Skip to content
2000
image of SNHG10: A Novel Long Non-coding RNA with Multifaceted Roles in Human Cancers

Abstract

Long non-coding RNAs (lncRNAs) are a type of RNA with a length of more than 200 nucleotides. They do not encode proteins but are crucial in regulating gene expression and affecting the malignant biological behavior of cancer. Small nucleolar RNA host gene 10 (SNHG10) is a novel lncRNA that plays a regulatory role in many malignant tumors. Several recent studies have shown that SNHG10 is aberrantly expressed in various forms of cancer. This instability is closely related to important tumorigenic processes, such as cell proliferation, migration, invasion, epithelial-mesenchymal transition (EMT), and chemotherapy resistance. SNHG10 has been reported to play a role through a variety of molecular mechanisms, including serving as a competing endogenous RNA (ceRNA), regulating epigenetic processes, and affecting immune responses and tumor microenvironment. Furthermore, SNHG10 is involved in metabolic reprogramming, immune evasion, and chromatin remodeling, highlighting its diverse roles in tumor biology. Due to the specificity and selectivity of its expression level, the potential of SNHG10 as a diagnostic biomarker and therapeutic target has attracted significant attention, and its correlation with the prognosis and treatment of various tumor types is of great significance. This review focuses on the biological function and molecular mechanism of SNHG10 and its relationship with various malignant tumors. In addition, this review highlights the potential of SNHG10 to improve precision oncology and develop novel cancer therapies by investigating its upstream regulators, downstream targets, and interactions with nuclear and cytoplasmic processes.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128356231250212050707
2025-02-05
2025-03-30
Loading full text...

Full text loading...

