Skip to content
2000
image of Recent Advances in Cationic Nanoemulsions for Drug Delivery: Preparation, Properties, and Applications

Abstract

Nanoemulsions have gained popularity as drug delivery vehicles owing to the enhanced solubility of insoluble drugs, the augmented stability of photo- and thermosensitive substances, and the facilitation of transdermal permeation of efficacy substances. As the cell surfaces of the skin, cornea, gastrointestinal mucosa, and other cells in living organisms carry negative charges, cationic nanoemulsions (CNE) mainly promote drug absorption through electrostatic effects. In this review, a brief characterization of CNEs is provided, and the types of cationic agents and their roles in nanoemulsions, including cationic surfactants, cationic lipids, cationic polymers, cationized polysaccharides, and phytosphingosine (PS), are discussed. In addition, the current application circumstances of CNEs in ocular drug delivery, mucosal drug delivery, and transdermal drug delivery systems are elaborated on, and the crucial matters that require attention during the research process are briefly discussed. Eventually, the extensive application prospects of CNEs are envisioned.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128357859250121120216
2025-02-11
2025-03-30
Loading full text...

Full text loading...

References

  1. Gupta A. Eral H.B. Hatton T.A. Doyle P.S. Nanoemulsions: Formation, properties and applications. Soft Matter 2016 12 11 2826 2841 10.1039/C5SM02958A 26924445
    [Google Scholar]
  2. Borel T. Sabliov C.M. Nanodelivery of bioactive components for food applications: Types of delivery systems, properties, and their effect on ADME profiles and toxicity of nanoparticles. Annu. Rev. Food Sci. Technol. 2014 5 1 197 213 10.1146/annurev‑food‑030713‑092354 24387603
    [Google Scholar]
  3. Lallemand F. Daull P. Benita S. Buggage R. Garrigue J.S. Successfully improving ocular drug delivery using the cationic nanoemulsion, novasorb. J. Drug Deliv. 2012 2012 1 16 10.1155/2012/604204 22506123
    [Google Scholar]
  4. Daull P. Lallemand F. Garrigue J.S. Benefits of cetalkonium chloride cationic oil-in-water nanoemulsions for topical ophthalmic drug delivery. J. Pharm. Pharmacol. 2014 66 4 531 541 10.1111/jphp.12075 24001405
    [Google Scholar]
  5. Hagigit T. Abdulrazik M. Orucov F. Valamanesh F. Lambert M. Lambert G. Cohen B.F. Benita S. Topical and intravitreous administration of cationic nanoemulsions to deliver antisense oligonucleotides directed towards VEGF KDR receptors to the eye. J. Control. Release 2010 145 3 297 305 10.1016/j.jconrel.2010.04.013 20420865
    [Google Scholar]
  6. Jain V. Prasad V. Jadhav P. Mishra P.R. Preparation and performance evaluation of saquinavir laden cationic submicron emulsions. Drug Deliv. 2009 16 1 37 44 10.1080/10717540802481646 19555307
    [Google Scholar]
  7. McClements D.J. Non-covalent interactions between proteins and polysaccharides. Biotechnol. Adv. 2006 24 6 621 625 10.1016/j.biotechadv.2006.07.003 16935458
    [Google Scholar]
  8. Mishra N. Yadav K.S. Rai V.K. Yadav N.P. Polysaccharide encrusted multilayered nano-colloidal system of andrographolide for improved hepatoprotection. AAPS PharmSciTech 2017 18 2 381 392 10.1208/s12249‑016‑0512‑4 27007741
    [Google Scholar]
  9. Rai V.K. Mishra N. Yadav K.S. Yadav N.P. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications. J. Control. Release 2018 270 203 225 10.1016/j.jconrel.2017.11.049 29199062
    [Google Scholar]
  10. Ishikawa S. Matsumura Y. Kubo K.K. Tsuchido T. Antibacterial activity of surfactants against Escherichia coli cells is influenced by carbon source and anaerobiosis. J. Appl. Microbiol. 2002 93 2 302 309 10.1046/j.1365‑2672.2002.01690.x 12147079
    [Google Scholar]
  11. Piemi Y.M.P. Korner D. Benita S. Marty J.P. Positively and negatively charged submicron emulsions for enhanced topical delivery of antifungal drugs. J. Control. Release 1999 58 2 177 187 10.1016/S0168‑3659(98)00156‑4 10053190
