Skip to content
2000
image of The Genetic Variations Affecting the Pathophysiology and Pharmacological Treatment of Type 2 Diabetes Mellitus

Abstract

Type 2 diabetes mellitus is one of the leading causes of morbidity and mortality in the world. The two main components of the mechanism underlying T2DM are insulin resistance and impaired insulin secretion. The current algorithmic approach to the treatment of the disease does not take the individual genetic makeup of patients into consideration. However, multiple gene variants affect the efficacy and metabolism of anti-diabetes medications. For example, MATE1 works in conjunction with OCT1 and OCT2 to regulate metformin elimination, the rs1801282 (Pro12Ala) single nucleotide polymorphism is associated with a better therapeutic response to pioglitazone across different populations, and the K allele of KCNJ11 rs5219 (E23K) polymorphism is associated with a greater HbA1c reduction in Caucasian and Chinese patients treated with gliclazide, a sulfonylurea. Modern genetic techniques have ushered in the era of pharmacogenomics and precision medicine, identifying genetic variations that can be translated into personalized treatment approaches, improved diabetes risk prediction, ethnic-specific insights, identification of new drug targets, and reduction of adverse drug reactions. Challenges in the implementation of pharmacogenomics in the treatment of Type 2 diabetes include modest effect sizes of many genetic variants, heterogeneity of the disease due to complex interactions between genetics, environment, and lifestyles, and the cost of genetic testing and analysis. Therefore, this review summarizes the genetic variations affecting each major class of non-insulin anti-diabetes medications.

Loading

Article metrics loading...

/content/journals/cppm/10.2174/0118756921368248250305054617
2025-03-10
2025-06-05
Loading full text...

Full text loading...

References

  1. Centers for Disease Control and Prevention National diabetes statistics report, 2022. Estimates of diabetes and its burden in the United States. 2022 Available from: https://www.cdc.gov/diabetes/data/statistics-report/index.html
  2. Galicia-Garcia U. Benito-Vicente A. Jebari S. Larrea-Sebal A. Siddiqi H. Uribe K.B. Ostolaza H. Martín C. Pathophysiology of type 2 diabetes mellitus. Int. J. Mol. Sci. 2020 21 17 6275 10.3390/ijms21176275 32872570
    [Google Scholar]
  3. Saiyed N.S. Yagoub U. Al Qahtani B. Al Zahrani A.M. Al Hariri I. Syed M.J. Elmardi M.E. Tufail M.A. Manajreh M. Risk factors of microvascular complications among type 2 diabetic patients using cox proportional hazards models: A cohort study in Tabuk Saudi Arabia. J. Multidiscip. Healthc. 2022 15 1619 1632 10.2147/JMDH.S367241 35923155
    [Google Scholar]
  4. Sanches J.M. Zhao L.N. Salehi A. Wollheim C.B. Kaldis P. Pathophysiology of type 2 diabetes and the impact of altered metabolic interorgan crosstalk. FEBS J. 2023 290 3 620 648 10.1111/febs.16306 34847289
    [Google Scholar]
  5. Son J. Accili D. Reversing pancreatic β-cell dedifferentiation in the treatment of type 2 diabetes. Exp. Mol. Med. 2023 55 8 1652 1658 10.1038/s12276‑023‑01043‑8 37524865
    [Google Scholar]
  6. Caturano A. D’Angelo M. Mormone A. Russo V. Mollica M.P. Salvatore T. Galiero R. Rinaldi L. Vetrano E. Marfella R. Monda M. Giordano A. Sasso F.C. Oxidative stress in type 2 diabetes: Impacts from pathogenesis to lifestyle modifications. Curr. Issues Mol. Biol. 2023 45 8 6651 6666 10.3390/cimb45080420 37623239
    [Google Scholar]