References

  1. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  2. Torre L.A. Siegel R.L. Ward E.M. Jemal A. Global cancer incidence and mortality rates and trends: An update. Cancer Epidemiol. Biomarkers Prev. 2016 25 1 16 27 10.1158/1055‑9965.EPI‑15‑0578 26667886
    [Google Scholar]
  3. Tiwari S. Sapkota N. Han Z. Effect of fasting on cancer: A narrative review of scientific evidence. Cancer Sci. 2022 113 10 3291 3302 10.1111/cas.15492 35848874
    [Google Scholar]
  4. Peng W-X. Koirala P. Mo Y-Y. LncRNA-mediated regulation of cell signaling in cancer. Oncogene 2017 36 41 5661 5667 10.1038/onc.2017.184 28604750
    [Google Scholar]
  5. Bhan A. Soleimani M. Mandal S.S. Long Noncoding R.N.A. Long noncoding RNA and cancer: A new paradigm. Cancer Res. 2017 77 15 3965 3981 10.1158/0008‑5472.CAN‑16‑2634 28701486
    [Google Scholar]
  6. Bridges M.C. Daulagala A.C. Kourtidis A. LNCcation: lncRNA localization and function. J. Cell Biol. 2021 220 2 e202009045 10.1083/jcb.202009045 33464299
    [Google Scholar]
  7. Tan Y.T. Lin J.F. Li T. Li J.J. Xu R.H. Ju H.Q. LncRNA-mediated posttranslational modifications and reprogramming of energy metabolism in cancer. Cancer Commun. (Lond.) 2021 41 2 109 120 10.1002/cac2.12108 33119215
    [Google Scholar]
  8. Cao H. Wang D. Sun P. Chen L. Feng Y. Gao R. Zhoushi Qi Ling decoction represses docetaxel resistance and glycolysis of castration-resistant prostate cancer via regulation of SNHG10/miR-1271-5p/TRIM66 axis. Aging (Albany NY) 2021 13 19 23096 23107 10.18632/aging.203602 34613933
    [Google Scholar]
  9. Zhu S. Liu Y. Wang X. Wang J. Xi G. lncRNA SNHG10 promotes the proliferation and invasion of osteosarcoma via Wnt/β- Catenin Signaling. Mol. Ther. Nucleic Acids 2020 22 957 970 10.1016/j.omtn.2020.10.010 33251045
    [Google Scholar]
  10. He P. Xu Y. Wang Z. LncRNA SNHG10 increases the methylation of miR-218 gene to promote glucose uptake and cell proliferation in osteosarcoma. J. Orthop. Surg. Res. 2020 15 1 353 10.1186/s13018‑020‑01865‑6 32843060
    [Google Scholar]
  11. Ge J. Liu M. Zhang Y. Xie L. Shi Z. Wang G. SNHG10/miR-141-3p/WTAP axis promotes osteosarcoma proliferation and migration. J. Biochem. Mol. Toxicol. 2022 36 6 e23031 10.1002/jbt.23031 35274397
    [Google Scholar]
  12. Aini S. Bolati S. Ding W. Liu S. Su P. Aili S. Naman Y. Xuekelaiti K. LncRNA SNHG10 suppresses the development of doxorubicin resistance by downregulating miR-302b in triple-negative breast cancer. Bioengineered 2022 13 5 11430 11439 10.1080/21655979.2022.2063592 35506202
    [Google Scholar]
  13. Peng K. Ren X. Ren Q. NcRNA-mediated upregulation of CAMK2N1 is associated with poor prognosis and tumor immune infiltration of gastric cancer. Front. Genet. 2022 13 888672 10.3389/fgene.2022.888672 36092901
    [Google Scholar]
  14. Zhao W. Zhao J. Guo X. Feng Y. Zhang B. Tian L. LncRNA MT1JP plays a protective role in intrahepatic cholangiocarcinoma by regulating miR-18a-5p/FBP1 axis. BMC Cancer 2021 21 1 142 10.1186/s12885‑021‑07838‑0 33557774
    [Google Scholar]
  15. Yuan X. Yang T. Xu Y. Ou S. Shi P. Cao M. Zuo X. Liu Q. Yao J. SNHG10 promotes cell proliferation and migration in gastric cancer by targeting miR-495-3p/CTNNB1 axis. Dig. Dis. Sci. 2021 66 8 2627 2636 10.1007/s10620‑020‑06576‑w 32920660
    [Google Scholar]
  16. Zhang Z. Nong L. Chen M.L. Gu X.L. Zhao W.W. Liu M.H. Cheng W.W. Long noncoding RNA SNHG10 sponges miR-543 to upregulate tumor suppressive SIRT1 in nonsmall cell lung cancer. Cancer Biother. Radiopharm. 2020 35 10 771 775 10.1089/cbr.2019.3334 32319822
    [Google Scholar]
  17. Li D.S. Ainiwaer J.L. Sheyhiding I. Zhang Z. Zhang L.W. Identification of key long non-coding RNAs as competing endogenous RNAs for miRNA-mRNA in lung adenocarcinoma. Eur. Rev. Med. Pharmacol. Sci. 2016 20 11 2285 2295 27338053
    [Google Scholar]
  18. Liang M. Wang L. Cao C. Song S. Wu F. LncRNA SNHG10 is downregulated in non-small cell lung cancer and predicts poor survival. BMC Pulm. Med. 2020 20 1 273 10.1186/s12890‑020‑01281‑w 33081752
    [Google Scholar]
  19. Jin L. Huang S. Guan C. Chang S. ETS1-activated SNHG10 exerts oncogenic functions in glioma via targeting miR-532-3p/FBXL19 axis. Cancer Cell Int. 2020 20 1 589 10.1186/s12935‑020‑01649‑2 33298070
