Skip to content
2000
image of Difficulties in Using Natural Herbal Substances and their Current use in Some Pharmaceutical Dosage Forms

Abstract

Aim

Random use of natural herbal products affects the treatment of diseases. In this review, the limitations that may be encountered in using natural substances of plant origin and the studies on using these substances in treating cancer, cognitive disorders, heart diseases, diabetes, and microbial diseases are examined and summarized.

Background

People worldwide use herbal products derived from natural plants to solve health problems. It is known that random use of herbal products can negatively affect the treatment. However, people need help with the formulation or use of natural substances. There is no new disease-modifying herbal therapy available to treat diseases such as cancer, microbial disorders, diabetes, cognitive disorders, and cardiac disorders.

Objective

This review aims to report the difficulties encountered in formulating and using natural herbal substances and highlight their possible use in some diseases.

Materials and Methods

Available information about the study was collected through many search engines such as Science Direct, PubMed, and Google Scholar.

Results

Working with natural herbal substances worldwide presents many difficulties, especially a lack of knowledge, modern technological devices, or clinical studies. According to currently available studies, some natural herbal substances are effective against cancer, microbial disorders, diabetes, cognitive disorders, and heart disorders.

Conclusion

Deepening the studies would be beneficial to eliminate the difficulties related to natural herbal medicines and making them more reliable. More research is needed to include these substances in the protocol and use them in treating diseases.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128346715250120074519
2025-02-11
2025-03-30
Loading full text...

Full text loading...