  7. Dludla P.V. Mabhida S.E. Ziqubu K. Nkambule B.B. Mazibuko-Mbeje S.E. Hanser S. Basson A.K. Pheiffer C. Kengne A.P. Pancreatic β-cell dysfunction in type 2 diabetes: Implications of inflammation and oxidative stress. World J. Diabetes 2023 14 3 130 146 10.4239/wjd.v14.i3.130 37035220
    [Google Scholar]
  8. ElSayed N.A. Aleppo G. Bannuru R.R. Bruemmer D. Collins B.S. Ekhlaspour L. Gaglia J.L. Hilliard M.E. Johnson E.L. Khunti K. Lingvay I. Matfin G. McCoy R.G. Perry M.L. Pilla S.J. Polsky S. Prahalad P. Pratley R.E. Segal A.R. Seley J.J. Stanton R.C. Gabbay R.A. 9. Pharmacologic approaches to glycemic treatment: Standards of care in diabetes—2024. Diabetes Care 2024 47 Suppl. 1 S158 S178 10.2337/dc24‑S009
    [Google Scholar]
  9. McCarthy M.I. Painting a new picture of personalised medicine for diabetes. Diabetologia 2017 60 5 793 799 10.1007/s00125‑017‑4210‑x 28175964
    [Google Scholar]
  10. Sugandh F.N.U. Chandio M. Raveena F.N.U. Kumar L. Karishma F.N.U. Khuwaja S. Memon U.A. Bai K. Kashif M. Varrassi G. Khatri M. Kumar S. Advances in the management of diabetes mellitus: A focus on personalized medicine. Cureus 2023 15 8 e43697 10.7759/cureus.43697 37724233
    [Google Scholar]
  11. Ali O. Genetics of type 2 diabetes. World J. Diabetes 2013 4 4 114 123 10.4239/wjd.v4.i4.114 23961321
    [Google Scholar]
  12. Dawed A.Y. Zhou K. van Leeuwen N. Mahajan A. Robertson N. Koivula R. Elders P.J.M. Rauh S.P. Jones A.G. Holl R.W. Stingl J.C. Franks P.W. McCarthy M.I. ’t Hart L.M. Pearson E.R. Jennison C. Ehrhardt B. Baum P. Schoelsch C. Freijer J.I. Grempler R. Graefe-Mody U. Hennige A.M. Dings C. Lehr T. Scherer N. Sihinecich I. Pattou F. Raverdi V. Caiazzo R. Torres F. Verkindt H. Mari A. Tura A. Giorgino T. Bizzotto R. Froguel P. Bonneford A. Canouil M. Dhennin V. Brorsson C.A. Brunak S. De Masi F. Gudmundsdóttir V. Pedersen H.K. Banasik K. Thomas E. Sackett W. Staerfeldt H. Lundgaard A.T. Nilsson B. Nielsen A.M. Mazzoni G. Karaderi T. Rasmussen S. Johansen J. Allesøe R.L. Fritsche A. Thorand B. Adamski J. Grallert H. Haid M. Sharma S. Troll M. Adam J. Ferrer J. Froguel P. Eriksen R.G. Frost G. Haussler R. Hong M-G. Schwenk J.M. Uhlen M. Nicolay C. Pavo I. Steckel-Hamann B. Thomas M.K. Adragni K. Wu H. ’t Hart L.M. Roderick R.C. van Leeuwen N. Dekkers K.F. Frau F. Gassenhuber J. Jablonka B. Musholt P. Ruetten H. Tillner J. Baltauss T. Bernard O. Poenaru N. de Preville M. Rodriquez M. Arumugam K.H. Allin L. Engelbrechtsen T. Hansen T.H. Hansen A. Forman A. Jonsson O. Pedersen A. Dutta J.K. Vogt H. Vestergaard M. Laakso T. Kokkola T. Kuulasmaa P.W. Franks G.N. Giordano H. Pomares-Millan H. Fitipaldi P. Mutie M. Klintenberg M. Bergstrom L. Groop M. Ridderstrale N. Atabaki Pasdar H.A. Deshmukh A.J. Heggie D. Wake D. McEvoy I. McVittie M. Walker A.T. Hattersley A.V. Hill A.G. Jones T.J. McDonald M.H. Perry R. Nice M. Hudson C.E. Thorne E.T. Dermitzakis A. Viñuela L. Cabrelli H. Loftus A.Y. Dawed L. Donnelly I.M. Forgie E.R. Pearson C.N. Palmer A.A. Brown R.W. Koivula A. Wesolowska-Andersen M. Abdalla N. McRobert J. Fernandez J. Kaye M. Mourby A. Mahajan M.I. McCarthy N. Shah H. Teare Y. Jiao N. Robertson S. Gough R.W. Holl A.D. Koopman F. Rutters J.W. Beulens L. Groeneveld A.D. Koopman J.D. Bell E.L. Thomas Whitcher B. IMI DIRECT Consortium Variation in the plasma membrane monoamine transporter (PMAT) (encoded by SLC29A4 ) and organic cation transporter 1 (OCT1) (encoded by SLC22A1 ) and gastrointestinal intolerance to metformin in type 2 diabetes: An IMI DIRECT study. Diabetes Care 2019 42 6 1027 1033 10.2337/dc18‑2182 30885951
    [Google Scholar]
  13. Rena G. Hardie D.G. Pearson E.R. The mechanisms of action of metformin. Diabetologia 2017 60 9 1577 1585 10.1007/s00125‑017‑4342‑z 28776086
    [Google Scholar]
