Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1875-6921
  • E-ISSN:

Abstract

Introduction

Variability in the effectiveness of metformin treatment among individuals with type 2 diabetes mellitus (T2DM) has been linked to various genetic factors. Understanding the genetic mechanisms underlying the action of metformin can greatly aid the personalized management of T2DM. Our investigation aimed to explore the impact of genetic variations in the organic cation transporters () genes on the efficacy of metformin therapy in T2DM individuals from North India.

Methods

This observational cross-sectional study assessed the influence of (rs628031) and (rs2292334) polymorphisms on metformin response in T2DM patients. Metformin response was determined based on HbA1c levels, dividing patients (n = 177) into two categories: responders (HbA1C<7%; n = 127) and non-responders (HbA1C≥7%; n = 50). Responders were further classified as T2DM patients receiving either monotherapy (n = 55) or combination therapy (n = 72). Genotyping was conducted using the PCR-RFLP method.

Results

No significant association was observed between (rs628031) polymorphism and metformin response in T2DM patients. However, a notable association was found between (rs2292334) polymorphism and metformin response. Carriers of the AA genotype exhibited enhanced efficacy of metformin in both monotherapy (OR (CI)= 0.29(0.11-0.72), =0.007) and combination therapy (OR (CI)= 0.41(0.16-1.0), =0.047). Additionally, the A allele was more prevalent in responders (OR (CI)= 0.48(0.28-0.84), =0.010), while the G allele was associated with reduced efficacy of metformin in T2DM patients (OR (CI)= 2.07(1.19-3.61), =0.010).

Conclusion

Genotyping of (rs2292334) may serve as a valuable tool in predicting the response to metformin in T2DM patients.

Loading

Article metrics loading...

/content/journals/cppm/10.2174/0118756921316739240816095335
2024-08-01
2024-11-26
Loading full text...

Full text loading...