    [Google Scholar]
  12. Lee E.H. Kim J.K. Lim J.S. Lim S.J. Enhancement of indocyanine green stability and cellular uptake by incorporating cationic lipid into indocyanine green-loaded nanoemulsions. Colloids Surf. B Biointerfaces 2015 136 305 313 10.1016/j.colsurfb.2015.09.025 26432618
    [Google Scholar]
  13. Nam H.Y. Park J.H. Kim K. Kwon I.C. Jeong S.Y. Lipid-based emulsion system as non-viral gene carriers. Arch. Pharm. Res. 2009 32 5 639 646 10.1007/s12272‑009‑1500‑y 19471876
    [Google Scholar]
  14. Schuh R.S. Bidone J. Poletto E. Pinheiro C.V. Pasqualim G. Carvalho d.T.G. Farinon M. Diel S.D. Xavier R.M. Baldo G. Matte U. Teixeira H.F. Nasal administration of cationic nanoemulsions as nucleic acids delivery systems aiming at mucopolysaccharidosis type I gene therapy. Pharm. Res. 2018 35 11 221 10.1007/s11095‑018‑2503‑5 30259180
    [Google Scholar]
  15. Schuh R.S. Poletto É. Fachel F.N.S. Matte U. Baldo G. Teixeira H.F. Physicochemical properties of cationic nanoemulsions and liposomes obtained by microfluidization complexed with a single plasmid or along with an oligonucleotide: Implications for CRISPR/Cas technology. J. Colloid Interface Sci. 2018 530 243 255 10.1016/j.jcis.2018.06.058 29982016
    [Google Scholar]
  16. Fasolo D. Pippi B. Meirelles G. Zorzi G. Fuentefria A.M. Poser v.G. Teixeira H.F. Topical delivery of antifungal Brazilian red propolis benzophenones-rich extract by means of cationic lipid nanoemulsions optimized by means of box-behnken design. J. Drug Deliv. Sci. Technol. 2020 56 101573 10.1016/j.jddst.2020.101573
    [Google Scholar]
  17. Schuh R.S. Carvalho d.T.G. Giugliani R. Matte U. Baldo G. Teixeira H.F. Gene editing of MPS I human fibroblasts by co-delivery of a CRISPR/Cas9 plasmid and a donor oligonucleotide using nanoemulsions as nonviral carriers. Eur. J. Pharm. Biopharm. 2018 122 158 166 10.1016/j.ejpb.2017.10.017 29122734
    [Google Scholar]
  18. Wang X. Niu D. Hu C. Li P. Polyethyleneimine-based nanocarriers for gene delivery. Curr. Pharm. Des. 2015 21 42 6140 6156 10.2174/1381612821666151027152907 26503146
    [Google Scholar]
  19. Tran E. Mapile A.N. Richmond G.L. Peeling back the layers: Investigating the effects of polyelectrolyte layering on surface structure and stability of oil-in-water nanoemulsions. J. Colloid Interface Sci. 2021 599 706 716 10.1016/j.jcis.2021.04.115 33984763
    [Google Scholar]
  20. Park J. Xiang Z. Liu Y. Li C.H. Chen C. Nagaraj H. Nguyen T. Nabawy A. Koo H. Rotello V.M. Surface-charge tuned polymeric nanoemulsions for carvacrol delivery in interkingdom biofilms. ACS Appl. Mater. Interfaces 2024 16 29 37613 37622 10.1021/acsami.4c06618 39007413
    [Google Scholar]
  21. Hasanovic A. Hoeller S. Valenta C. Analysis of skin penetration of phytosphingosine by fluorescence detection and influence of the thermotropic behaviour of DPPC liposomes. Int. J. Pharm. 2010 383 1-2 14 17 10.1016/j.ijpharm.2009.08.038 19732812
    [Google Scholar]
  22. Hoeller S. Sperger A. Valenta C. Lecithin based nanoemulsions: A comparative study of the influence of non-ionic surfactants and the cationic phytosphingosine on physicochemical behaviour and skin permeation. Int. J. Pharm. 2009 370 1-2 181 186 10.1016/j.ijpharm.2008.11.014 19073240
    [Google Scholar]
  23. Silva T.N. Reynaud F. Picciani P.H.S. Silva H.K.G. Barradas T.N. Chitosan-based films containing nanoemulsions of methyl salicylate: Formulation development, physical-chemical and in vitro drug release characterization. Int. J. Biol. Macromol. 2020 164 2558 2568 10.1016/j.ijbiomac.2020.08.117 32805287
    [Google Scholar]
  24. Nguyen H.T. Hensel A. Goycoolea F.M. Chitosan/cyclodextrin surface-adsorbed naringenin-loaded nanocapsules enhance bacterial quorum quenching and anti-biofilm activities. Colloids Surf. B Biointerfaces 2022 211 112281 10.1016/j.colsurfb.2021.112281 34952287