  14. Wu T. Horowitz M. Rayner C.K. New insights into the anti-diabetic actions of metformin: From the liver to the gut. Expert Rev. Gastroenterol. Hepatol. 2017 11 2 157 166 10.1080/17474124.2017.1273769 27983877
    [Google Scholar]
  15. Hundal H.S. Ramlal T. Reyes R. Leiter L.A. Klip A. Cellular mechanism of metformin action involves glucose transporter translocation from an intracellular pool to the plasma membrane in L6 muscle cells. Endocrinology 1992 131 3 1165 1173 10.1210/endo.131.3.1505458 1505458
    [Google Scholar]
  16. Yee S.W. Chen L. Giacomini K.M. The role of ATM in response to metformin treatment and activation of AMPK. Nat. Genet. 2012 44 4 359 360 10.1038/ng.2236 22456732
    [Google Scholar]
  17. Zhou K. Bellenguez C. Sutherland C. Hardie G. Palmer C. Donnelly P. Pearson E. The role of ATM in response to metformin treatment and activation of AMPK. Nat. Genet. 2012 44 4 361 362 10.1038/ng.2234 22456734
    [Google Scholar]
  18. Koepsell H. Update on drug-drug interaction at organic cation transporters: Mechanisms, clinical impact, and proposal for advanced in vitro testing. Expert Opin. Drug Metab. Toxicol. 2021 17 6 635 653 10.1080/17425255.2021.1915284 33896325
    [Google Scholar]
  19. Szymczak-Pajor I. Wenclewska S. Śliwińska A. Metabolic action of metformin. Pharmaceuticals 2022 15 7 810 10.3390/ph15070810 35890109
    [Google Scholar]
  20. Moon S.J. Oh J. Lee S.H. Choi Y. Yu K.S. Chung J.Y. Effect of plasma membrane monoamine transporter genetic variants on pharmacokinetics of metformin in humans. Transl. Clin. Pharmacol. 2018 26 2 79 85 10.12793/tcp.2018.26.2.79 32055553
    [Google Scholar]
  21. Moeez S. Khalid S. Shaeen S. Khalid M. Zia A. Gul A. Niazi R. Khalid Z. Clinically significant findings of high-risk mutations in human SLC29A4 gene associated with diabetes mellitus type 2 in Pakistani population. J. Biomol. Struct. Dyn. 2022 40 23 12660 12673 10.1080/07391102.2021.1975561 34551672
    [Google Scholar]
  22. Umamaheswaran G. Praveen R.G. Damodaran S.E. Das A.K. Adithan C. Influence of SLC22A1 rs622342 genetic polymorphism on metformin response in South Indian type 2 diabetes mellitus patients. Clin. Exp. Med. 2015 15 4 511 517 10.1007/s10238‑014‑0322‑5 25492374
    [Google Scholar]
  23. Xiao D. Guo Y. Li X. Yin J.Y. Zheng W. Qiu X.W. Xiao L. Liu R.R. Wang S.Y. Gong W.J. Zhou H.H. Liu Z.Q. The impacts of SLC22A1 rs594709 and SLC47A1 rs2289669 polymorphisms on metformin therapeutic efficacy in Chinese type 2 diabetes patients. Int. J. Endocrinol. 2016 2016 1 7 10.1155/2016/4350712 26977146
    [Google Scholar]
  24. Zaharenko L. Kalnina I. Geldnere K. Konrade I. Grinberga S. Židzik J. Javorský M. Lejnieks A. Nikitina-Zake L. Fridmanis D. Peculis R. Radovica-Spalvina I. Hartmane D. Pugovics O. Tkáč I. Klimčáková L. Pīrāgs V. Klovins J. Single nucleotide polymorphisms in the intergenic region between metformin transporter OCT2 and OCT3 coding genes are associated with short-term response to metformin monotherapy in type 2 diabetes mellitus patients. Eur. J. Endocrinol. 2016 175 6 531 540 10.1530/EJE‑16‑0347 27609360
    [Google Scholar]
  25. Hou W. Zhang D. Lu W. Zheng T. Wan L. Li Q. Bao Y. Liu F. Jia W. Polymorphism of organic cation transporter 2 improves glucose-lowering effect of metformin via influencing its pharmacokinetics in Chinese type 2 diabetic patients. Mol. Diagn. Ther. 2015 19 1 25 33 10.1007/s40291‑014‑0126‑z 25573751
    [Google Scholar]
  26. Tzvetkov M.V. Vormfelde S.V. Balen D. Meineke I. Schmidt T. Sehrt D. Sabolić I. Koepsell H. Brockmöller J. The effects of genetic polymorphisms in the organic cation transporters OCT1, OCT2, and OCT3 on the renal clearance of metformin. Clin. Pharmacol. Ther. 2009 86 3 299 306 10.1038/clpt.2009.92 19536068