References

  1. SunH. SaeediP. KarurangaS. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045.Diabetes Res. Clin. Pract.202218310911910.1016/j.diabres.2021.109119 34879977
    [Google Scholar]
  2. CersosimoE. JohnsonE.L. ChovanesC. SkolnikN. Initiating therapy in patients newly diagnosed with type 2 diabetes: Combination therapy vs a stepwise approach.Diabetes Obes. Metab.201820349750710.1111/dom.13108 28862799
    [Google Scholar]
  3. StaigerH. SchaeffelerE. SchwabM. HäringH.U. Pharmacogenetics: Implications for modern type 2 diabetes therapy.Rev. Diabet. Stud.2015123-436337610.1900/RDS.2015.12.363 27111121
    [Google Scholar]
  4. GongL GoswamiS GiacominiKM AltmanRB KleinTE Metformin pathways: Pharmacokinetics and pharmacodynamics.Pharmacogenet genom20122211820710.1097/FPC.0b013e3283559b22
    [Google Scholar]
  5. HundalR.S. KrssakM. DufourS. Mechanism by which metformin reduces glucose production in type 2 diabetes.Diabetes200049122063206910.2337/diabetes.49.12.2063 11118008
    [Google Scholar]
  6. MüllerJ. LipsK.S. MetznerL. NeubertR.H.H. KoepsellH. BrandschM. Drug specificity and intestinal membrane localization of human organic cation transporters (OCT).Biochem. Pharmacol.200570121851186010.1016/j.bcp.2005.09.011 16263091
    [Google Scholar]
  7. GrahamG.G. PuntJ. AroraM. Clinical pharmacokinetics of metformin.Clin. Pharmacokinet.2011502819810.2165/11534750‑000000000‑00000 21241070
    [Google Scholar]
  8. ChenL. PawlikowskiB. SchlessingerA. Role of organic cation transporter 3 (SLC22A3) and its missense variants in the pharmacologic action of metformin.Pharmacogenet. Genomics2010201168769910.1097/FPC.0b013e32833fe789 20859243
    [Google Scholar]
  9. ShuY. SheardownS.A. BrownC. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action.J. Clin. Invest.200711751422143110.1172/JCI30558 17476361
    [Google Scholar]
  10. FlorezJ.C. The pharmacogenetics of metformin.Diabetologia20176091648165510.1007/s00125‑017‑4335‑y 28770331
    [Google Scholar]
  11. DamanhouriZ.A. AlkreathyH.M. AlharbiF.A. AbualhamailH. AhmadM.S. A review of the impact of pharmacogenetics and metabolomics on the efficacy of metformin in type 2 diabetes.Int. J. Med. Sci.202320114215010.7150/ijms.77206 36619226
    [Google Scholar]
  12. NiesA.T. KoepsellH. DammeK. SchwabM. Organic cation transporters (OCTs, MATEs), in vitro and in vivo evidence for the importance in drug therapy.Handb. Exp. Pharmacol.201120120110516710.1007/978‑3‑642‑14541‑4_3 21103969
    [Google Scholar]
  13. NiesA.T. KoepsellH. WinterS. Expression of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) is affected by genetic factors and cholestasis in human liver.Hepatology20095041227124010.1002/hep.23103 19591196
    [Google Scholar]
  14. ShuY. BrownC. CastroR.A. Effect of genetic variation in the organic cation transporter 1, OCT1, on metformin pharmacokinetics.Clin. Pharmacol. Ther.200883227328010.1038/sj.clpt.6100275 17609683
    [Google Scholar]
  15. TzvetkovM.V. VormfeldeS.V. BalenD. The effects of genetic polymorphisms in the organic cation transporters OCT1, OCT2, and OCT3 on the renal clearance of metformin.Clin. Pharmacol. Ther.200986329930610.1038/clpt.2009.92 19536068
    [Google Scholar]
  16. SinghS. UsmanK. BanerjeeM. Pharmacogenetic studies update in type 2 diabetes mellitus.World J. Diabetes201671530231510.4239/wjd.v7.i15.302 27555891
    [Google Scholar]
  17. ZazuliZ. DuinN.J.C.B. JansenK. VijverbergS.J.H. Maitland-van der ZeeA.H. MasereeuwR. The impact of genetic polymorphisms in organic cation transporters on renal drug disposition.Int. J. Mol. Sci.20202118662710.3390/ijms21186627 32927790
    [Google Scholar]
  18. RizwanA.N. BurckhardtG. Organic anion transporters of the SLC22 family: Biopharmaceutical, physiological, and pathological roles.Pharm. Res.200724345047010.1007/s11095‑006‑9181‑4 17245646
    [Google Scholar]
  19. PelisR.M. WrightS.H. SLC22, SLC44, and SLC47 transporters-organic anion and cation transporters: Molecular and cellular properties.Curr. Top. Membr.20147323326110.1016/B978‑0‑12‑800223‑0.00006‑2 24745985