    [Google Scholar]
  25. Luesakul U. Puthong S. Sansanaphongpricha K. Muangsin N. Quaternized chitosan-coated nanoemulsions: A novel platform for improving the stability, anti-inflammatory, anti-cancer and transdermal properties of Plai extract. Carbohydr. Polym. 2020 230 115625 10.1016/j.carbpol.2019.115625 31887856
    [Google Scholar]
  26. Lu G. Recent advances in developing ophthalmic formulations: A patent review. Recent Pat. Drug Deliv. Formul. 2010 4 1 49 57 10.2174/187221110789957246 19807679
    [Google Scholar]
  27. Sahoo S. Dilnawaz F. Krishnakumar S. Nanotechnology in ocular drug delivery. Drug Discov. Today 2008 13 3-4 144 151 10.1016/j.drudis.2007.10.021 18275912
    [Google Scholar]
  28. Patel N. Nakrani H. Raval M. Sheth N. Development of loteprednol etabonate-loaded cationic nanoemulsified in-situ ophthalmic gel for sustained delivery and enhanced ocular bioavailability. Drug Deliv. 2016 23 9 3712 3723 10.1080/10717544.2016.1223225 27689408
    [Google Scholar]
  29. Fernandes A.R. Lopez S.E. Santos T. Garcia M.L. Silva A.M. Souto E.B. Development and characterization of nanoemulsions for ophthalmic applications: Role of cationic surfactants. Materials 2021 14 24 7541 10.3390/ma14247541 34947136
    [Google Scholar]
  30. Zhang J. Liu Z. Tao C. Lin X. Zhang M. Zeng L. Chen X. Song H. Cationic nanoemulsions with prolonged retention time as promising carriers for ophthalmic delivery of tacrolimus. Eur. J. Pharm. Sci. 2020 144 105229 10.1016/j.ejps.2020.105229 31958581
    [Google Scholar]
  31. Singh M. Bharadwaj S. Lee K.E. Kang S.G. Therapeutic nanoemulsions in ophthalmic drug administration: Concept in formulations and characterization techniques for ocular drug delivery. J. Control. Release 2020 328 895 916 10.1016/j.jconrel.2020.10.025 33069743
    [Google Scholar]
  32. Huckaby J.T. Lai S.K. PEGylation for enhancing nanoparticle diffusion in mucus. Adv. Drug Deliv. Rev. 2018 124 125 139 10.1016/j.addr.2017.08.010 28882703
    [Google Scholar]
  33. Wang Y.Y. Lai S.K. Suk J.S. Pace A. Cone R. Hanes J. Addressing the PEG mucoadhesivity paradox to engineer nanoparticles that “slip” through the human mucus barrier. Angew. Chem. Int. Ed. 2008 47 50 9726 9729 10.1002/anie.200803526 18979480
    [Google Scholar]
  34. Grimaudo M.A. Pescina S. Padula C. Santi P. Concheiro A. Lorenzo A.C. Nicoli S. Poloxamer 407/TPGS mixed micelles as promising carriers for cyclosporine ocular delivery. Mol. Pharm. 2018 15 2 571 584 10.1021/acs.molpharmaceut.7b00939 29313693
    [Google Scholar]
  35. Xu Q. Ensign L.M. Boylan N.J. Schön A. Gong X. Yang J.C. Lamb N.W. Cai S. Yu T. Freire E. Hanes J. Impact of surface polyethylene glycol (PEG) density on biodegradable nanoparticle transport in mucus ex vivo and distribution in vivo. ACS Nano 2015 9 9 9217 9227 10.1021/acsnano.5b03876 26301576
    [Google Scholar]
  36. Ma X. Liu Y. Wang J. Liu H. Wei G. Lu W. Liu Y. Combination of pegylation and cationization on phospholipid-coated cyclosporine nanosuspensions for enhanced ocular drug delivery. ACS Appl. Mater. Interfaces 2024 16 21 27040 27054 10.1021/acsami.4c01732 38743443
    [Google Scholar]
  37. Attia M.A. Eleraky N.E. Abdelazeem K. Safwat M.A. Prednisolone loaded-cationic nanoemulsion formulation for uveitis management. J. Drug Deliv. Sci. Technol. 2024 92 105406 10.1016/j.jddst.2024.105406
    [Google Scholar]
  38. Hagigit T. Abdulrazik M. Valamanesh F. Cohen B.F. Benita S. Ocular antisense oligonucleotide delivery by cationic nanoemulsion for improved treatment of ocular neovascularization: An in-vivo study in rats and mice. J. Control. Release 2012 160 2 225 231 10.1016/j.jconrel.2011.11.022 22138070
    [Google Scholar]
  39. Henostroza B.MA Melo C.KJ Yukuyama MN Lobenberg R Chacra B.NA Cationic rifampicin nanoemulsion for the treatment of ocular tuberculosis. Colloids Surf. A Physicochem. Eng. Aspects 2020 597 124755 10.1016/j.colsurfa.2020.124755