    [Google Scholar]
  27. Reséndiz-Abarca C.A. Flores-Alfaro E. Suárez-Sánchez F. Cruz M. Valladares-Salgado A. del Carmen Alarcón-Romero L. Vázquez-Moreno M.A. Wacher-Rodarte N.A. Gómez-Zamudio J.H. Altered glycemic control associated with polymorphisms in the SLC22A1 (OCT1) gene in a mexican population with type 2 diabetes mellitus treated with metformin: A cohort study. J. Clin. Pharmacol. 2019 59 10 1384 1390 10.1002/jcph.1425 31012983
    [Google Scholar]
  28. Phani N.M. Vohra M. Kakar A. Adhikari P. Nagri S.K. D’Souza S.C. Umakanth S. Satyamoorthy K. Rai P.S. Implication of critical pharmacokinetic gene variants on therapeutic response to metformin in type 2 diabetes. Pharmacogenomics 2018 19 11 905 911 10.2217/pgs‑2018‑0041 29914345
    [Google Scholar]
  29. Moeez S. Riaz S. Masood N. Kanwal N. Arif M.A. Niazi R. Khalid S. Evaluation of the rs3088442 G>A SLC22A3 gene polymorphism and the role of microRNA 147 in groups of adult Pakistani populations with type 2 diabetes in response to metformin. Can. J. Diabetes 2019 43 2 128 135.e3 10.1016/j.jcjd.2018.07.001 30297296
    [Google Scholar]
  30. Mousavi S. Kohan L. Yavarian M. Habib A. Pharmacogenetic variation of SLC47A1 gene and metformin response in type2 diabetes patients. Mol. Biol. Res. Commun. 2017 6 2 91 94 28775995
    [Google Scholar]
  31. Liang H. Xu W. Zhou L. Yang W. Weng J. Differential increments of basal glucagon‐like‐1 peptide concentration among SLC 47A1 rs2289669 genotypes were associated with inter‐individual variability in glycaemic response to metformin in Chinese people with newly diagnosed Type 2 diabetes. Diabet. Med. 2017 34 7 987 992 10.1111/dme.13351 28321905
    [Google Scholar]
  32. Stocker S.L. Morrissey K.M. Yee S.W. Castro R.A. Xu L. Dahlin A. Ramirez A.H. Roden D.M. Wilke R.A. McCarty C.A. Davis R.L. Brett C.M. Giacomini K.M. The effect of novel promoter variants in MATE1 and MATE2 on the pharmacokinetics and pharmacodynamics of metformin. Clin. Pharmacol. Ther. 2013 93 2 186 194 10.1038/clpt.2012.210 23267855
    [Google Scholar]
  33. Flemmer M. Scott J. Mechanism of action of thiazolidinediones. Curr. Opin. Investig. Drugs 2001 2 11 1564 1567 11763158
    [Google Scholar]
  34. Singh G. Can A.S. Correa R. Pioglitazone. Treasure Island, FL StatPearls 2024
    [Google Scholar]
  35. Divakaruni A.S. Wiley S.E. Rogers G.W. Andreyev A.Y. Petrosyan S. Loviscach M. Wall E.A. Yadava N. Heuck A.P. Ferrick D.A. Henry R.R. McDonald W.G. Colca J.R. Simon M.I. Ciaraldi T.P. Murphy A.N. Thiazolidinediones are acute, specific inhibitors of the mitochondrial pyruvate carrier. Proc. Natl. Acad. Sci. USA 2013 110 14 5422 5427 10.1073/pnas.1303360110 23513224
    [Google Scholar]
  36. Dawed A.Y. Donnelly L. Tavendale R. Carr F. Leese G. Palmer C.N.A. Pearson E.R. Zhou K. CYP2C8 and SLCO1B1 variants and therapeutic response to thiazolidinediones in patients with type 2 diabetes. Diabetes Care 2016 39 11 1902 1908 10.2337/dc15‑2464 27271184
    [Google Scholar]
  37. Kalliokoski A. Neuvonen M. Neuvonen P.J. Niemi M. No significant effect of SLCO1B1 polymorphism on the pharmacokinetics of rosiglitazone and pioglitazone. Br. J. Clin. Pharmacol. 2008 65 1 78 86 10.1111/j.1365‑2125.2007.02986.x 17635496
    [Google Scholar]
  38. Hsieh M.C. Lin K.D. Tien K.J. Tu S.T. Hsiao J.Y. Chang S.J. Lin S.R. Shing S.J. Chen H.C. Common polymorphisms of the peroxisome proliferator-activated receptor–γ (Pro12Ala) and peroxisome proliferator-activated receptor–γ coactivator–1 (Gly482Ser) and the response to pioglitazone in Chinese patients with type 2 diabetes mellitus. Metabolism 2010 59 8 1139 1144 10.1016/j.metabol.2009.10.030 20045142