References

  1. The Importance of Pharmacovigilance Safety monitoring of Medicinal products. Geneva: World Health Organization (WHO). 2002
    [Google Scholar]
  2. Al-Worafi Y.M. Chapter 14 - Herbal medicines safety issues. Drug Safety in Developing Countries - Achievements and Challenges Elsevier 2020 163 178
    [Google Scholar]
  3. Tan L. Ni Y. Xie Y. Zhang W. Zhao J. Xiao Q. Lu J. Pan Q. Li C. Xu B. Next-generation meat preservation: integrating nano-natural substances to tackle hurdles and opportunities. Crit. Rev. Food Sci. Nutr. 2024 64 33 12720 12743 10.1080/10408398.2023.2256013 37702757
    [Google Scholar]
  4. Mohd Sairazi N.S. Sirajudeen K.N.S. Natural products and their bioactive compounds: neuroprotective potentials against neurodegenerative diseases. Evid. Based Complement. Alternat. Med. 2020 2020 1 6565396 10.1155/2020/6565396 32148547
    [Google Scholar]
  5. Shaito A. Thuan D.T.B. Phu H.T. Nguyen T.H.D. Hasan H. Halabi S. Abdelhady S. Nasrallah G.K. Eid A.H. Pintus G. Herbal medicine for cardiovascular diseases: efficacy, mechanisms, and safety. Front. Pharmacol. 2020 11 422 10.3389/fphar.2020.00422 32317975
    [Google Scholar]
  6. Zhang W. Zhao J. Ma Y. Li J. Chen X. The effective components of herbal medicines used for prevention and control of fish diseases. Fish Shellfish Immunol. 2022 126 73 83 10.1016/j.fsi.2022.05.036 35609759
    [Google Scholar]
  7. Yin R. Xue J. Tan Y. Fang C. Hu C. Yang Q. Mei X. Qi D. The positive role and mechanism of herbal medicine in parkinson’s sisease. Oxid. Med. Cell. Longev. 2021 2021 1 9923331 10.1155/2021/9923331 34567415
    [Google Scholar]
  8. Lu D.Y. Lu T.R. Yarla N.S. Chapter 4 - Natural drug cancer treatments, strategies from herbal medicine to chemical or biological drugs. Studies in Natural Products Chemistry 2020 91 115 10.1016/B978‑0‑12‑817907‑9.00004‑0
    [Google Scholar]
  9. Sen S. Chakraborty R. Revival, modernization and integration of Indian traditional herbal medicine in clinical practice: Importance, challenges and future. J. Tradit. Complement. Med. 2017 7 2 234 244 10.1016/j.jtcme.2016.05.006 28417092
    [Google Scholar]
  10. Zhang J. Wider B. Shang H. Li X. Ernst E. Quality of herbal medicines: Challenges and solutions. Complement. Ther. Med. 2012 20 1-2 100 106 10.1016/j.ctim.2011.09.004 22305255
    [Google Scholar]
  11. Hossain C.M. Gera M. Ali K.A. Current status and challenges of herbal drug development and regulatory aspect: a global perspective. Asian J. Pharm. Clin. Res. 2022 15 31 41 10.22159/ajpcr.2022.v15i12.46134
    [Google Scholar]
  12. Gurley B.J. Emerging technologies for improving phytochemical bioavailability: benefits and risks. Clin. Pharmacol. Ther. 2011 89 6 915 919 10.1038/clpt.2011.51 21544076
    [Google Scholar]
  13. Mehta M. Sharma P. Kaur S. Plant-based drug delivery systems in respiratory diseases. Target Chronic Inflamm Lung Dis Using Adv Drug Deliv Syst. 1st ed Dua K. Hansbro P.M. Wadhwa R. Elsevier Inc. 2020 517 539 10.1016/B978‑0‑12‑820658‑4.00024‑8
    [Google Scholar]
  14. Nagalingam A. Drug Delivery Aspects of Herbal Medicines. Japanese Kampo Med Treat Common Dis Focus Inflamm. Arumugam S. Watanabe K. Elsevier Inc. 2017 143 164
    [Google Scholar]
  15. Rieder M. Bend J.R. Development of drugs from plants: regulation and evaluation. Advances in Botanical Research 1st ed Kuete V. Elsevier Ltd. 2012 385 408
    [Google Scholar]
  16. Balunas M.J. Kinghorn A.D. Drug discovery from medicinal plants. Life Sci. 2005 78 5 431 441 10.1016/j.lfs.2005.09.012 16198377
    [Google Scholar]
  17. Sahoo N. Manchikanti P. Dey S. Herbal drugs: Standards and regulation. Fitoterapia 2010 81 6 462 471 10.1016/j.fitote.2010.02.001 20156530
    [Google Scholar]
  18. Woo C.S.J. Lau J.S.H. El-Nezami H. Herbal medicine: toxicity and recent trends in assessing their potential toxic effects. Advances in Botanical Research Shyur L-F. Lau A.S.Y. Elsevier Ltd. 2012 365 384
    [Google Scholar]