    [Google Scholar]
  40. Dukovski J.B. Juretić M. Bračko D. Randjelović D. Savić S. Moral C.M. Diebold Y. Grčić F.J. Pepić I. Lovrić J. Functional ibuprofen-loaded cationic nanoemulsion: Development and optimization for dry eye disease treatment. Int. J. Pharm. 2020 576 118979 10.1016/j.ijpharm.2019.118979 31870964
    [Google Scholar]
  41. Wang Q. Wu Z. Wang F. Zhang H. Gan L. Tacrolimus-loaded cationic nanoemulsion in-situ gel system: In-vitro characterization and performance in a dry-eye rabbit model. J. Pharm. Sci. 2023 112 11 2790 2798 10.1016/j.xphs.2023.05.001 37453530
    [Google Scholar]
  42. Li X. Müller R.H. Keck C.M. Chacra B.N.A. Mucoadhesive dexamethasone acetate-polymyxin B sulfate cationic ocular nanoemulsion--novel combinatorial formulation concept. Pharmazie 2016 71 6 327 333 10.1691/ph.2016.5190 27455551
    [Google Scholar]
  43. Kassem A.A. Salama A. Mohsen A.M. Formulation and optimization of cationic nanoemulsions for enhanced ocular delivery of dorzolamide hydrochloride using Box-Behnken design: In vitro and in vivo assessments. J. Drug Deliv. Sci. Technol. 2022 68 103047 10.1016/j.jddst.2021.103047
    [Google Scholar]
  44. Fernandes A.R. Vidal L.B. López S.E. Santos d.T. Granja P.L. Silva A.M. Garcia M.L. Souto E.B. Customized cationic nanoemulsions loading triamcinolone acetonide for corneal neovascularization secondary to inflammatory processes. Int. J. Pharm. 2022 623 121938 10.1016/j.ijpharm.2022.121938 35728716
    [Google Scholar]
  45. Gamboa J.M. Leong K.W. In vitro and in vivo models for the study of oral delivery of nanoparticles. Adv. Drug Deliv. Rev. 2013 65 6 800 810 10.1016/j.addr.2013.01.003 23415952
    [Google Scholar]
  46. Krasnici S. Werner A. Eichhorn M.E. Sody S.M. Pahernik S.A. Sauer B. Schulze B. Teifel M. Michaelis U. Naujoks K. Dellian M. Effect of the surface charge of liposomes on their uptake by angiogenic tumor vessels. Int. J. Cancer 2003 105 4 561 567 10.1002/ijc.11108 12712451
    [Google Scholar]
  47. Shalaby T.I. Refaie E.W.M. Bioadhesive chitosan-coated cationic nanoliposomes with improved insulin encapsulation and prolonged oral hypoglycemic effect in diabetic mice. J. Pharm. Sci. 2018 107 8 2136 2143 10.1016/j.xphs.2018.04.011 29689252
    [Google Scholar]
  48. Alshehri S. Altamimi M.A. Hussain A. Imam S.S. Singh S.K. Faruk A. Morphological transition of M. tuberculosis and modulation of intestinal permeation by food grade cationic nanoemulsion: In vitro-ex vivo-in silico GastroPlus™ studies. J. Drug Deliv. Sci. Technol. 2020 60 101971 10.1016/j.jddst.2020.101971
    [Google Scholar]
  49. Meng J. Hu L. Positively-charged microemulsion for improving the oral bioavailability of alendronate: In-vitro and in-vivo assessment. J. Pharm. Pharmacol. 2011 63 3 400 408 10.1111/j.2042‑7158.2010.01229.x 21749388
    [Google Scholar]
  50. Jha S.K. Chung J.Y. Pangeni R. Choi H.S. Subedi L. Kweon S. Choi J.U. Byun Y. Kim Y.H. Park J.W. Enhanced antitumor efficacy of bile acid-lipid complex-anchored docetaxel nanoemulsion via oral metronomic scheduling. J. Control. Release 2020 328 368 394 10.1016/j.jconrel.2020.08.067 32890552
    [Google Scholar]
  51. Fuentes G.M. Alonso M.J. Chitosan-based drug nanocarriers: Where do we stand? J. Control. Release 2012 161 2 496 504 10.1016/j.jconrel.2012.03.017 22480607
    [Google Scholar]
  52. Malkawi A. Alrabadi N. Kennedy R.A. Dual-acting zeta-potential-changing micelles for optimal mucus diffusion and enhanced cellular uptake after oral delivery. Pharmaceutics 2021 13 7 974 10.3390/pharmaceutics13070974 34199091
    [Google Scholar]
  53. Harsiddharay R.K. Gupta A. Singh P.K. Rai S. Singh Y. Sharma M. Pawar V. Kedar A.S. Gayen J.R. Chourasia M.K. Poly-l-lysine coated oral nanoemulsion for combined delivery of insulin and C-peptide. J. Pharm. Sci. 2022 111 12 3352 3361 10.1016/j.xphs.2022.08.026 36030844
    [Google Scholar]