    [Google Scholar]
  39. Priya S.S. Sankaran R. Ramalingam S. Sairam T. Somasundaram L.S. Genotype phenotype correlation of genetic polymorphism of PPAR gamma gene and therapeutic response to pioglitazone in type 2 diabetes mellitus- a pilot study. J. Clin. Diagn. Res. 2016 10 2 FC11 FC14 10.7860/JCDR/2016/16494.7331 27042481
    [Google Scholar]
  40. Proks P. Reimann F. Green N. Gribble F. Ashcroft F. Sulfonylurea stimulation of insulin secretion. Diabetes 2002 51 Suppl. 3 S368 S376 10.2337/diabetes.51.2007.S368 12475777
    [Google Scholar]
  41. Feng Y. Mao G. Ren X. Xing H. Tang G. Li Q. Li X. Sun L. Yang J. Ma W. Wang X. Xu X. Ser1369Ala variant in sulfonylurea receptor gene ABCC8 is associated with antidiabetic efficacy of gliclazide in Chinese type 2 diabetic patients. Diabetes Care 2008 31 10 1939 1944 10.2337/dc07‑2248 18599530
    [Google Scholar]
  42. Nikolac N. Simundic A.M. Katalinic D. Topic E. Cipak A. Zjacic Rotkvic V. Metabolic control in type 2 diabetes is associated with sulfonylurea receptor-1 (SUR-1) but not with KCNJ11 polymorphisms. Arch. Med. Res. 2009 40 5 387 392 10.1016/j.arcmed.2009.06.006 19766903
    [Google Scholar]
  43. Javorsky M. Klimcakova L. Schroner Z. Zidzik J. Babjakova E. Fabianova M. Kozarova M. Tkacova R. Salagovic J. Tkac I. KCNJ11 gene E23K variant and therapeutic response to sulfonylureas. Eur. J. Intern. Med. 2012 23 3 245 249 10.1016/j.ejim.2011.10.018 22385882
    [Google Scholar]
  44. Li Y. The KCNJ11 E23K gene polymorphism and type 2 diabetes mellitus in the Chinese Han population: A meta-analysis of 6,109 subjects. Mol. Biol. Rep. 2013 40 1 141 146 10.1007/s11033‑012‑2042‑9 23054005
    [Google Scholar]
  45. Ragia G. Tavridou A. Petridis I. Manolopoulos V.G. Association of KCNJ11 E23K gene polymorphism with hypoglycemia in sulfonylurea-treated Type 2 diabetic patients. Diabetes Res. Clin. Pract. 2012 98 1 119 124 10.1016/j.diabres.2012.04.017 22591706
    [Google Scholar]
  46. Holstein A. Hahn M. Stumvoll M. Kovacs P. The E23K variant of KCNJ11 and the risk for severe sulfonylurea-induced hypoglycemia in patients with type 2 diabetes. Horm. Metab. Res. 2009 41 5 387 390 10.1055/s‑0029‑1192019 19214942
    [Google Scholar]
  47. Dawed A.Y. Yee S.W. Zhou K. van Leeuwen N. Zhang Y. Siddiqui M.K. Etheridge A. Innocenti F. Xu F. Li J.H. Beulens J.W. van der Heijden A.A. Slieker R.C. Chang Y.C. Mercader J.M. Kaur V. Witte J.S. Lee M.T.M. Kamatani Y. Momozawa Y. Kubo M. Palmer C.N.A. Florez J.C. Hedderson M.M. ’t Hart L.M. Giacomini K.M. Pearson E.R. Pearson E. Dawed A. Zhou K. Holman R. Coleman R. ’t Hart L. Slieker R. Beulens J. van der Heijden A. Nijpels G. Elders P. Rutters F. Stricker B. Ahmadizar F. de Keyser C. Koov A. Out M. Kloviņš J. Zaharenko L. Javorsky M. Tkac I. Florez J. Giacomini K. Wah Yee S. Hedderson M. Kubo M. Motsinger-Reif A. Wagner M. Semiz S. Dujic T. Christensen M. Brøsen K. Waterworth D. Ehm M. Ma R. Psaty B. Floyd J. for MetGen Plus, for the DIRECT Consortium MetGen Plus investigators Genome-wide meta-analysis identifies genetic variants associated with glycemic response to sulfonylureas. Diabetes Care 2021 44 12 2673 2682 10.2337/dc21‑1152 34607834
    [Google Scholar]
  48. Díaz-García J.D. Leyva-Leyva M. Sánchez-Aguillón F. de León-Bautista M.P. Fuentes-Venegas A. Torres-Viloria A. Tenorio-Aguirre E.K. Morales-Lázaro S.L. Olivo-Díaz A. González-Ramírez R. Association study of CACNA1D, KCNJ11, KCNQ1, and CACNA1E single-nucleotide polymorphisms with type 2 diabetes mellitus. Int. J. Mol. Sci. 2024 25 17 9196 10.3390/ijms25179196 39273144
