Skip to content
2000
image of Synthesis and Characterization of Zn(1-x-y)MnxCoyO NPs for Liver Cancer Treatment

Abstract

Introduction

In this study, pure and cobalt manganese-doped ZnO nanoparticles (ZnMnCoO NPs) at varying concentrations were synthesized through sol-gel method, and zinc acetate dihydrate, 
manganese nitrate, cobalt acetate, and diethyl amine were used as precursors, with samples finally calcined at 700oC.

Method

The hexagonal wurtzite structure of pure and co-doped ZnO NPs was confirmed by X-ray diffraction (XRD). The computed grain sizes of pure and co-doped ZnO NPs, according to Scherrer's formula, were 32 nm, 32.5 nm, 36.3 nm, and 36.5 nm, respectively. SEM was used to observe the morphology of nanoparticles. FTIR spectroscopy was used to examine the chemical make-up and vibrational modes of pure and co-doped ZnO NPs. The bandgaps of pure and doped ZnO were examined using UV-Vis spectroscopy.

Results

It was found that the optical bandgap of ZnO was lowered by 3.21 eV by manganese and cobalt doping. Elemental composition analysis was performed by using EDX analysis. Finally, anticancer activity of pure and co-doped ZnO NPs was assessed by employing MTT assay, which indicated that Zn Mn CoO NPs showed significant anticancer results against liver cancer (HepG-2) cells as compared to ZnO, Zn MnCoO and Zn Mn CoO NPs. Moreover, Zn Mn CoO NPs showed low toxicity and good biocompatibility comparable to doxorubicin (DOX).

Conclusion

Comprehensive experimental findings have demonstrated an authentic way of obtaining feasible liver cancer therapy.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128330548250206101727
2025-02-26
2025-03-30
Loading full text...

Full text loading...