  54. Hussain A. Altamimi M.A. Ramzan M. Mirza M.A. Khuroo T. GastroPlus- and HSPiP-oriented predictive parameters as the basis of valproic acid-loaded mucoadhesive cationic nanoemulsion gel for improved nose-to-brain delivery to control convulsion in humans. Gels 2023 9 8 603 10.3390/gels9080603 37623058
    [Google Scholar]
  55. Suwanbumrung D. Wongkhieo S. Keaswejjareansuk W. Dechbumroong P. Kamble M.T. Yata T. Kitiyodom S. Rodkhum C. Thompson K.D. Namdee K. Pirarat N. Oral delivery of a Streptococcus agalactiae vaccine to Nile tilapia (Oreochromis niloticus) using a novel cationic-based nanoemulsion containing bile salts. Fish Shellfish Immunol. 2023 139 108913 10.1016/j.fsi.2023.108913 37393062
    [Google Scholar]
  56. Yadav S. Pawar G. Kulkarni P. Ferris C. Amiji M. CNS delivery and anti-inflammatory effects of intranasally administered cyclosporine-A in cationic nanoformulations. J. Pharmacol. Exp. Ther. 2019 370 3 843 854 10.1124/jpet.118.254672 30591529
    [Google Scholar]
  57. Wong P.T. Wang S.H. Ciotti S. Makidon P.E. Smith D.M. Fan Y. Schuler C.F. IV Baker J.R. Jr Formulation and characterization of nanoemulsion intranasal adjuvants: Effects of surfactant composition on mucoadhesion and immunogenicity. Mol. Pharm. 2014 11 2 531 544 10.1021/mp4005029 24320221
    [Google Scholar]
  58. Manikkath J. Sumathy T.K. Manikkath A. Mutalik S. Delving deeper into dermal and transdermal drug delivery: Factors and mechanisms associated with nanocarrier-mediated strategies. Curr. Pharm. Des. 2018 24 27 3210 3222 10.2174/1381612824666180924122640 30246632
    [Google Scholar]
  59. Alvarez L.A. Fernández R.M. Méndez B.J. Guy R.H. Charro D.M.B. Iontophoretic permselectivity of mammalian skin: Characterization of hairless mouse and porcine membrane models. Pharm. Res. 1998 15 7 984 987 10.1023/A:1011909623019 9688048
    [Google Scholar]
  60. Marro D. Guy R.H. Charro B.D.M. Characterization of the iontophoretic permselectivity properties of human and pig skin. J. Control. Release 2001 70 1-2 213 217 10.1016/S0168‑3659(00)00350‑3 11166421
    [Google Scholar]
  61. Gillet A. Compère P. Lecomte F. Hubert P. Ducat E. Evrard B. Piel G. Liposome surface charge influence on skin penetration behaviour. Int. J. Pharm. 2011 411 1-2 223 231 10.1016/j.ijpharm.2011.03.049 21458550
    [Google Scholar]
  62. Count L.T.D. Kasting G.B. Erratum to “Human skin is permselective for the small, monovalent cations sodium and potassium but not for nickel and chromium” [J Pharm Sci 2013;102:2241-2253]. J. Pharm. Sci. 2016 105 3 1351 1352 10.1016/j.xphs.2015.11.013
    [Google Scholar]
  63. Rojanasakul Y. Wang L.Y. Bhat M. Glover D.D. Malanga C.J. Ma J.K.H. The transport barrier of epithelia: A comparative study on membrane permeability and charge selectivity in the rabbit. Pharm. Res. 1992 9 8 1029 1034 10.1023/A:1015802427428 1409373
    [Google Scholar]
  64. Burnette R.R. Ongpipattanakul B. Characterization of the pore transport properties and tissue alteration of excised human skin during iontophoresis. J. Pharm. Sci. 1988 77 2 132 137 10.1002/jps.2600770208 3361428
    [Google Scholar]
  65. Yilmaz E. Borchert H.H. Design of a phytosphingosine-containing, positively-charged nanoemulsion as a colloidal carrier system for dermal application of ceramides. Eur. J. Pharm. Biopharm. 2005 60 1 91 98 10.1016/j.ejpb.2004.11.009 15848061
    [Google Scholar]
  66. Yilmaz E. Borchert H.H. Effect of lipid-containing, positively charged nanoemulsions on skin hydration, elasticity and erythema—An in vivo study. Int. J. Pharm. 2006 307 2 232 238 10.1016/j.ijpharm.2005.10.002 16289984
    [Google Scholar]
  67. Baspinar Y. Borchert H.H. Penetration and release studies of positively and negatively charged nanoemulsions—Is there a benefit of the positive charge? Int. J. Pharm. 2012 430 1-2 247 252 10.1016/j.ijpharm.2012.03.040 22486953
    [Google Scholar]