    [Google Scholar]
  49. Schroner Z. Dobrikova M. Klimcakova L. Javorsky M. Zidzik J. Kozarova M. Hudakova T. Tkacova R. Salagovic J. Tkac I. Variation in KCNQ1 is associated with therapeutic response to sulphonylureas. Med. Sci. Monit. 2011 17 7 CR392 CR396 10.12659/MSM.881850 21709633
    [Google Scholar]
  50. Seeringer A. Parmar S. Fischer A. Altissimo B. Zondler L. Lebedeva E. Pitterle K. Roots I. Kirchheiner J. Genetic variants of the insulin receptor substrate‐1 are influencing the therapeutic efficacy of oral antidiabetics. Diabetes Obes. Metab. 2010 12 12 1106 1112 10.1111/j.1463‑1326.2010.01301.x 20977583
    [Google Scholar]
  51. Yu M. Xu X-J. Yin J-Y. Wu J. Chen X. Gong Z-C. Ren H-Y. Huang Q. Sheng F-F. Zhou H-H. Liu Z-Q. KCNJ11 Lys23Glu and TCF7L2 rs290487(C/T) polymorphisms affect therapeutic efficacy of repaglinide in Chinese patients with type 2 diabetes. Clin. Pharmacol. Ther. 2010 87 3 330 335 10.1038/clpt.2009.242 20054294
    [Google Scholar]
  52. Black C. Donnelly P. McIntyre L. Royle P. Shepherd J.J. Thomas S. Meglitinide analogues for type 2 diabetes mellitus. Cochrane Libr. 2007 2010 1 CD004654 10.1002/14651858.CD004654.pub2 17443551
    [Google Scholar]
  53. Zhou X. Chen C. Yin D. Zhao F. Bao Z. Zhao Y. Wang X. Li W. Wang T. Jin Y. Lv D. Lu Q. Yin X. A variation in the ABCC8 gene is associated with type 2 diabetes mellitus and repaglinide efficacy in chinese type 2 diabetes mellitus patients. Intern. Med. 2019 58 16 2341 2347 10.2169/internalmedicine.2133‑18 31118371
    [Google Scholar]
  54. He Y. Zhang R. Shao X. Hu C. Wang C. Lu J. Bao Y. Jia W. Xiang K. Association of KCNJ11 and ABCC8 genetic polymorphisms with response to repaglinide in Chinese diabetic patients. Acta Pharmacol. Sin. 2008 29 8 983 989 10.1111/j.1745‑7254.2008.00840.x 18664331
    [Google Scholar]
  55. Dai X.P. Huang Q. Yin J.Y. Guo Y. Gong Z.C. Lei M.X. Jiang T.J. Zhou H.H. Liu Z.Q. KCNQ1 gene polymorphisms are associated with the therapeutic efficacy of repaglinide in Chinese Type 2 diabetic patients. Clin. Exp. Pharmacol. Physiol. 2012 39 5 462 468 10.1111/j.1440‑1681.2012.05701.x 22414228
    [Google Scholar]
  56. Zhou X. Zhu J. Bao Z. Shang Z. Wang T. Song J. Sun J. Li W. Adelusi T.I. Wang Y. Lv D. Lu Q. Yin X. A variation in KCNQ1 gene is associated with repaglinide efficacy on insulin resistance in Chinese type 2 diabetes mellitus patients. Sci. Rep. 2016 6 1 37293 10.1038/srep37293 27857189
    [Google Scholar]
  57. Singh S. Usman K. Banerjee M. Pharmacogenetic studies update in type 2 diabetes mellitus. World J. Diabetes 2016 7 15 302 315 10.4239/wjd.v7.i15.302 27555891
    [Google Scholar]
  58. Cornell S. A review of GLP-1 receptor agonists in type 2 diabetes: A focus on the mechanism of action of once-weekly agents. J. Clin. Pharm. Ther. 2020 45 Suppl 1 17 27 10.1111/jcpt.13230
    [Google Scholar]
  59. Dawed A.Y. Mari A. Brown A. McDonald T.J. Li L. Wang S. Hong M.G. Sharma S. Robertson N.R. Mahajan A. Wang X. Walker M. Gough S. Hart L.M. Zhou K. Forgie I. Ruetten H. Pavo I. Bhatnagar P. Jones A.G. Pearson E.R. ’t Hart L.M. Abdalla M. Adam J. Adamski J. Adragni K. Allin K.H. Arumugam M. Atabaki Pasdar N. Baltauss T. Banasik K.B. Baum P. Bell J.D. Bergstrom M. Beulens J.W. Bianzano S. Bizzotto R. Bonneford A. Brorsson C.A.B. Brown A.A. Brunak S.B. Cabrelli L. Caiazzo R. Canouil M. Dale M. Davtian D. Dawed A.Y. De Masi F.M. de Preville N. Dekkers K.F. Dermitzakis E.T. Deshmukh H.A. Dings C. Donnelly L. Dutta A. Ehrhardt B. Elders P.J.M. Engel Thomas C.E.T. Engelbrechtsen L. Eriksen R.G. Eriksen R.E. Fan Y. Fernandez J. Ferrer