chin. Wild. Plant. Res. 2010 29 1 7
    [Google Scholar]
  5. Karnik K.S. Sarkate A.P. Tiwari S.V. Azad R. Wakte P.S. Free energy perturbation guided synthesis with biological evaluation of substituted quinoline derivatives as small molecule L858R/T790M/C797S mutant EGFR inhibitors targeting resistance in Non-Small Cell Lung Cancer (NSCLC). Bioorg. Chem. 2021 115 105226 10.1016/j.bioorg.2021.105226 34364055
    [Google Scholar]
  6. Yang G. Chen D. Alkaloids from the roots of Zanthoxylum nitidum and their antiviral and antifungal effects. Chem. Biodivers. 2008 5 9 1718 1722 10.1002/cbdv.200890160 18816524
    [Google Scholar]
  7. Lu Y. Zhang C. Bucheli P. Wei D. Citrus flavonoids in fruit and traditional Chinese medicinal food ingredients in China. Plant Foods Hum. Nutr. 2006 61 2 55 63 10.1007/s11130‑006‑0014‑8 16816988
    [Google Scholar]
  8. Fernández-Somoano A. Álvarez-Avellón S.M. Souto-García A. Vioque J. Navarrete-Muñoz E.M. Tardón A. Alcohol consumption and lung cancer according to ile349val polymorphism in ADH3 gene: Beyond the tobacco smoking effect. J. Cancer 2017 8 12 2296 2302 10.7150/jca.18853 28819433
    [Google Scholar]
  9. Wang F.F. Tao P.F. Zhong Y.J. Gu Y.Q. Wang C.Y. Qin F. Alkaloids from Zanthoxylum nitidum and their anti-proliferative activity against A549 cells by regulating the EGFR/AKT/mTOR pathway. Nat. Prod. Res. 2024 0 1 7 10.1080/14786419.2024.2347463 38684029
    [Google Scholar]
  10. Dayyani F. Gallick G.E. Logothetis C.J. Corn P.G. Novel therapies for metastatic castrate-resistant prostate cancer. J. Natl. Cancer Inst. 2011 103 22 1665 1675 10.1093/jnci/djr362 21917607
    [Google Scholar]
  11. Yang C.H. Cheng M.J. Chiang M.Y. Kuo Y.H. Wang C.J. Chen I.S. Dihydrobenzo[ c ]phenanthridine Alkaloids from Stem Bark of Zanthoxylum nitidum. J. Nat. Prod. 2008 71 4 669 673 10.1021/np700745f 18303853
    [Google Scholar]
  12. Duan H. Qu L. Shou C. Activation of EGFR-PI3K-AKT signaling is required for Mycoplasma hyorhinis-promoted gastric cancer cell migration. Cancer Cell Int. 2014 14 1 135 10.1186/s12935‑014‑0135‑3 25505372
    [Google Scholar]
  13. Davis N.M. Sokolosky M. Stadelman K. Abrams S.L. Libra M. Candido S. Nicoletti F. Polesel J. Maestro R. D’Assoro A. Drobot L. Rakus D. Gizak A. Laidler P. Dulińska-Litewka J. Basecke J. Mijatovic S. Maksimovic-Ivanic D. Montalto G. Cervello M. Fitzgerald T.L. Demidenko Z.N. Martelli A.M. Cocco L. Steelman L.S. McCubrey J.A. Deregulation of the EGFR/PI3K/PTEN/Akt/mTORC1 pathway in breast cancer: Possibilities for therapeutic intervention. Oncotarget 2014 5 13 4603 4650 10.18632/oncotarget.2209 25051360
    [Google Scholar]
  14. Rathod S. Shinde S. Choudhari P. Sarkate A. Chaudhari S. Shingan A. Exploring binding potential of two new indole alkaloids from Nauclea officinalis against third and fourth generation EGFR: Druglikeness, in silico ADMET, docking, DFT, molecular dynamics simulation, and MMGBSA study. Nat. Prod. Res. 2024 1 8 10.1080/14786419.2023.2301678 38206888
    [Google Scholar]
  15. Rathod S.S. Shinde S.S. Choudhari P.B. Dhavale R.P. Sarkate A.P. Computational and experimental approaches to decipher the complexity of diseases. Systems Biology Approaches: Prevention, Diagnosis, and Understanding Mechanisms of Complex Diseases Singapore Springer 2024 393 413 10.1007/978‑981‑99‑9462‑5_15
    [Google Scholar]
  16. Daina A. Michielin O. Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017 7 1 42717 10.1038/srep42717 28256516
    [Google Scholar]
  17. Kumar S.A. Kudva J. Lahtinen M. Peuronen A. Sadashiva R. Naral D. Synthesis, characterization, crystal structures and biological screening of 4-amino quinazoline sulfonamide derivatives. J. Mol. Struct. 2019 1190 29 36 10.1016/j.molstruc.2019.04.050
    [Google Scholar]