  68. Altamimi M.A. Hussain A. Alshehri S. Imam S.S. Alnemer U.A. Development and evaluations of transdermally delivered luteolin loaded cationic nanoemulsion: In vitro and ex vivo evaluations. Pharmaceutics 2021 13 8 1218 10.3390/pharmaceutics13081218
    [Google Scholar]
  69. Malik M.R. Harbi A.F.F. Nawaz A. Amin A. Farid A. Mohaini M.A. Alsalman A.J. Hawaj M.A.A. Alhashem Y.N. Formulation and characterization of chitosan-decorated multiple nanoemulsion for topical delivery in vitro and ex vivo. Molecules 2022 27 10 3183 10.3390/molecules27103183 35630660
    [Google Scholar]
  70. İsar S. Akbaba H. Akbaba E.G. Başpinar Y. Development and characterization of cationic nanoemulsions as non-viral vectors for plasmid DNA delivery. J. Res. Pharm. 2020 24 6 952 960 10.35333/JRP.2020.255
    [Google Scholar]
  71. Silva A.L. Marcelino H.R. Veríssimo L.M. Araujo I.B. Lima A.L.F. Egito d.E.S.T. Stearylamine-containing cationic nanoemulsion as a promising carrier for gene delivery. J. Nanosci. Nanotechnol. 2016 16 2 1339 1345 10.1166/jnn.2016.11671 27433584
    [Google Scholar]
  72. Brito L.A. Chan M. Shaw C.A. Hekele A. Carsillo T. Schaefer M. Archer J. Seubert A. Otten G.R. Beard C.W. Dey A.K. Lilja A. Valiante N.M. Mason P.W. Mandl C.W. Barnett S.W. Dormitzer P.R. Ulmer J.B. Singh M. O’Hagan D.T. Geall A.J. A cationic nanoemulsion for the delivery of next-generation RNA vaccines. Mol. Ther. 2014 22 12 2118 2129 10.1038/mt.2014.133 25027661
    [Google Scholar]
  73. Khachane P.V. Jain A.S. Dhawan V.V. Joshi G.V. Date A.A. Mulherkar R. Nagarsenker M.S. Cationic nanoemulsions as potential carriers for intracellular delivery. Saudi Pharm. J. 2015 23 2 188 194 10.1016/j.jsps.2014.07.007 25972740
    [Google Scholar]
  74. İsar S. Akbaba H. Şahİn Y. Altinöz M.A. Nalbantsoy A. Akbaba E.G. Başpınar Y. Design and evaluation of erucic acid-phytosphingosine structured cationic nanoemulsions as a plasmid DNA delivery system against breast cancer cells. Pharm. Dev. Technol. 2022 27 2 145 154 10.1080/10837450.2021.2025247 35021932
    [Google Scholar]
  75. Teixeira H. Fraga Bruxel Lagranha Matte U. Influence of phospholipid composition on cationic emulsions/DNA complexes: Physicochemical properties, cytotoxicity, and transfection on Hep G2 cells. Int. J. Nanomedicine 2011 6 2213 2220 10.2147/IJN.S22335 22114484
    [Google Scholar]
  76. Farwick M. Gauglitz G. Pavicic T. Köhler T. Wegmann M. Abdellaoui S.K. Malle B. Tarabin V. Schmitz G. Korting H.C. Fifty-kDa hyaluronic acid upregulates some epidermal genes without changing TNF-α expression in reconstituted epidermis. Skin Pharmacol. Physiol. 2011 24 4 210 217 10.1159/000324296 21412035
    [Google Scholar]
  77. How K.N. Yap W.H. Lim C.L.H. Goh B.H. Lai Z.W. Hyaluronic acid-mediated drug delivery system targeting for inflammatory skin diseases: A mini review. Front. Pharmacol. 2020 11 1105 10.3389/fphar.2020.01105 32848737
    [Google Scholar]
  78. Bourguignon L.Y.W. Matrix hyaluronan-activated CD44 signaling promotes keratinocyte activities and improves abnormal epidermal functions. Am. J. Pathol. 2014 184 7 1912 1919 10.1016/j.ajpath.2014.03.010 24819962
    [Google Scholar]
  79. Li Y. Ruan S. Wang Z. Feng N. Zhang Y. Hyaluronic acid coating reduces the leakage of melittin encapsulated in liposomes and increases targeted delivery to melanoma cells. Pharmaceutics 2021 13 8 1235 10.3390/pharmaceutics13081235 34452196
    [Google Scholar]
  80. Huang G. Huang H. Application of hyaluronic acid as carriers in drug delivery. Drug Deliv. 2018 25 1 766 772 10.1080/10717544.2018.1450910 29536778
    [Google Scholar]
  81. Ni C. Zhang Z. Wang Y. Zhang Z. Guo X. Lv H. Hyaluronic acid and HA-modified cationic liposomes for promoting skin penetration and retention. J. Control. Release 2023 357 432 443 10.1016/j.jconrel.2023.03.049 37004799
    [Google Scholar]