    [Google Scholar]
  20. SaitoH. Pathophysiological regulation of renal SLC22A organic ion transporters in acute kidney injury: Pharmacological and toxicological implications.Pharmacol. Ther.20101251799110.1016/j.pharmthera.2009.09.008 19837111
    [Google Scholar]
  21. VanWertA.L. GionfriddoM.R. SweetD.H. Organic anion transporters: Discovery, pharmacology, regulation and roles in pathophysiology.Biopharm. Drug Dispos.201031117110.1002/bdd.693 19953504
    [Google Scholar]
  22. WangL. SweetD.H. Renal organic anion transporters (SLC22 family): Expression, regulation, roles in toxicity, and impact on injury and disease.AAPS J.2013151536910.1208/s12248‑012‑9413‑y 23054972
    [Google Scholar]
  23. YouG.F. MorrisM.E. Drug transporters: Molecular characterization and role in drug disposition.2nd edHoboken, NJWiley201410.1002/9781118705308
    [Google Scholar]
  24. NigamS.K. The SLC22 transporter family: A paradigm for the impact of drug transporters on metabolic pathways, signaling, and disease.Annu. Rev. Pharmacol. Toxicol.201858166368710.1146/annurev‑pharmtox‑010617‑052713 29309257
    [Google Scholar]
  25. NasykhovaY.A. TonyanZ.N. MikhailovaA.A. DanilovaM.M. GlotovA.S. Pharmacogenetics of type 2 diabetes—progress and prospects.Int. J. Mol. Sci.20202118684210.3390/ijms21186842 32961860
    [Google Scholar]
  26. WangD.S. JonkerJ.W. KatoY. KusuharaH. SchinkelA.H. SugiyamaY. Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin.J. Pharmacol. Exp. Ther.2002302251051510.1124/jpet.102.034140 12130709
    [Google Scholar]
  27. Emami RiedmaierA. FiselP. NiesA.T. SchaeffelerE. SchwabM. Metformin and cancer: From the old medicine cabinet to pharmacological pitfalls and prospects.Trends Pharmacol. Sci.201334212613510.1016/j.tips.2012.11.005 23277337
    [Google Scholar]
  28. NingrumV.D.A. SadewaA.H. IkawatiZ. YuliwulandariR. IkhsanM.R. FajriyahR. The influence of metformin transporter gene SLC22A1 and SLC47A1 variants on steady-state pharmacokinetics and glycemic response.PLoS One2022177e027141010.1371/journal.pone.0271410 35905099
    [Google Scholar]
  29. KawoosaF. ShahZ.A. MasoodiS.R. Role of human organic cation transporter-1 (OCT-1/SLC22A1) in modulating the response to metformin in patients with type 2 diabetes.BMC Endocr. Disord.202222114010.1186/s12902‑022‑01033‑3 35619086
    [Google Scholar]
  30. Hosseyni-TaleiS.R. MahroozA. Hashemi-SotehM.B. Ghaffari-CheratiM. AlizadehA. Association between the synonymous variant organic cation transporter 3 (OCT3)-1233G>A and the glycemic response following metformin therapy in patients with type 2 diabetes.Iran. J. Basic Med. Sci.2017203250255 28392895
    [Google Scholar]
  31. ChristensenM.M.H. Brasch-AndersenC. GreenH. The pharmacogenetics of metformin and its impact on plasma metformin steady-state levels and glycosylated hemoglobin A1c.Pharmacogenet. Genomics2011211283785010.1097/FPC.0b013e32834c0010 21989078
    [Google Scholar]
  32. ChenL. TakizawaM. ChenE. Genetic polymorphisms in organic cation transporter 1 (OCT1) in Chinese and Japanese populations exhibit altered function.J. Pharmacol. Exp. Ther.20103351425010.1124/jpet.110.170159 20639304
    [Google Scholar]
  33. SemizS. DujicT. CausevicA. Pharmacogenetics and personalized treatment of type 2 diabetes.Biochem. Med. (Zagreb)201323215417110.11613/BM.2013.020 23894862
    [Google Scholar]
  34. XiaoD. GuoY. LiX. The Impacts of SLC22A1 rs594709 and SLC47A1 rs2289669 polymorphisms on metformin therapeutic efficacy in Chinese type 2 diabetes patients.Int. J. Endocrinol.201620161710.1155/2016/4350712 26977146
    [Google Scholar]
  35. DegagaA. SirguS. HuriH.Z. Association of Met420del variant of metformin transporter gene SLC22A1 with metformin treatment response in Ethiopian patients with type 2 diabetes.Diabetes Metab. Syndr. Obes.2023162523253510.2147/DMSO.S426632 37641646
    [Google Scholar]