  19. Dasgupta A. Review of abnormal laboratory test results and toxic effects due to use of herbal medicines. Am. J. Clin. Pathol. 2003 120 1 127 137 10.1309/P024K7VRDDPJCTVN 12866383
    [Google Scholar]
  20. Kocaadam B. Şanlier N. Curcumin, an active component of turmeric ( Curcuma longa ), and its effects on health. Crit. Rev. Food Sci. Nutr. 2017 57 13 2889 2895 10.1080/10408398.2015.1077195 26528921
    [Google Scholar]
  21. Mosaddad S.A. Beigi K. Doroodizadeh T. Haghnegahdar M. Golfeshan F. Ranjbar R. Tebyanian H. Therapeutic applications of herbal/synthetic/bio-drug in oral cancer: An update. Eur. J. Pharmacol. 2021 890 173657 10.1016/j.ejphar.2020.173657 33096111
    [Google Scholar]
  22. Amjad S. Jafri A. Sharma A.K. Serajuddin M. A novel strategy of nanotized herbal drugs and their delivery in the treatment of diabetes: Present status and future prospects. J. Herb. Med. 2019 17-18 100279 10.1016/j.hermed.2019.100279
    [Google Scholar]
  23. Syad A.N. Devi K.P. Botanics: a potential source of new therapies for Alzheimer’s disease? Botanics 2014 4 11 26
    [Google Scholar]
  24. Licciardi P.V. Underwood J.R. Plant-derived medicines: A novel class of immunological adjuvants. Int. Immunopharmacol. 2011 11 3 390 398 10.1016/j.intimp.2010.10.014 21056709
    [Google Scholar]
  25. Barwal I. Sood A. Sharma M. Singh B. Yadav S.C. Development of stevioside Pluronic-F-68 copolymer based PLA-nanoparticles as an antidiabetic nanomedicine. Colloids Surf. B Biointerfaces 2013 101 510 516 10.1016/j.colsurfb.2012.07.005 23022553
    [Google Scholar]
  26. Lin S.R. Fu Y.S. Tsai M.J. Cheng H. Weng C.F. Natural compounds from herbs that can potentially execute as autophagy inducers for cancer therapy. Int. J. Mol. Sci. 2017 18 7 1412 10.3390/ijms18071412 28671583
    [Google Scholar]
  27. Lin S.R. Chang C.H. Hsu C.F. Tsai M.J. Cheng H. Leong M.K. Sung P.J. Chen J.C. Weng C.F. Natural compounds as potential adjuvants to cancer therapy: Preclinical evidence. Br. J. Pharmacol. 2020 177 6 1409 1423 10.1111/bph.14816 31368509
    [Google Scholar]
  28. Daley D.K. Pharmacognosy. Fundamentals, Applications and Strategies Elsevier Inc. 2017 81 89
    [Google Scholar]
  29. Muthaura C.N. Keriko J.M. Derese S. Yenesew A. Rukunga G.M. Investigation of some medicinal plants traditionally used for treatment of malaria in Kenya as potential sources of antimalarial drugs. Exp. Parasitol. 2011 127 3 609 626 10.1016/j.exppara.2010.11.004 21095187
    [Google Scholar]
  30. Zhang T. Chen Y. Ge Y. Hu Y. Li M. Jin Y. Inhalation treatment of primary lung cancer using liposomal curcumin dry powder inhalers. Acta Pharm. Sin. B 2018 8 3 440 448 10.1016/j.apsb.2018.03.004 29881683
    [Google Scholar]
  31. Kanwal T. Saifullah S. Rehman J. Kawish M. Razzak A. Maharjan R. Imran M. Ali I. Roome T. Simjee S.U. Shah M.R. Design of absorption enhancer containing self-nanoemulsifying drug delivery system (SNEDDS) for curcumin improved anti-cancer activity and oral bioavailability. J. Mol. Liq. 2021 324 114774 10.1016/j.molliq.2020.114774
    [Google Scholar]
  32. Wu T.C. Lin Y.C. Chen H.L. Huang P.R. Liu S.Y. Yeh S.L. The enhancing effect of genistein on apoptosis induced by trichostatin A in lung cancer cells with wild type p53 genes is associated with upregulation of histone acetyltransferase. Toxicol. Appl. Pharmacol. 2016 292 94 102 10.1016/j.taap.2015.12.028 26768552
    [Google Scholar]
  33. Wu B. Liang Y. Tan Y. Xie C. Shen J. Zhang M. Liu X. Yang L. Zhang F. Liu L. Cai S. Huai D. Zheng D. Zhang R. Zhang C. Chen K. Tang X. Sui X. Genistein-loaded nanoparticles of star-shaped diblock copolymer mannitol-core PLGA–TPGS for the treatment of liver cancer. Mater. Sci. Eng. C 2016 59 792 800 10.1016/j.msec.2015.10.087 26652434
    [Google Scholar]
  34. Bae K.H. Tan S. Yamashita A. Ang W.X. Gao S.J. Wang S. Chung J.E. Kurisawa M. Hyaluronic acid-green tea catechin micellar nanocomplexes: Fail-safe cisplatin nanomedicine for the treatment of ovarian cancer without off-target toxicity. Biomaterials 2017 148 41 53 10.1016/j.biomaterials.2017.09.027 28961534