  82. Jeon S. Yoo C.Y. Park S.N. Improved stability and skin permeability of sodium hyaluronate-chitosan multilayered liposomes by Layer-by-Layer electrostatic deposition for quercetin delivery. Colloids Surf. B Biointerfaces 2015 129 7 14 10.1016/j.colsurfb.2015.03.018 25819360
    [Google Scholar]
  83. Kotsmar C. Pradines V. Alahverdjieva V.S. Aksenenko E.V. Fainerman V.B. Kovalchuk V.I. Krägel J. Leser M.E. Noskov B.A. Miller R. Thermodynamics, adsorption kinetics and rheology of mixed protein–surfactant interfacial layers. Adv. Colloid Interface Sci. 2009 150 1 41 54 10.1016/j.cis.2009.05.002 19493522
    [Google Scholar]
  84. Pugnaloni L.A. Dickinson E. Ettelaie R. Mackie A.R. Wilde P.J. Competitive adsorption of proteins and low-molecular-weight surfactants: Computer simulation and microscopic imaging. Adv. Colloid Interface Sci. 2004 107 1 27 49 10.1016/j.cis.2003.08.003 14962406
    [Google Scholar]
  85. Guzmán E. Llamas S. Maestro A. Peña F.L. Akanno A. Miller R. Ortega F. Rubio R.G. Polymer–surfactant systems in bulk and at fluid interfaces. Adv. Colloid Interface Sci. 2016 233 38 64 10.1016/j.cis.2015.11.001 26608684
    [Google Scholar]
  86. McClements D.J. Jafari S.M. Improving emulsion formation, stability and performance using mixed emulsifiers: A review. Adv. Colloid Interface Sci. 2018 251 55 79 10.1016/j.cis.2017.12.001 29248154
    [Google Scholar]
  87. Preetz C. Hauser A. Hause G. Kramer A. Mäder K. Application of atomic force microscopy and ultrasonic resonator technology on nanoscale: Distinction of nanoemulsions from nanocapsules. Eur. J. Pharm. Sci. 2010 39 1-3 141 151 10.1016/j.ejps.2009.11.009 19958830
    [Google Scholar]
  88. Qadir A. Faiyazuddin M.D. Hussain T.M.D. Alshammari T.M. Shakeel F. Critical steps and energetics involved in a successful development of a stable nanoemulsion. J. Mol. Liq. 2016 214 7 18 10.1016/j.molliq.2015.11.050
    [Google Scholar]
  89. Gao F. Zhang Z. Bu H. Huang Y. Gao Z. Shen J. Zhao C. Li Y. Nanoemulsion improves the oral absorption of candesartan cilexetil in rats: Performance and mechanism. J. Control. Release 2011 149 2 168 174 10.1016/j.jconrel.2010.10.013 20951749
    [Google Scholar]
  90. Georgiev G. Yokoi N. Nencheva Y. Peev N. Daull P. Surface chemistry interactions of cationorm with films by human meibum and tear film compounds. Int. J. Mol. Sci. 2017 18 7 1558 10.3390/ijms18071558 28718823
    [Google Scholar]
  91. Georgiev G.A. Yokoi N. Ivanova S. Krastev R. Lalchev Z. Surface chemistry study of the interactions of pharmaceutical ingredients with human meibum films. Invest. Ophthalmol. Vis. Sci. 2012 53 8 4605 4615 10.1167/iovs.12‑9907 22695955
    [Google Scholar]
  92. Li G. Zhang Y. Tang W. Zheng J. Comprehensive investigation of in vitro hemocompatibility of surface modified polyamidoamine nanocarrier. Clin. Hemorheol. Microcirc. 2020 74 3 267 279 10.3233/CH‑190641 31476147
    [Google Scholar]
  93. Deng X. Zhao J. Liu K. Wu C. Liang F. Stealth PEGylated chitosan polyelectrolyte complex nanoparticles as drug delivery carrier. J. Biomater. Sci. Polym. Ed. 2021 32 11 1387 1405 10.1080/09205063.2021.1918043 33863271
    [Google Scholar]
  94. Bague S. Philips B. Garrigue J-S. Guilatt R.L. Lambert G. Oil-in-water type emulsion with low concentration of cationic agent and positive zeta potential. U.S. Patent No. 8,298,568, 2012
  95. Calvo P. Jato V.J.L. Alonso M.J. Evaluation of cationic polymer-coated nanocapsules as ocular drug carriers. Int. J. Pharm. 1997 153 1 41 50 10.1016/S0378‑5173(97)00083‑5
    [Google Scholar]
  96. Dukovski B.J. Bračko A. Šare M. Pepić I. Lovrić J. In vitro evaluation of stearylamine cationic nanoemulsions for improved ocular drug delivery. Acta Pharm. 2019 69 4 621 634 10.2478/acph‑2019‑0054 31639085
    [Google Scholar]
  97. Ottlik P.M. Lewińska A. Jaromin A. Krasowska A. Wilk K.A. Antifungal organoselenium compound loaded nanoemulsions stabilized by bifunctional cationic surfactants. Colloids Surf. A Physicochem. Eng. Asp. 2016 510 53 62 10.1016/j.colsurfa.2016.07.062