  36. ChenP. Effects of SLC22A1, SLC22A2, SLC47A1, SLC47A2, and ATM gene polymorphisms on the efficacy and adverse reactions of metformin. Master thesis, Shantou University,2014Available from: https://d.wanfangdata.com.cn/thesis/ChJUaGVzaXNOZXdTMjAyMjAzMjMSB0Q1OTgxMDUaCGJ6MmptbWZm
    [Google Scholar]
  37. Reséndiz-AbarcaC.A. Flores-AlfaroE. Suárez-SánchezF. Altered glycemic control associated with polymorphisms in the SLC22A1 (OCT1) gene in a mexican population with type 2 diabetes mellitus treated with metformin: A cohort study.J. Clin. Pharmacol.201959101384139010.1002/jcph.1425 31012983
    [Google Scholar]
  38. MartaM. Sánchez-PozosK. Jaimes-SantoyoJ. Pharmacogenetic evaluation of metformin and Sulphonylurea response in Mexican mestizos with type 2 diabetes.Curr. Drug Metab.202021429130010.2174/1389200221666200514125443 32407269
    [Google Scholar]
  39. UmamaheswaranG. PraveenR.G. DamodaranS.E. DasA.K. AdithanC. Influence of SLC22A1 rs622342 genetic polymorphism on metformin response in South Indian type 2 diabetes mellitus patients.Clin. Exp. Med.201515451151710.1007/s10238‑014‑0322‑5 25492374
    [Google Scholar]
  40. WuK. LiX. XuY. SLC22A1 rs622342 polymorphism predicts insulin resistance improvement in patients with type 2 diabetes mellitus treated with metformin: A cross-sectional study.Int. J. Endocrinol.202020201710.1155/2020/2975898 32454819
    [Google Scholar]
  41. NajaK. El ShamiehS. FakhouryR. rs622342A>C in SLC22A1 is associated with metformin pharmacokinetics and glycemic response.Drug Metab. Pharmacokinet.202035116016410.1016/j.dmpk.2019.10.007 31974043
    [Google Scholar]
  42. HakoozN. JarrarY.B. ZihlifM. ImraishA. HamedS. ArafatT. Effects of the genetic variants of organic cation transporters 1 and 3 on the pharmacokinetics of metformin in Jordanians.Drug Metab. Pers. Ther.201732315716210.1515/dmpt‑2017‑0019 28862982
    [Google Scholar]
  43. WilliamsL.K. PadhukasahasramB. AhmedaniB.K. Differing effects of metformin on glycemic control by race-ethnicity.J. Clin. Endocrinol. Metab.20149993160316810.1210/jc.2014‑1539 24921653
    [Google Scholar]
  44. PhanL. JinY. ZhangH. ALFA: Allele Frequency Aggregator. 2020 Available from: www.ncbi.nlm.nih.gov/snp/docs/gsr/alfa/
  45. KahnS.E. HaffnerS.M. HeiseM.A. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy.N. Engl. J. Med.2006355232427244310.1056/NEJMoa066224 17145742
    [Google Scholar]
  46. ZeitlerP. HirstK. PyleL. A clinical trial to maintain glycemic control in youth with type 2 diabetes.N. Engl. J. Med.2012366242247225610.1056/NEJMoa1109333 22540912
    [Google Scholar]
  47. American Diabetes Association. Glycemic targets: Standards of medical care in diabetes—2018.Diabetes Care201841Suppl. 1S55S6410.2337/dc18‑S006 29222377
    [Google Scholar]
  48. ForetzM. GuigasB. ViolletB. Metformin: Update on mechanisms of action and repurposing potential.Nat. Rev. Endocrinol.202319846047610.1038/s41574‑023‑00833‑4 37130947
    [Google Scholar]
  49. Mofo MatoE.P. Guewo-FokengM. EssopM.F. OwiraP.M.O. Genetic polymorphisms of organic cation transporter 1 (OCT1) and responses to metformin therapy in individuals with type 2 diabetes.Medicine (Baltimore)20189727e1134910.1097/MD.0000000000011349 29979413
    [Google Scholar]
  50. ZolkO. Disposition of metformin: Variability due to polymorphisms of organic cation transporters.Ann. Med.201244211912910.3109/07853890.2010.549144 21366511
    [Google Scholar]
  51. ManninoG.C. AndreozziF. SestiG. Pharmacogenetics of type 2 diabetes mellitus, the route toward tailored medicine.Diabetes Metab. Res. Rev.2019353e310910.1002/dmrr.3109 30515958
    [Google Scholar]
  52. WangL. WeinshilboumR. Metformin pharmacogenomics: Biomarkers to mechanisms.Diabetes20146382609261010.2337/db14‑0609 25060891
    [Google Scholar]
  53. MahroozA. ParsanasabH. Hashemi-SotehM.B. The role of clinical response to metformin in patients newly diagnosed with type 2 diabetes: A monotherapy study.Clin. Exp. Med.201515215916510.1007/s10238‑014‑0283‑8 24740684
    [Google Scholar]
  54. ShokriF. GhaediH. Ghafouri FardS. Impact of ATM and SLC22A1 polymorphisms on therapeutic response to metformin in Iranian diabetic patients.Int. J. Mol. Cell. Med.20165117 27386433