J. Fitipaldi H. Forgie I.M. Forman A. Franks P.W. Frau F. Fritsche A. Froguel P. Frost G. Gassenhuber J. Giordano G.N. Giorgino T. Gough S. Graefe-Mody U. Grallert H. Grempler R. Groeneveld L. Groop L. Gudmundsdóttir V.G. Gupta R.G. Haid M. Hansen T. Hansen T.H. Hattersley A.T. Haussler R.S. Heggie A.J. Hennige A.M. Hill A.V. Holl R.W. Hong M-G. Hudson M. Jablonka B. Jennison C. Jiao J. Johansen J.J. Jones A.G. Jonsson A. Karaderi T.K. Kaye J. Klintenberg M. Koivula R.W. Kokkola T. Koopman A.D.M. Kurbasic A. Kuulasmaa T. Laakso M. Lehr T. Loftus H. Lundbye Allesøe R.L.A. Mahajan A. Mari A. Mazzoni G.M. McCarthy M.I. McDonald T.J. McEvoy D. McRobert N. McVittie I. Mourby M. Musholt P. Mutie P. Nice R. Nicolay C. Nielsen A.M.N. Nilsson B.N. Palmer C.N. Pattou F. Pavo I. Pearson E.R. Pedersen O. Pedersen H.K.P. Perry M.H. Pomares-Millan H. Ramisch A. Rasmussen S.R. Raverdi V. Ridderstrale M. Robertson N. Roderick R.C. Rodriquez M. Ruetten H. Rutters F. Sackett W. Scherer N. Schwenk J.M. Shah N. Sharma S. Sihinevich I. Sondertoft N.B. Staerfeldt H. Steckel-Hamann B. Teare H. Thomas M.K. Thomas E.L. Thomsen H.S. Thorand B. Thorne C.E. Tillner J. Troen Lundgaard A.T.L. Troll M. Tsirigos K.D.T. Tura A. Uhlen M. van Leeuwen N. van Oort S. Verkindt H. Vestergaard H. Viñuela A. Vogt J.K. Wad Sackett P.W.S. Wake D. Walker M. Wesolowska-Andersen A. Whitcher B. White M.W. Wu H. DIRECT consortium Pharmacogenomics of GLP-1 receptor agonists: A genome-wide analysis of observational data and large randomised controlled trials. Lancet Diabetes Endocrinol. 2023 11 1 33 41 10.1016/S2213‑8587(22)00340‑0 36528349
    [Google Scholar]
  60. Sathananthan A. Man C.D. Micheletto F. Zinsmeister A.R. Camilleri M. Giesler P.D. Laugen J.M. Toffolo G. Rizza R.A. Cobelli C. Vella A. Common genetic variation in GLP1R and insulin secretion in response to exogenous GLP-1 in nondiabetic subjects: A pilot study. Diabetes Care 2010 33 9 2074 2076 10.2337/dc10‑0200 20805279
    [Google Scholar]
  61. de Luis D.A. Diaz Soto G. Izaola O. Romero E. Evaluation of weight loss and metabolic changes in diabetic patients treated with liraglutide, effect of RS 6923761 gene variant of glucagon-like peptide 1 receptor. J. Diabetes Complications 2015 29 4 595 598 10.1016/j.jdiacomp.2015.02.010 25825013
    [Google Scholar]
  62. Klen J. Dolžan V. Glucagon-like peptide-1 receptor agonists in the management of type 2 diabetes mellitus and obesity: The impact of pharmacological properties and genetic factors. Int. J. Mol. Sci. 2022 23 7 3451 10.3390/ijms23073451 35408810
    [Google Scholar]
  63. KIM Y AN. 1479-P: Targeted exome sequencing for long-term efficacy and weight loss of dulaglutide in type 2 diabetes. Diabetes 2023 72 Supplement_1
    [Google Scholar]
  64. Andersen E.S. Deacon C.F. Holst J.J. Do we know the true mechanism of action of the DPP ‐4 inhibitors? Diabetes Obes. Metab. 2018 20 1 34 41 10.1111/dom.13018 28544214
    [Google Scholar]
  65. Vella A. Mechanism of action of DPP-4 inhibitors--new insights. J. Clin. Endocrinol. Metab. 2012 97 8 2626 2628 10.1210/jc.2012‑2396 22869847
    [Google Scholar]
  66. Űrgeová A. Javorský M. Klimčáková L. Židzik J. Šalagovič J. Hubáček J.A. Doubravová P. Gotthardová I. Kvapil M. Pelikánová T. Tkáč I. Yaluri A.S. Genetic variants associated with glycemic response to treatment with dipeptidylpeptidase 4 inhibitors. Pharmacogenomics 2020 21 5 317 323 10.2217/pgs‑2019‑0147 32308134
    [Google Scholar]
  67. Javorský M. Gotthardová I. Klimčáková L. Kvapil M. Židzik J. Schroner Z. Doubravová P. Gala I. Dravecká I. Tkáč I. A missense variant inGLP1R gene is associated with the glycaemic response to treatment with gliptins. Diabetes Obes. Metab. 2016 18 9 941 944 10.1111/dom.12682 27160388