    [Google Scholar]
  35. Singh R.K. Ranjan A. Srivastava A.K. Singh M. Shukla A.K. Atri N. Mishra A. Singh A.K. Singh S.K. Cytotoxic and apoptotic inducing activity of Amoora rohituka leaf extracts in human breast cancer cells. J. Ayurveda Integr. Med. 2020 11 4 383 390 10.1016/j.jaim.2018.12.005 30846274
    [Google Scholar]
  36. Mohanakumara P. Sreejayan N. Priti V. Ramesha B.T. Ravikanth G. Ganeshaiah K.N. Vasudeva R. Mohan J. Santhoshkumar T.R. Mishra P.D. Ram V. Shaanker R.U. Dysoxylum binectariferum Hook.f (Meliaceae), a rich source of rohitukine. Fitoterapia 2010 81 2 145 148 10.1016/j.fitote.2009.08.010 19686817
    [Google Scholar]
  37. Ali K. Saquib Q. Siddiqui M.A. Ahmad J. Al-Khedhairy A.A. Musarrat J. Anti-cancer efficacy of Aloe vera capped hematite nanoparticles in human breast cancer (MCF-7) cells. J. Drug Deliv. Sci. Technol. 2020 60 102052 10.1016/j.jddst.2020.102052
    [Google Scholar]
  38. Jian B. Zhang H. Liu J. Structural diversity and biological activities of diterpenoids derived from Euphorbia fischeriana steud. Molecules 2018 23 4 935 10.3390/molecules23040935 29669996
    [Google Scholar]
  39. Zhang H. Liang Z. Zhang J. Wang W. Zhang H. Lu Q. Zinc oxide nanoparticle synthesized from Euphorbia fischeriana root inhibits the cancer cell growth through modulation of apoptotic signaling pathways in lung cancer cells. Arab. J. Chem. 2020 13 7 6174 6183 10.1016/j.arabjc.2020.05.020
    [Google Scholar]
  40. Jiang G. Liu J. Ren B. Zhang L. Owusu L. Liu L. Zhang J. Tang Y. Li W. Anti-tumor and chemosensitization effects of Cryptotanshinone extracted from Salvia miltiorrhiza Bge. on ovarian cancer cells in vitro. J. Ethnopharmacol. 2017 205 33 40 10.1016/j.jep.2017.04.026 28456578
    [Google Scholar]
  41. Liu D. Qiao S. Cheng B. Li D. Chen J. Wu Q. Pan H. Pan W. Enhanced oral delivery of curcumin via vitamin E TPGS modified nanodiamonds: a comparative study on the nfficacy of Non-covalent and covalent conjugated strategies. AAPS PharmSciTech 2020 21 5 187 10.1208/s12249‑020‑01721‑0
    [Google Scholar]
  42. Giordano A. Tommonaro G. Curcumin and Cancer. Nutrients 2019 11 10 2376 10.3390/nu11102376 31590362
    [Google Scholar]
  43. Rates S.M.K. Plants as source of drugs. Toxicon 2001 39 5 603 613 10.1016/S0041‑0101(00)00154‑9 11072038
    [Google Scholar]
  44. Nanjappan S. Paul D. Bolla L. Chapter 9 - Assessing Herb–Drug Interactions of Herbal Products With Therapeutic Agents for Metabolic Diseases: Analytical and Regulatory Perspectives. Studies in Natural Products Chemistry 2018 283 322 10.1016/B978‑0‑444‑64179‑3.00009‑8
    [Google Scholar]
  45. Mukherjee P.K. Evaluation of herbal drugs for antimicrobial and parasiticidal effects. Quality Control and Evaluation of Herbal Drugs Mukherjee P.K. Elsevier 2019 573 598 10.1016/B978‑0‑12‑813374‑3.00015‑6
    [Google Scholar]
  46. Malik T.A. Kamili A.N. Chishti M.Z. Ahad S. Tantry M.A. Hussain P.R. Johri R.K. Breaking the resistance of Escherichia coli : Antimicrobial activity of Berberis lycium Royle. Microb. Pathog. 2017 102 12 20 10.1016/j.micpath.2016.11.011 27888048
    [Google Scholar]
  47. Radusin T. Torres-Giner S. Stupar A. Ristic I. Miletic A. Novakovic A. Lagaron J.M. Preparation, characterization and antimicrobial properties of electrospun polylactide films containing Allium ursinum L. extract. Food Packag. Shelf Life 2019 21 100357 10.1016/j.fpsl.2019.100357
    [Google Scholar]
  48. Hu X. Yuan L. Han L. Li S. Zhou W. The preparation, characterization, anti-ultraviolet and antimicrobial activity of gelatin film incorporated with berberine-HP-β-CD. Colloids Surf. A Physicochem. Eng. Asp. 2020 586 124273 10.1016/j.colsurfa.2019.124273
    [Google Scholar]
  49. Park K.D. Cho S.J. Synthesis and antimicrobial activities of 3-O-alkyl analogues of (+)-catechin: Improvement of stability and proposed action mechanism. Eur. J. Med. Chem. 2010 45 3 1028 1033 10.1016/j.ejmech.2009.11.045 19962795