    [Google Scholar]
  55. BeckerM.L. VisserL.E. van SchaikR.H.N. HofmanA. UitterlindenA.G. StrickerB.H.C. Genetic variation in the organic cation transporter 1 is associated with metformin response in patients with diabetes mellitus.Pharmacogenomics J.20099424224710.1038/tpj.2009.15 19381165
    [Google Scholar]
  56. ZhouY. YeW. WangY. Genetic variants of OCT1 influence glycemic response to metformin in Han Chinese patients with type-2 diabetes mellitus in Shanghai.Int. J. Clin. Exp. Pathol.20158895339542 26464716
    [Google Scholar]
  57. AltallR.M. QustiS.Y. FilimbanN. SLC22A1 and ATM genes polymorphisms are associated with the risk of type 2 diabetes mellitus in western Saudi Arabia: A case-control study.Appl. Clin. Genet.20191221321910.2147/TACG.S229952 31814751
    [Google Scholar]
  58. SinghS. ShuklaA.K. UsmanK. BanerjeeM. Pharmacogenetic impact of SLC22A1 gene variant rs628031 (G/A) in newly diagnosed Indian type 2 diabetes patients undergoing metformin monotherapy.Pharmacogenet. Genomics2023333515810.1097/FPC.0000000000000493 36853844
    [Google Scholar]
  59. UmamaheswaranG. ArunkumarA.S. ShewadeD.G. PraveenR.G. DasA.K. AdithanC. Genetic analysis of OCT1 gene polymorphisms in an Indian population.Indian J. Hum. Genet.201117316416810.4103/0971‑6866.92094 22345987
    [Google Scholar]
  60. KangH.J. SongI.S. ShinH.J. Identification and functional characterization of genetic variants of human organic cation transporters in a Korean population.Drug Metab. Dispos.200735466767510.1124/dmd.106.013581 17220237
    [Google Scholar]
  61. ItodaM. SaitoY. MaekawaK. Seven novel single nucleotide polymorphisms in the human SLC22A1 gene encoding organic cation transporter 1 (OCT1).Drug Metab. Pharmacokinet.200419430831210.2133/dmpk.19.308 15499200
    [Google Scholar]
  62. ShuY. LeabmanM.K. FengB. Evolutionary conservation predicts function of variants of the human organic cation transporter, OCT1.Proc. Natl. Acad. Sci. USA2003100105902590710.1073/pnas.0730858100 12719534
    [Google Scholar]
  63. DipanshuS. A tale of genetic variation in the human Slc22a1 gene encoding Oct1 among type 2 diabetes mellitus population groups of west bengal, India. IMPACT Int J Res Appl, Nat.Soc. Sci.2014297106
    [Google Scholar]
  64. LazarA. GründemannD. BerkelsR. TaubertD. ZimmermannT. SchömigE. Genetic variability of the extraneuronal monoamine transporter EMT (SLC22A3).J. Hum. Genet.200348522623010.1007/s10038‑003‑0015‑5 12768439
    [Google Scholar]
  65. MoeezS. RiazS. MasoodN. Evaluation of the rs3088442 G>A SLC22A3 gene polymorphism and the role of microRNA 147 in groups of adult Pakistani populations with type 2 diabetes in response to metformin.Can. J. Diabetes2019432128135.e310.1016/j.jcjd.2018.07.001 30297296
    [Google Scholar]
  66. AL-Eitan LN Almomani BA, Nassar AM, Elsaqa BZ, Saadeh NA. Metformin pharmacogenetics: Effects of SLC22A1, SLC22A2, and SLC22A3 polymorphisms on glycemic control and HbA1c levels.J. Pers. Med.2019911710.3390/jpm9010017 30934600
    [Google Scholar]
  67. Ghasan Abood Al-AshoorS. RamachandranV. Inche MatL.N. MohamadN.A. MohamedM.H. Wan SulaimanW.A. Analysis of OCT1, OCT2 and OCT3 gene polymorphisms among type 2 diabetes mellitus subjects in Indian ethnicity, Malaysia.Saudi J. Biol. Sci.202229145345910.1016/j.sjbs.2021.09.008 35002441
    [Google Scholar]
  68. ThomasP.P.M. AlshehriS.M. van KranenH.J. AmbrosinoE. The impact of personalized medicine of type 2 diabetes mellitus in the global health context.Per. Med.201613438139310.2217/pme‑2016‑0029 29749811
    [Google Scholar]
  69. VenkatachalapathyP. PadhilahouseS. SellappanM. Pharmacogenomics and personalized medicine in type 2 diabetes mellitus: Potential implications for clinical practice.Pharm. Genomics Pers. Med.2021141441145510.2147/PGPM.S329787 34803393
    [Google Scholar]
/content/journals/cppm/10.2174/0118756921316739240816095335
Loading
/content/journals/cppm/10.2174/0118756921316739240816095335
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test