References

  1. Schmidt-Mende L. MacManus-Driscoll J.L. ZnO – nanostructures, defects, and devices. Mater. Today 2007 10 5 40 48 10.1016/S1369‑7021(07)70078‑0
    [Google Scholar]
  2. Iqbal S. Fakhar-e-Alam M. Atif M. Ahmed N. Ahmad A.-U. Amin N. Alghamdi R.A. Hanif A. Farooq W.A. Empirical modeling of Zn/ZnO nanoparticles decorated/conjugated with fotolon (Chlorine e6) based photodynamic therapy towards liver cancer treatment 1 60 10.3390/mi10010060 30658388
  3. Pan S.L. Zeng D.D. Zhang H.L. Li H.L. Preparation of ordered array of nanoscopic gold rods by template method and its optical properties. Appl. Phys., A Mater. Sci. Process. 2000 70 6 637 640 10.1007/PL00021073
    [Google Scholar]
  4. Prabakar C Muthukumaran S Raja V Influence of defects on the structural, optical, photoluminescence and magnetic properties of Cr/Mn dual doped ZnO nanostructures 2021 2 1 10 10.1016/j.chphi.2021.100019
    [Google Scholar]
  5. Chen W. Lu Y.H. Wang M. Kroner L. Paul H. Fecht H-J. Bednarcik J. Stahl K. Zhang Z.L. Wiedwald U. Kaiser U. Ziemann P. Kikegawa T. Wu C.D. Jiang J.Z. Synthesis, thermal stability and properties of zno 2 Nanoparticles. J. Phys. Chem. C 2009 113 4 1320 1324 10.1021/jp808714v
    [Google Scholar]
  6. Li D. Huang J.F. Cao L.Y. Li J.Y. Ouyang H.B. Yao C.Y. Microwave hydrothermal synthesis of Sr2+ doped ZnO crystallites with enhanced photocatalytic properties Elsevier Science 2014 40 2 2647 2653
    [Google Scholar]
  7. Yue H.Y. Fei W.D. Li Z.J. Wang L.D. Sol–gel process of zno and znal2o4 coated aluminum borate whiskers. J. Sol-Gel Sci. Technol. 2007 44 3 259 262 10.1007/s10971‑007‑1633‑8
    [Google Scholar]
  8. Yang Q. Hu W. A novel mercury-media route to synthesize ZnO hollow microspheres. Ceram. Int. 2010 36 3 989 993 10.1016/j.ceramint.2009.11.017
    [Google Scholar]
  9. Yousefi R. Kamaluddin B. The effects of annealing temperature on structural and optical properties of s-doped zno nanobelts. Solid State Sci. 2010 12 2 252 256 10.1016/j.solidstatesciences.2009.11.002
    [Google Scholar]
  10. Apostolova I. Wesselinowa J.M. Possible low- nanoparticles for use in magnetic hyperthermia treatments. Solid State Commun. 2009 149 25-26 986 990 10.1016/j.ssc.2009.04.015
    [Google Scholar]
  11. Kumar P. Chand J. Verma S. Sci M.S. Micro-structural studies of gadolinium doped cobalt ferrites International Journal of Theoretical and Applied Science 2011 3 2 10 12
  12. Salah L.M. Moustafa A.M. Farag I.S.A. Structural characteristics and electrical properties of copper doped manganese ferrite. Ceram. Int. 2012 38 7 5605 5611 10.1016/j.ceramint.2012.04.001
    [Google Scholar]
  13. Veena Gopalan E. Al-Omari I.A. Malini K.A. Joy P.A. Sakthi Kumar D. Yoshida Y. Anantharaman M.R. Impact of zinc substitution on the structural and magnetic properties of chemically derived nanosized manganese zinc mixed ferrites. J. Magn. Magn. Mater. 2009 321 8 1092 1099 10.1016/j.jmmm.2008.10.031
    [Google Scholar]
  14. Tonto P. Mekasuwandumrong O. Phatanasri S. Pavarajarn V. Praserthdam P. Preparation of ZnO nanorod by solvothermal reaction of zinc acetate in various alcohols. Ceram. Int. 2008 34 1 57 62 10.1016/j.ceramint.2006.08.003
    [Google Scholar]
  15. Venkatesan J. Kim S.K. Nano-hydroxyapatite composite biomaterials for bone tissue engineering--a review. J. Biomed. Nanotechnol. 2014 10 10 3124 3140 10.1166/jbn.2014.1893 25992432
    [Google Scholar]
  16. Li H. Zhang Z. Huang J. Liu R. Wang Q. Optical and structural analysis of rare earth and Li co-doped ZnO nanoparticles. J. Alloys Compd. 2013 550 526 530 10.1016/j.jallcom.2012.10.080
    [Google Scholar]
  17. Sarfraz M. Ahmed N. Khizar-ul-Haq Shahida S. Khan M.A. Structural optical and magnetic properties of transition metal doped ZnO magnetic nanoparticles synthesized by sol-gel auto-combustion method. Mater. Sci. Pol. 2019 37 2 280 288 10.2478/msp‑2019‑0029
    [Google Scholar]
  18. Tahir M. Fakhar-e-Alam M. Asif M. Iqbal M.J. Abbas A. Hassan M. Rehman J. Bhatti Q.A. Mustafa G. Alothman A.A. Mohammad S. Investigation of gadolinium doped manganese nano spinel ferrites via magnetic hypothermia therapy effect towards MCF-7 breast cancer. Heliyon 2024 10 3 e24792 10.1016/j.heliyon.2024.e24792 38314307
    [Google Scholar]
  19. Asif M. Iqbal W. Fakhar-e-Alam M. Hussain Z. Saadullah M. Hassan M. Rehman J. Dahlous K.A. Al-Qahtani N.H. Synthesis and characterization of chemically and green-synthesized silver oxide particles for evaluation of antiviral and anticancer activity. Pharmaceuticals (Basel) 2024 17 7 908 10.3390/ph17070908 39065758
    [Google Scholar]
  20. Rajeshkumar S. Malarkodi C. Vanaja M. Annadurai G. Anticancer and enhanced antimicrobial activity of biosynthesizd silver nanoparticles against clinical pathogens. J. Mol. Struct. 2016 1116 165 173 10.1016/j.molstruc.2016.03.044
    [Google Scholar]
  21. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. Cancer. J. Clin. 2021 71 3 249 209 10.1134/S1054660X11090076 33538338
    [Google Scholar]