    [Google Scholar]
  50. Akbas E. Soyler U.B. Oztop M.H. Physicochemical and antimicrobial properties of oleoresin capsicum nanoemulsions formulated with lecithin and sucrose monopalmitate. Appl. Biochem. Biotechnol. 2019 188 1 54 71 10.1007/s12010‑018‑2901‑5 30311173
    [Google Scholar]
  51. Queiroz Cancian M.A. Almeida F.G. Terhaag M.M. Oliveira A.G. Rocha T.S. Spinosa W.A. Curcuma longa L.- and Piper nigrum-based hydrolysate, with high dextrose content, shows antioxidant and antimicrobial properties. Lebensm. Wiss. Technol. 2018 96 386 394 10.1016/j.lwt.2018.05.018
    [Google Scholar]
  52. Akter K. Barnes E.C. Loa-Kum-Cheung W.L. Yin P. Kichu M. Brophy J.J. Barrow R.A. Imchen I. Vemulpad S.R. Jamie J.F. Antimicrobial and antioxidant activity and chemical characterisation of Erythrina stricta Roxb. (Fabaceae). J. Ethnopharmacol. 2016 185 171 181 10.1016/j.jep.2016.03.011 26969405
    [Google Scholar]
  53. Süzgeç-Selçuk S. Birteksöz A.S. Flavonoids of Helichrysum chasmolycicum and its antioxidant and antimicrobial activities. S. Afr. J. Bot. 2011 77 1 170 174 10.1016/j.sajb.2010.07.017
    [Google Scholar]
  54. Swati V.R. Verma R. Chauhan A. Shandilya M. Li X. Kumar R. Kulshrestha S. Antimicrobial potential of ag-doped ZnO nanostructure synthesized by the green method using moringa oleifera extract. J. Environ. Chem. Eng. 2020 8 3 103730 10.1016/j.jece.2020.103730
    [Google Scholar]
  55. Shoba G. Joy D. Joseph T. Majeed M. Rajendran R. Srinivas P. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. 1998 64 4 353 356 10.1055/s‑2006‑957450 9619120
    [Google Scholar]
  56. Ng L.C. Gupta M. Transdermal drug delivery systems in diabetes management: A review. Asian Journal of Pharmaceutical Sciences 2020 15 1 13 25 10.1016/j.ajps.2019.04.006 32175015
    [Google Scholar]
  57. International Diabetes Federation Available from: https://www.idf.org/aboutdiabetes/complications.html
  58. Cosansu G. Celik S. Özcan S. Olgun N. Yıldırım N. Gulyuz Demir H. Determining type 2 diabetes risk factors for the adults: A community based study from Turkey. Prim. Care Diabetes 2018 12 5 409 415 10.1016/j.pcd.2018.05.001 29804712
    [Google Scholar]
  59. Yıldırım D.İ. Marakoğlu K. Complementary and alternative medicine use amongst Turkish type 2 diabetic patients: A cross-sectional study. Complement. Ther. Med. 2018 41 41 46 10.1016/j.ctim.2018.08.008 30477863
    [Google Scholar]
  60. Parsamanesh N. Moossavi M. Bahrami A. Butler A.E. Sahebkar A. Therapeutic potential of curcumin in diabetic complications. Pharmacol. Res. 2018 136 181 193 10.1016/j.phrs.2018.09.012 30219581
    [Google Scholar]
  61. Xia ZH. Curcumin anti-diabetic effect mainly correlates with its anti-apoptotic actions and PI3K/Akt signal pathway regulation in the liver. Food Chem Toxicol 2020 Dec;146: 2020 146 111803
    [Google Scholar]
  62. Asadi S. Gholami M.S. Siassi F. Qorbani M. Khamoshian K. Sotoudeh G. Nano curcumin supplementation reduced the severity of diabetic sensorimotor polyneuropathy in patients with type 2 diabetes mellitus: A randomized double-blind placebo- controlled clinical trial. Complement. Ther. Med. 2019 43 253 260 10.1016/j.ctim.2019.02.014 30935539
    [Google Scholar]
  63. Murthy H.N. Dandin V.S. Lee E.J. Paek K.Y. Efficacy of ginseng adventitious root extract on hyperglycemia in streptozotocin-induced diabetic rats. J. Ethnopharmacol. 2014 153 3 917 921 10.1016/j.jep.2014.03.062 24709314
    [Google Scholar]
  64. Nazratun Nafizah A.H. Budin S.B. Zaryantey A.H. Mariati A.R. Santhana R.L. Osman M. Muhd Hanis M.I. Jamaludin M. Aqueous calyxes extract of Roselle or Hibiscus sabdariffa Linn supplementation improves liver morphology in streptozotocin induced diabetic rats. Arab J. Gastroenterol. 2017 18 1 13 20 10.1016/j.ajg.2017.02.001 28336227
    [Google Scholar]
  65. Tran N. Tran M. Truong H. Le L. Spray-drying microencapsulation of high concentration of bioactive compounds fragments from euphorbia hirta L. extract and their effect on diabetes mellitus. Foods 2020 9 7 881 10.3390/foods9070881 32635546