    [Google Scholar]
  98. Malik P. Ameta R.K. Singh M. Physicochemical study of curcumin in oil driven nanoemulsions with surfactants. J. Mol. Liq. 2016 220 604 622 10.1016/j.molliq.2016.04.126
    [Google Scholar]
  99. Chang Y. McLandsborough L. McClements D.J. Fabrication, stability and efficacy of dual-component antimicrobial nanoemulsions: Essential oil (thyme oil) and cationic surfactant (lauric arginate). Food Chem. 2015 172 298 304 10.1016/j.foodchem.2014.09.081 25442557
    [Google Scholar]
  100. Ziani K. Chang Y. McLandsborough L. McClements D.J. Influence of surfactant charge on antimicrobial efficacy of surfactant-stabilized thyme oil nanoemulsions. J. Agric. Food Chem. 2011 59 11 6247 6255 10.1021/jf200450m 21520914
    [Google Scholar]
  101. Zhu Y. Sun P. Duan C. Cao Y. Kong B. Wang H. Chen Q. Improving stability and bioavailability of curcumin by quaternized chitosan coated nanoemulsion. Food Res. Int. 2023 174 Pt 1 113634 10.1016/j.foodres.2023.113634 37986538
    [Google Scholar]
  102. Silva H.D. Beldíková E. Poejo J. Abrunhosa L. Serra A.T. Duarte C.M.M. Brányik T. Cerqueira M.A. Pinheiro A.C. Vicente A.A. Evaluating the effect of chitosan layer on bioaccessibility and cellular uptake of curcumin nanoemulsions. J. Food Eng. 2019 243 89 100 10.1016/j.jfoodeng.2018.09.007
    [Google Scholar]
  103. Alsolami A. Bazaid A.S. Alshammari M.A. Qanash H. Amin B.H. Bakri M.M. Abdelghany T.M. Ecofriendly fabrication of natural jojoba nanoemulsion and chitosan/jojoba nanoemulsion with studying the antimicrobial, anti-biofilm, and anti-diabetic activities in vitro. Biomass Convers. Biorefin. 2023 2023 1 12 10.1007/s13399‑023‑05162‑0
    [Google Scholar]
  104. Shukr M.H. Farid O.A.A. Brain targeting of agomelatine egg lecithin based chitosan coated nanoemulsion. Pharm. Dev. Technol. 2021 26 4 464 475 10.1080/10837450.2021.1888980 33586593
    [Google Scholar]
  105. Bruxel F. Cojean S. Bochot A. Teixeira H. Bories C. Loiseau P.M. Fattal E. Cationic nanoemulsion as a delivery system for oligonucleotides targeting malarial topoisomerase II. Int. J. Pharm. 2011 416 2 402 409 10.1016/j.ijpharm.2011.01.048 21291974
    [Google Scholar]
  106. Correa L. Meirelles C.G. Balestrin L. Souza d.P.O. Moreira J.C.F. Schuh R.S. Bidone J. Poser v.G.L. Teixeira H.F. In vitro protective effect of topical nanoemulgels containing Brazilian red propolis benzophenones against UV-induced skin damage. Photochem. Photobiol. Sci. 2020 19 10 1460 1469 10.1039/d0pp00243g 33026028
    [Google Scholar]
  107. Liu F. Su H. Li M. Xie W. Yan Y. Shuai Q. Zwitterionic modification of polyethyleneimine for efficient in vitro siRNA delivery. Int. J. Mol. Sci. 2022 23 9 5014 10.3390/ijms23095014 35563405
    [Google Scholar]
  108. Yang Q. Liu S. Liu X. Liu Z. Xue W. Zhang Y. Role of charge-reversal in the hemo/immuno-compatibility of polycationic gene delivery systems. Acta Biomater. 2019 96 436 455 10.1016/j.actbio.2019.06.043 31254682
    [Google Scholar]
  109. Su Y. Zhi Z. Gao Q. Xie M. Yu M. Lei B. Li P. Ma P.X. Autoclaving‐derived surface coating with in vitro and in vivo antimicrobial and antibiofilm efficacies. Adv. Healthc. Mater. 2017 6 6 1601173 10.1002/adhm.201601173 28128893
    [Google Scholar]
  110. Gallardo G.M. Eckhard U. Delgado L.M. Puente R.Y.J.D. Nogués H.M. Gil F.J. Perez R.A. Antibacterial approaches in tissue engineering using metal ions and nanoparticles: From mechanisms to applications. Bioact. Mater. 2021 6 12 4470 4490 10.1016/j.bioactmat.2021.04.033 34027235
    [Google Scholar]
  111. Ruseska I. Fresacher K. Petschacher C. Zimmer A. Use of protamine in nanopharmaceuticals—A review. Nanomaterials 2021 11 6 1508 10.3390/nano11061508 34200384
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128357859250121120216
Loading
/content/journals/cpd/10.2174/0113816128357859250121120216
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test