  22. Fakhar-e-Alam M. Atif M. AlSalhi M.S. Siddique M. Kishwar S. Qadir M.I. Willander M. Role of ALA sensitivity in HepG2 cell in the presence of diode laser. Laser Phys. 2011 21 5 972 980 10.1134/S1054660X11090076
    [Google Scholar]
  23. Atif M. Fakhar-e-Alam M. Zaidi S.S.Z. Suleman R. Study of the efficacy of photofrin®-mediated pdt on human hepatocellular carcinoma (hepg2) cell line. Laser Phys. 2011 21 6 1135 1144 10.1134/S1054660X11110028
    [Google Scholar]
  24. Asif M. Fakhar-e-Alam M. Hassan M. Sardar H. Zulqarnian M. Li L. Alothman A.A. Alangary A.B. Mohammad S. Synergistic response of PEG coated manganese dioxide nanoparticles conjugated with doxorubicin for breast cancer treatment and MRI application. Arab. J. Chem. 2024 17 10 105958 10.1016/j.arabjc.2024.105958
    [Google Scholar]
  25. Knowles BB Howe CC Aden DP Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis b surface antigen science Science. 1980 209 4455 497 499 10.1126/science.6248960 6248960
    [Google Scholar]
  26. Iwasa F. Sassa S. Kappas A. δ -Aminolaevulinate synthase in human HepG2 hepatoma cells. Repression by haemin and induction by chemicals. Biochem. J. 1989 262 3 807 813 10.1042/bj2620807 2556111
    [Google Scholar]
  27. Iqbal S. Fakhar-e-Alam M. Akbar F. Shafiq M. Atif M. Amin N. Ismail M. Hanif A. Farooq W.A. Application of silver oxide nanoparticles for the treatment of cancer. J. Mol. Struct. 2019 1189 203 209 10.1016/j.molstruc.2019.04.041
    [Google Scholar]
  28. Ahmed N. Majid A. Khan M.A. Rashid M. Umar Z.A. Baig M.A. Synthesis and characterization of Zn/ZnO microspheres on indented sites of silicon substrate. Mater. Sci. Pol. 2018 36 3 501 508 10.2478/msp‑2018‑0058
    [Google Scholar]
  29. Wojnarowicz J. Omelchenko M. Szczytko J. Chudoba T. Gierlotka S. Majhofer A. Twardowski A. Lojkowski W. Structural and magnetic properties of Co‒Mn codoped ZnO nanoparticles obtained by microwave solvothermal synthesis. Crystals (Basel) 2018 8 11 410 10.3390/cryst8110410
    [Google Scholar]
  30. Ramachandra Rao MS Okada T ZnO nanocrystals and allied materials 2014 149 173 10.1007/978‑81‑322‑1160‑0
  31. Williamson GK Smallman RE III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum 1956 1 1 34 46 10.1080/14786435608238074
    [Google Scholar]
  32. Abdullahi S.S. Köseoğlu Y. Güner S. Kazan S. Kocaman B. Ndikilar C.E. Synthesis and characterization of mn and co codoped zno nanoparticles. Superlattices Microstruct. 2015 83 342 352 10.1016/j.spmi.2015.03.021
    [Google Scholar]
  33. Sharma D. Jha R. Transition metal (Co, Mn) co-doped ZnO nanoparticles: Effect on structural and optical properties. J. Alloys Compd. 2017 698 532 538 10.1016/j.jallcom.2016.12.227
    [Google Scholar]
  34. Kayani Z.N. Afzal T. Riaz S. Naseem S. Optical and structural properties of thin films of ZnO at elevated temperature. J. Alloys Compd. 2014 606 177 181 10.1016/j.jallcom.2014.04.039
    [Google Scholar]
  35. Kayani Z.N. Munir A. Riaz S. Naseem S. Structural, optical and magnetic properties of aluminum doped MnZnO films deposited by dip coating. J. Alloys Compd. 2016 662 489 496 10.1016/j.jallcom.2015.12.003
    [Google Scholar]
  36. Marella M. Seo B.B. Nakamaru-Ogiso E. Greenamyre J.T. Matsuno-Yagi A. Yagi T. Protection by the NDI1 gene against neurodegeneration in a rotenone rat model of parkinson's disease. PLoS. One. 2008 3 1 10.1371/journal.pone.0001433 18197244
    [Google Scholar]
  37. Kayani Z.N. Anjum M. Riaz S. Naseem S. Zeeshan T. Role of Mn in biological, optical, and magnetic properties ZnO nano-particles. Appl. Phys., A Mater. Sci. Process. 2020 126 3 197 10.1007/s00339‑020‑3380‑4
    [Google Scholar]
  38. Yahmadi B. Kamoun O. Alhalaili B. Alleg S. Vidu R. Kamoun Turki N. Physical investigations of (co, mn) co-doped zno nanocrystalline films. Nanomaterials (Basel) 2020 10 8 1507 10.3390/nano10081507 32751965
    [Google Scholar]
  39. Fan C. Zheng W. Fu X. Li X. Wong Y.S. Chen T. Strategy to enhance the therapeutic effect of doxorubicin in human hepatocellular carcinoma by selenocystine, a synergistic agent that regulates the ROS-mediated signaling. Oncotarget 2014 5 9 2853 2863 10.18632/oncotarget.1854 24797310
    [Google Scholar]
  40. Fakhar-E-Alam M. Yi C. Yu Z. Ren Q. Liu X. Wang Y. Sun X. Yin S. Pan J. Huang X. ZnO nanoparticles as drug delivery agent for photodynamic therapy. Laser Phys. 2013 30 10.1016/j.pdpdt.2020.101694 025601
    [Google Scholar]
  41. Vijayakumar G. Boopathi G. Elango M. In vitro cytotoxic efficacy of PEG encapsulated manganese-doped zinc oxide nanoparticles on hepatocellular carcinoma cells. Mater. Technol. 2019 34 13 807 817 10.1080/10667857.2019.1633787
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128330548250206101727
Loading
/content/journals/cpd/10.2174/0113816128330548250206101727
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: cancer treatment ; sol-gel method ; MTT assay ; liver cancer cell line ; Co-doped ZnO NPs
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test