    [Google Scholar]
  66. Zafar M. Sharif A. Khan D. Preventive effect of Euphorbia royleana Boiss on diabetes induced by streptozotocin via modulating oxidative stress and deoxyribonucleic acid damage. Toxin Rev. 2020 40 1 14
    [Google Scholar]
  67. Rehman K. Saeed K. Munawar S.M. Akash M.S.H. Resveratrol regulates hyperglycemia-induced modulations in experimental diabetic animal model. Biomed. Pharmacother. 2018 102 140 146 10.1016/j.biopha.2018.03.050 29550637
    [Google Scholar]
  68. Shariati M.A.K. Ntsomboh M.U. Hussain G. Akram M.B. Mishra M. Preparation of Phytopharmaceuticals for the Management of Disorders: The Development of Nutraceuticals and Traditional Medicine Academic Press 2021
    [Google Scholar]
  69. El Shafey A.A.M. El-Ezabi M.M. Seliem M.M.E. Ouda H.H.M. Ibrahim D.S. Effect of Gymnema sylvestre R. Br. leaves extract on certain physiological parameters of diabetic rats. J. King Saud Univ. Sci. 2013 25 2 135 141 10.1016/j.jksus.2012.11.001
    [Google Scholar]
  70. Mukherjee P.K. Safety-related quality issues for the development of herbal drugs. Quality Control and Evaluation of Herbal Drugs Mukherjee P.K. Elsevier Inc. 2019 655 683 10.1016/B978‑0‑12‑813374‑3.00018‑1
    [Google Scholar]
  71. M S S. C D N. Influence of quercetin, naringenin and berberine on glucose transporters and insulin signalling molecules in brain of streptozotocin-induced diabetic rats. Biomed. Pharmacother. 2017 94 605 611 10.1016/j.biopha.2017.07.142 28783583
    [Google Scholar]
  72. Venkatesh S. Thilagavathi J. Shyam sundar D. Anti-diabetic activity of flowers of Hibiscus rosasinensis. Fitoterapia 2008 79 2 79 81 10.1016/j.fitote.2007.06.015 17850989
    [Google Scholar]
  73. Huang D.D. Shi G. Jiang Y. Yao C. Zhu C. A review on the potential of Resveratrol in prevention and therapy of diabetes and diabetic complications. Biomed. Pharmacother. 2020 125 109767 10.1016/j.biopha.2019.109767 32058210
    [Google Scholar]
  74. Wang P. Wang F. Ni L. Wu P. Chen J. Targeting redox-altered plasticity to reactivate synaptic function: A novel therapeutic strategy for cognitive disorder. Acta Pharm. Sin. B 2021 11 3 599 608 10.1016/j.apsb.2020.11.012 33777670
    [Google Scholar]
  75. Özcan Bülbül E. Mesut B. Cevher E. Öztaş E. Özsoy Y. Product transfer from lab-scale to pilot-scale of quetiapine fumarate orodispersible films using quality by design approach. J. Drug Deliv. Sci. Technol. 2019 54 101358 10.1016/j.jddst.2019.101358
    [Google Scholar]
  76. Giacomeli R. Izoton J.C. dos Santos R.B. Boeira S.P. Jesse C.R. Haas S.E. Neuroprotective effects of curcumin lipid-core nanocapsules in a model Alzheimer’s disease induced by β-amyloid 1-42 peptide in aged female mice. Brain Res. 2019 1721 146325 10.1016/j.brainres.2019.146325 31325424
    [Google Scholar]
  77. Sood S. Jain K. Gowthamarajan K. Intranasal delivery of curcumin–/INS;donepezil nanoemulsion for brain targeting in Alzheimer’s disease. J. Neurol. Sci. 2013 333 e316 e317 10.1016/j.jns.2013.07.1182
    [Google Scholar]
  78. Khatri D.K. Juvekar A.R. Neuroprotective effect of curcumin as evinced by abrogation of rotenone-induced motor deficits, oxidative and mitochondrial dysfunctions in mouse model of Parkinson’s disease. Pharmacol. Biochem. Behav. 2016 150-151 39 47 10.1016/j.pbb.2016.09.002 27619637
    [Google Scholar]
  79. Mohajeri M. Sadeghizadeh M. Najafi F. Javan M. Polymerized nano-curcumin attenuates neurological symptoms in EAE model of multiple sclerosis through down regulation of inflammatory and oxidative processes and enhancing neuroprotection and myelin repair. Neuropharmacology 2015 99 156 167 10.1016/j.neuropharm.2015.07.013 26211978
    [Google Scholar]
  80. Li S.Y. Wang X.B. Kong L.Y. Design, synthesis and biological evaluation of imine resveratrol derivatives as multi-targeted agents against Alzheimer’s disease. Eur. J. Med. Chem. 2014 71 36 45 10.1016/j.ejmech.2013.10.068 24269515