  18. Daina A. Zoete V. A boiled‐egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 2016 11 11 1117 1121 10.1002/cmdc.201600182 27218427
    [Google Scholar]
  19. Bakale R.D. Phatak P.S. Rathod S.S. Choudhari P.B. Rekha E.M. Sriram D. Haval K.P. In Vitro and in Silico Exploration of Newly Synthesized Triazolyl-Isonicotinohydrazides as Potent Antitubercular Agents. J. Biomol. Struct. Dyn. 2023 1 20 38079301
    [Google Scholar]
  20. Zardecki C. Dutta S. Goodsell D.S. Voigt M. Burley S.K. RCSB Protein data bank: A resource for chemical, biochemical, and structural explorations of large and small biomolecules. J. Chem. Educ. 2016 93 3 569 575 10.1021/acs.jchemed.5b00404
    [Google Scholar]
  21. Gajiwala K.S. Feng J. Ferre R. Ryan K. Brodsky O. Weinrich S. Kath J.C. Stewart A. Insights into the aberrant activity of mutant EGFR kinase domain and drug recognition. Structure 2013 21 2 209 219 10.1016/j.str.2012.11.014 23273428
    [Google Scholar]
  22. Shinde S. Rathod S. in silico modeling and drug design. Meth. Rat. Drug Des. 2024 1 153 165
    [Google Scholar]
  23. Trott O. Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010 31 2 455 461 10.1002/jcc.21334 19499576
    [Google Scholar]
  24. Mendelsohn L.D. ChemDraw 8 Ultra, Windows and Macintosh Versions. J. Chem. Inf. Comput. Sci. 2004 44 6 2225 2226 10.1021/ci040123t
    [Google Scholar]
  25. Snyder H.D. Kucukkal T.G. Computational chemistry activities with avogadro and ORCA. J. Chem. Educ. 2021 98 4 1335 1341 10.1021/acs.jchemed.0c00959
    [Google Scholar]
  26. O’Boyle N.M. Banck M. James C.A. Morley C. Vandermeersch T. Hutchison G.R. Open Babel: An open chemical toolbox. J. Cheminform. 2011 3 1 33 10.1186/1758‑2946‑3‑33 21982300
    [Google Scholar]
  27. Morris G.M. Huey R. Lindstrom W. Sanner M.F. Belew R.K. Goodsell D.S. Olson A.J. AutoDock4 and autodocktools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009 30 16 2785 2791 10.1002/jcc.21256 19399780
    [Google Scholar]
  28. Pires D.E.V. Blundell T.L. Ascher D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem. 2015 58 9 4066 4072 10.1021/acs.jmedchem.5b00104 25860834
    [Google Scholar]
  29. Patial P.K. Cannoo D.S. Phytochemical profile, antioxidant potential and DFT study of Araucaria columnaris (G. Forst.) Hook. Branch extracts. Nat. Prod. Res. 2021 35 22 4611 4615 10.1080/14786419.2019.1696330 31782675
    [Google Scholar]
  30. Beckers M. Sturm N. Sirockin F. Fechner N. Stiefl N. Prediction of small-molecule developability using large-scale in silico ADMET models. J. Med. Chem. 2023 66 20 14047 14060 10.1021/acs.jmedchem.3c01083 37815201
    [Google Scholar]
  31. Shinde S.S. Ahmed S. Malik J.A. Hani U. Khanam A. Bhat A.F. Mir A.S. Ghazwani M. Wahab S. Haider N. Almehizia A.A. Therapeutic delivery of tumor suppressor mirnas for breast cancer treatment. Biology 2023 12 3 467 10.3390/biology12030467 36979159
    [Google Scholar]
  32. Padule K. Shinde S. Chitlange S. Giram P. Nagore D. The advancement of herbal-based nanomedicine for hair. Cosmetics 2022 9 6 118 10.3390/cosmetics9060118
    [Google Scholar]
  33. Cruciani G. Carosati E. Boeck D.B. Ethirajulu K. Mackie C. Howe T. Vianello R. MetaSite: Understanding metabolism in human cytochromes from the perspective of the chemist. J. Med. Chem. 2005 48 22 6970 6979 10.1021/jm050529c 16250655
    [Google Scholar]
  34. Mekni N. Coronnello C. Langer T. Rosa M.D. Perricone U. Support vector machine as a supervised learning for the prioritization of novel potential SARS-cov-2 main protease inhibitors. Int. J. Mol. Sci. 2021 22 14 7714 10.3390/ijms22147714 34299333
    [Google Scholar]
  35. Shinde S.S. Sarkate A.P. Chituri K.K. C.P.B. Exploration of virtually designed quinazoline derivatives targeting egfr kinases as anticancer agents : Docking, in-silico admet, drug-likeness, and dft study. Lett. Drug Des. Discov. 2024 21