    [Google Scholar]
  68. Han E. Park H.S. Kwon O. Choe E.Y. Wang H.J. Lee Y. Lee S.H. Kim C.H. Kim L.K. Kwak S.H. Park K.S. Kim C.S. Kang E.S. A genetic variant in GLP1R is associated with response to DPP-4 inhibitors in patients with type 2 diabetes. Medicine 2016 95 44 e5155 10.1097/MD.0000000000005155 27858848
    [Google Scholar]
  69. Jamaluddin J.L. Huri H.Z. Vethakkan S.R. Clinical and genetic predictors of dipeptidyl peptidase-4 inhibitor treatment response in Type 2 diabetes mellitus. Pharmacogenomics 2016 17 8 867 881 10.2217/pgs‑2016‑0010 27249660
    [Google Scholar]
  70. Gotthardová I. Javorský M. Klimčáková L. Kvapil M. Schroner Z. Kozárová M. Malachovská Z. Ürgeová A. Židzik J. Tkáč I. KCNQ1 gene polymorphism is associated with glycaemic response to treatment with DPP-4 inhibitors. Diabetes Res. Clin. Pract. 2017 130 142 147 10.1016/j.diabres.2017.05.018 28624668
    [Google Scholar]
  71. Zimdahl H. Ittrich C. Graefe-Mody U. Boehm B.O. Mark M. Woerle H.J. Dugi K.A. Influence of TCF7L2 gene variants on the therapeutic response to the dipeptidylpeptidase-4 inhibitor linagliptin. Diabetologia 2014 57 9 1869 1875 10.1007/s00125‑014‑3276‑y 24906949
    [Google Scholar]
  72. Liao W.L. Lee W.J. Chen C.C. Lu C.H. Chen C.H. Chou Y.C. Lee I.T. Sheu W.H.H. Wu J.Y. Yang C.F. Wang C.H. Tsai F.J. Pharmacogenetics of dipeptidyl peptidase 4 inhibitors in a Taiwanese population with type 2 diabetes. Oncotarget 2017 8 11 18050 18058 10.18632/oncotarget.14951 28160554
    [Google Scholar]
  73. Faruqui A.A. Can DPP-4 enhibitors and SGLT-2 inhibitors pleotropic effects be extended to treat diabetic nephropathy? J. Med. (Dhaka) 2023 24 1 43 49 10.3329/jom.v24i1.64903
    [Google Scholar]
  74. Kułak K.B. Chamera-Cyrek K. Janik I. Kuśmierska M. Koman A.M. Pliszka M. Gadżała K. Palacz K.A. Sztybór I. Przygodzka S. SGLT-2 inhibitors in heart failure: A literature review on mechanisms, efficacy and safety. Quality in Sport 2024 15 52083 10.12775/QS.2024.15.52083
    [Google Scholar]
  75. Zimdahl H. Haupt A. Brendel M. Bour L. Machicao F. Salsali A. Broedl U.C. Woerle H.J. Häring H.U. Staiger H. Influence of common polymorphisms in the SLC5A2 gene on metabolic traits in subjects at increased risk of diabetes and on response to empagliflozin treatment in patients with diabetes. Pharmacogenet. Genomics 2017 27 4 135 142 10.1097/FPC.0000000000000268 28134748
    [Google Scholar]
  76. Francke S. Mamidi R.N.V.S. Solanki B. Scheers E. Jadwin A. Favis R. Devineni D. In vitro metabolism of canagliflozin in human liver, kidney, intestine microsomes, and recombinant uridine diphosphate glucuronosyltransferases (UGT) and the effect of genetic variability of UGT enzymes on the pharmacokinetics of canagliflozin in humans. J. Clin. Pharmacol. 2015 55 9 1061 1072 10.1002/jcph.506 25827774
    [Google Scholar]
  77. Venkatachalapathy P. Padhilahouse S. Sellappan M. Subramanian T. Kurian S.J. Miraj S.S. Rao M. Raut A.A. Kanwar R.K. Singh J. Khadanga S. Mondithoka S. Munisamy M. Pharmacogenomics and personalized medicine in type 2 diabetes mellitus: Potential implications for clinical practice. Pharm. Genomics Pers. Med. 2021 14 1441 1455 10.2147/PGPM.S329787 34803393
    [Google Scholar]
/content/journals/cppm/10.2174/0118756921368248250305054617
Loading
/content/journals/cppm/10.2174/0118756921368248250305054617
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Diabetes ; type 2 ; alleles ; pharmacogenomics ; single nucleotide polymorphisms ; gene variants
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test