    [Google Scholar]
  81. Sapkal N.P. Daud A.S. Advancements in delivery of herbal drugs for cognitive disorders. Nutraceuticals in Brain Health and Beyond Gosh D. Elsevier Inc. 2021 343 355 10.1016/B978‑0‑12‑820593‑8.00024‑0
    [Google Scholar]
  82. Bagga P. Chugani A.N. Patel A.B. Neuroprotective effects of caffeine in MPTP model of Parkinson’s disease: A 13 C NMR study. Neurochem. Int. 2016 92 25 34 10.1016/j.neuint.2015.11.006 26626997
    [Google Scholar]
  83. Chu Y.F. Chang W.H. Black R.M. Liu J.R. Sompol P. Chen Y. Wei H. Zhao Q. Cheng I.H. Crude caffeine reduces memory impairment and amyloid β1–42 levels in an Alzheimer’s mouse model. Food Chem. 2012 135 3 2095 2102 10.1016/j.foodchem.2012.04.148 22953961
    [Google Scholar]
  84. Patel P.A. Patil S.C. Kalaria D.R. Kalia Y.N. Patravale V.B. Comparative in vitro and in vivo evaluation of lipid based nanocarriers of Huperzine A. Int. J. Pharm. 2013 446 1-2 16 23 10.1016/j.ijpharm.2013.02.014 23410989
    [Google Scholar]
  85. Giacomeli R. de Gomes M.G. Reolon J.B. Haas S.E. Colomé L.M. Jesse C.R. Chrysin loaded lipid-core nanocapsules ameliorates neurobehavioral alterations induced by β-amyloid1-42 in aged female mice. Behav. Brain Res. 2020 390 112696 10.1016/j.bbr.2020.112696 32417280
    [Google Scholar]
  86. Augustin S. Rimbach G. Augustin K. Schliebs R. Wolffram S. Cermak R. Effect of a short- and long-term treatment with Ginkgo biloba extract on Amyloid Precursor Protein Levels in a transgenic mouse model relevant to Alzheimer’s disease. Arch. Biochem. Biophys. 2009 481 2 177 182 10.1016/j.abb.2008.10.032 18996078
    [Google Scholar]
  87. Chang X. Rong C. Chen Y. Yang C. Hu Q. Mo Y. Zhang C. Gu X. Zhang L. He W. Cheng S. Hou X. Su R. Liu S. Dun W. Wang Q. Fang S. (−)-Epigallocatechin-3-gallate attenuates cognitive deterioration in Alzheimer׳s disease model mice by upregulating neprilysin expression. Exp. Cell Res. 2015 334 1 136 145 10.1016/j.yexcr.2015.04.004 25882496
    [Google Scholar]
  88. Serafini M.M. Catanzaro M. Rosini M. Racchi M. Lanni C. Curcumin in Alzheimer’s disease: Can we think to new strategies and perspectives for this molecule? Pharmacol. Res. 2017 124 146 155 10.1016/j.phrs.2017.08.004 28811228
    [Google Scholar]
  89. Komorowska J. Wątroba M. Szukiewicz D. Review of beneficial effects of resveratrol in neurodegenerative diseases such as Alzheimer’s disease. Adv. Med. Sci. 2020 65 2 415 423 10.1016/j.advms.2020.08.002 32871321
    [Google Scholar]
  90. Kakarla R. Karuturi P. Siakabinga Q. Kasi Viswanath M. Dumala N. Guntupalli C. Nalluri B.N. Venkateswarlu K. Prasanna V.S. Gutti G. Yadagiri G. Gujjari L. Current understanding and future directions of cruciferous vegetables and their phytochemicals to combat neurological diseases. Phytother. Res. 2024 38 3 1381 1399 10.1002/ptr.8122 38217095
    [Google Scholar]
  91. Beik A. Joukar S. Najafipour H. A review on plants and herbal components with antiarrhythmic activities and their interaction with current cardiac drugs. J. Tradit. Complement. Med. 2020 10 3 275 287 10.1016/j.jtcme.2020.03.002 32670823
    [Google Scholar]
  92. Xu T. Qin G. Jiang W. Zhao Y. Xu Y. Lv X. 6-Gingerol protects heart by suppressing myocardial ischemia/reperfusion induced inflammation via the PI3K/Akt-dependent mechanism in rats. Evid. Based Complement. Alternat. Med. 2018 2018 1 6209679 10.1155/2018/6209679 30519268
    [Google Scholar]
  93. Liu T. Liu X. Li W. Tetrandrine, a Chinese plant-derived alkaloid, is a potential candidate for cancer chemotherapy. Oncotarget 2016 7 26 40800 40815 10.18632/oncotarget.8315 27027348
    [Google Scholar]
  94. Zhang TJ. Tetrandrine cardioprotection in ischemia-reperfusion (I/R) injury via JAK3/STAT3/Hexokinase II. Eur J Pharmacol. 2017 813 153 160
    [Google Scholar]
  95. Majewski M. Allium sativum: facts and myths regarding human health. Rocz. Panstw. Zakl. Hig. 2014 65 1 1 8 24964572
    [Google Scholar]