    [Google Scholar]
  36. Shinde S.S. Padule K.B. Sawant S.L. Sarkate A.P. Systems approach for identifying drug targets by computational approaches. Systems Biology Approaches: Prevention, Diagnosis, and Understanding Mechanisms of Complex Diseases Singapore Springer 2024 10.1007/978‑981‑99‑9462‑5_10
    [Google Scholar]
  37. Lipinski C.A. Lombardo F. Dominy B.W. Feeney P.J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. 1997 23 3 25
    [Google Scholar]
  38. Ivanović V. Rančić M. Arsić B. Pavlović A. Lipinski’s rule of five, famous extensions and famous exceptions. Chemia Naissensis 2020 3 1 171 181 10.46793/ChemN3.1.171I
    [Google Scholar]
  39. Alam M.M. Verma G. Marella A. Shaquiquzzaman M. Akhtar M. Ali M.R. A review exploring biological activities of hydrazones. J. Pharm. Bioallied Sci. 2014 6 2 69 80 10.4103/0975‑7406.129170 24741273
    [Google Scholar]
  40. Che X. Liu Q. Zhang L. An accurate and universal protein-small molecule batch docking solution using Autodock Vina. Results in Engineering 2023 19 101335 10.1016/j.rineng.2023.101335
    [Google Scholar]
  41. Jia Y. Yun C.H. Park E. Ercan D. Manuia M. Juarez J. Xu C. Rhee K. Chen T. Zhang H. Palakurthi S. Jang J. Lelais G. DiDonato M. Bursulaya B. Michellys P.Y. Epple R. Marsilje T.H. McNeill M. Lu W. Harris J. Bender S. Wong K.K. Jänne P.A. Eck M.J. Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors. Nature 2016 534 7605 129 132 10.1038/nature17960 27251290
    [Google Scholar]
  42. Rahat I. Yadav P. Singhal A. Fareed M. Purushothaman J.R. Aslam M. Balaji R. Patil-Shinde S. Rizwanullah M. Polymer lipid hybrid nanoparticles for phytochemical delivery: Challenges, progress, and future prospects. Beilstein J. Nanotechnol. 2024 15 1473 1497 10.3762/bjnano.15.118 39600519
    [Google Scholar]
  43. Fan J. Fu A. Zhang L. Progress in molecular docking. Quant. Biol. 2019 7 2 83 89 10.1007/s40484‑019‑0172‑y
    [Google Scholar]
  44. Shinde S.S. Sarkate A.P. Rathod S.S. Kilbile J.T. Chaudhari S.Y. Yadala R. Pawar S.C. Wakte P.S. Synthesis, biological evaluation, and computational studies of thiazolyl hydrazone derivatives as triple mutant allosteric EGFR inhibitors. J. Chin. Chem. Soc. 2024 71 7 706 720 10.1002/jccs.202400084
    [Google Scholar]
  45. Shinde S. Sarkate A. Nirmal N Sakhale B. Medicinal applications, and chemical compositions of essential oils: Detailed perspectives. Recent Frontiers of Phytochemicals United States Elsevier 2023
    [Google Scholar]
  46. Zhuang X. Lu C. PBPK modeling and simulation in drug research and development. Acta Pharm. Sin. B 2016 6 5 430 440 10.1016/j.apsb.2016.04.004 27909650
    [Google Scholar]
  47. Laoui A. Polyakov V.R. Web services as applications’ integration tool: QikProp case study. J. Comput. Chem. 2011 32 9 1944 1951 10.1002/jcc.21778 21455963
    [Google Scholar]
  48. Shinde S.S. Kilbile J.T. Thapa S. Biradar M.S. Bhusari S.S. Wakte P.S. Design, synthesis, in silico studies, and anticancer activity of novel nitrobenzene thiazolyl hydrazones against the EGFR. Russ. J. Bioorganic Chem. 2024 50 6 2483 2498 10.1134/S1068162024060190
    [Google Scholar]
  49. Zaki M.E.A. Al-Hussain S.A. Al-Mutairi A.A. Samad A. Ghosh A. Chaudhari S. Khatale P.N. Ajmire P. Jawarkar R.D. In-silico studies to recognize repurposing therapeutics toward arginase-I inhibitors as a potential onco-immunomodulators. Front. Pharmacol. 2023 14 1129997 10.3389/fphar.2023.1129997
    [Google Scholar]
/content/journals/cppm/10.2174/0118756921374184250311061415
Loading
/content/journals/cppm/10.2174/0118756921374184250311061415
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: dynamics ; alkaloids ; EGFR inhibitor ; anticancer ; in silico studies ; Zanthoxylum Nitidum ; DFT study
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test