  96. Liu S. He Y. Shi J. Liu L. Ma H. He L. Guo Y. Allicin attenuates myocardial ischemia reperfusion injury in rats by inhibition of inflammation and oxidative stress. Transplant. Proc. 2019 51 6 2060 2065 10.1016/j.transproceed.2019.04.039 31399184
    [Google Scholar]
  97. Ho J. Hong C.Y. Cardiovascular protection of magnolol: cell-type specificity and dose-related effects. J. Biomed. Sci. 2012 19 1 70 10.1186/1423‑0127‑19‑70 22849814
    [Google Scholar]
  98. Lee Y.M. Hsiao G. Chen H.R. Chen Y.C. Sheu J.R. Yen M.H. Magnolol reduces myocardial ischemia/reperfusion injury via neutrophil inhibition in rats. Eur. J. Pharmacol. 2001 422 1-3 159 167 10.1016/S0014‑2999(01)01069‑X 11430926
    [Google Scholar]
  99. Daci A. Neziri B. Krasniqi S. Cavolli R. Alaj R. Norata G.D. Beretta G. Arctigenin improves vascular tone and decreases inflammation in human saphenous vein. Eur. J. Pharmacol. 2017 810 51 56 10.1016/j.ejphar.2017.06.004 28603045
    [Google Scholar]
  100. Huang B. You J. Qiao Y. Wu Z. Liu D. Yin D. He H. He M. Tetramethylpyrazine attenuates lipopolysaccharide-induced cardiomyocyte injury via improving mitochondrial function mediated by 14-3-3γ. Eur. J. Pharmacol. 2018 832 67 74 10.1016/j.ejphar.2018.05.019 29782860
    [Google Scholar]
  101. Parisella M.L. Angelone T. Gattuso A. Cerra M.C. Pellegrino D. Glycyrrhizin and glycyrrhetinic acid directly modulate rat cardiac performance. J. Nutr. Biochem. 2012 23 1 69 75 10.1016/j.jnutbio.2010.10.011 21414764
    [Google Scholar]
  102. Loh S.H. Tsai Y.T. Lee C.Y. Chang C.Y. Tsai C.S. Cheng T.H. Lin C.I. Antiarrhythmic effects of dehydroevodiamine in isolated human myocardium and cardiomyocytes. J. Ethnopharmacol. 2014 153 3 753 762 10.1016/j.jep.2014.03.043 24680993
    [Google Scholar]
  103. Song Q. Chu X. Zhang X. Bao Y. Zhang Y. Guo H. Liu Y. Liu H. Zhang J. Zhang Y. Chu L. Mechanisms underlying the cardioprotective effect of Salvianic acid A against isoproterenol-induced myocardial ischemia injury in rats: Possible involvement of L-type calcium channels and myocardial contractility. J. Ethnopharmacol. 2016 189 157 164 10.1016/j.jep.2016.05.038 27211016
    [Google Scholar]
  104. Gao Q. Yang M. Zuo Z. Overview of the anti-inflammatory effects, pharmacokinetic properties and clinical efficacies of arctigenin and arctiin from Arctium lappa L. Acta Pharmacol. Sin. 2018 39 5 787 801 10.1038/aps.2018.32 29698388
    [Google Scholar]
  105. Tang T.Y. Li F. Afseth J. Review of the regulations for clinical research in herbal medicines in USA. Chin. J. Integr. Med. 2014 20 12 883 893 10.1007/s11655‑014‑2024‑y 25428336
    [Google Scholar]
  106. World Health Organization (WHO). Operational guidance: Information needed to support clinical trials of herbal products. 2005
    [Google Scholar]
  107. Machin D. Day S. Green S. Textbook of Clinical Trials. Textb. Clin. Trials. 2nd ed West Sussex John Wiley & Sons Ltd. 2004 10.1002/0470020245
    [Google Scholar]
  108. Walker L.G. Anderson J. Testing complementary and alternative therapies within a research protocol. Eur. J. Cancer 1999 35 11 1614 1618 10.1016/S0959‑8049(99)00199‑9 10673971
    [Google Scholar]
  109. Critchley J.A.J.H. Zhang Y. Suthisisang C.C. Chan T.Y.K. Tomlinson B. Alternative therapies and medical science: designing clinical trials of alternative/complementary medicines--is evidence-based traditional Chinese medicine attainable? J. Clin. Pharmacol. 2000 40 5 462 467 10.1177/00912700022009224 10806598
    [Google Scholar]
  110. Ahmad S. Parveen A. Parveen B. Parveen R. Challenges and guidelines for clinical trial of herbal drugs. J. Pharm. Bioallied Sci. 2015 7 4 329 333 10.4103/0975‑7406.168035 26681895
    [Google Scholar]
  111. Research guidelines for evaluating the safety and efficacy of herbal medicines. Geneva: World Health Organization (WHO). 1993
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128346715250120074519
Loading
/content/journals/cpd/10.2174/0113816128346715250120074519
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test