    [Google Scholar]
  20. Xiao S. Zha Y. Zhu H. miR-621 may suppress cell proliferation via targeting lncRNA SNHG10 in acute myeloid leukemia. Cancer Manag. Res. 2021 13 2117 2123 10.2147/CMAR.S269528 33688254
    [Google Scholar]
  21. Zhang H. Fang Z. Guo Y. Wang D. Long noncoding RNA SNHG10 promotes colorectal cancer cells malignant progression by targeting miR-3690. Bioengineered 2021 12 1 6010 6020 10.1080/21655979.2021.1972199 34477483
    [Google Scholar]
  22. Huang Y. Luo Y. Ou W. Wang Y. Dong D. Peng X. Luo Y. Exosomal lncRNA SNHG10 derived from colorectal cancer cells suppresses natural killer cell cytotoxicity by upregulating INHBC. Cancer Cell Int. 2021 21 1 528 10.1186/s12935‑021‑02221‑2 34641864
    [Google Scholar]
  23. Lan T. Yuan K. Yan X. Xu L. Liao H. Hao X. Wang J. Liu H. Chen X. Xie K. Li J. Liao M. Huang J. Zeng Y. Wu H. LncRNA SNHG10 facilitates hepatocarcinogenesis and metastasis by modulating its homolog SCARNA13 via a positive feedback loop. Cancer Res. 2019 79 13 3220 3234 10.1158/0008‑5472.CAN‑18‑4044 31101763
    [Google Scholar]
  24. Hou J. Wang Z. Li H. Zhang H. Luo L. Immune-Related lncRNAs with WGCNA identified the function of SNHG10 in HBV-related hepatocellular carcinoma. J. Oncol. 2022 2022 1 17 10.1155/2022/9332844 35847362
    [Google Scholar]
  25. Lv W. Jia Y. Wang J. Duan Y. Wang X. Liu T. Hao S. Liu L. Long non-coding RNA SNHG10 upregulates BIN1 to suppress the tumorigenesis and epithelial–mesenchymal transition of epithelial ovarian cancer via sponging miR-200a-3p. Cell Death Discov. 2022 8 1 60 10.1038/s41420‑022‑00825‑9 35149697
    [Google Scholar]
  26. Yan H. Bu P. Non-coding RNA in cancer. Essays Biochem. 2021 65 4 625 639 10.1042/EBC20200032 33860799
    [Google Scholar]
  27. Ashrafizadeh M. Paskeh M.D.A. Mirzaei S. Gholami M.H. Zarrabi A. Hashemi F. Hushmandi K. Hashemi M. Nabavi N. Crea F. Ren J. Klionsky D.J. Kumar A.P. Wang Y. Targeting autophagy in prostate cancer: preclinical and clinical evidence for therapeutic response. J. Exp. Clin. Cancer Res. 2022 41 1 105 10.1186/s13046‑022‑02293‑6 35317831
    [Google Scholar]
  28. Sekhoacha M. Riet K. Motloung P. Gumenku L. Adegoke A. Mashele S. Prostate cancer review: Genetics, diagnosis, treatment options, and alternative approaches. Molecules 2022 27 17 5730 10.3390/molecules27175730 36080493
    [Google Scholar]
  29. Chen Q. Yang X. Gong B. Xie W. Ma M. Fu S. Wang S. Liu Y. Zhang Z. Sun T. Li Z. SNHG10 Is a prognostic biomarker correlated with immune infiltrates in prostate cancer. Front. Cell Dev. Biol. 2021 9 731042 10.3389/fcell.2021.731042 34676212
    [Google Scholar]
  30. Rojas G.A. Hubbard A.K. Diessner B.J. Ribeiro K.B. Spector L.G. International trends in incidence of osteosarcoma (1988-2012). Int. J. Cancer 2021 149 5 1044 1053 10.1002/ijc.33673 33963769
    [Google Scholar]
  31. Fagioli F. Biasin E. Mereuta O.M. Muraro M. Luksch R. Ferrari S. Aglietta M. Madon E. Poor prognosis osteosarcoma: New therapeutic approach. Bone Marrow Transplant. 2008 41 S2 Suppl. 2 S131 S134 10.1038/bmt.2008.71 18545234
    [Google Scholar]
  32. Li S. Zhang H. Liu J. Shang G. Targeted therapy for osteosarcoma: A review. J. Cancer Res. Clin. Oncol. 2023 149 9 6785 6797 10.1007/s00432‑023‑04614‑4 36807762
    [Google Scholar]
  33. Howard F.M. Olopade O.I. Epidemiology of triple-negative breast cancer. Cancer J. 2021 27 1 8 16 10.1097/PPO.0000000000000500 33475288
    [Google Scholar]
  34. Won K.A. Spruck C. Triple‑negative breast cancer therapy: Current and future perspectives (Review). Int. J. Oncol. 2020 57 6 1245 1261 10.3892/ijo.2020.5135 33174058
    [Google Scholar]
  35. Li H. Zhang H. Zhang H. Wang Y. Wang X. Hou H. Survival of gastric cancer in China from 2000 to 2022: A nationwide systematic review of hospital-based studies. J. Glob. Health 2022 12 11014 10.7189/jogh.12.11014 36527356
    [Google Scholar]
  36. Yang W.J. Zhao H.P. Yu Y. Wang J.H. Guo L. Liu J.Y. Pu J. Lv J. Updates on global epidemiology, risk and prognostic factors of gastric cancer. World J. Gastroenterol. 2023 29 16 2452 2468 10.3748/wjg.v29.i16.2452 37179585
    [Google Scholar]
  37. Wang F.H. Zhang X.T. Li Y.F. Tang L. Qu X.J. Ying J.E. Zhang J. Sun L.Y. Lin R.B. Qiu H. Wang C. Qiu M.Z. Cai M.Y. Wu Q. Liu H. Guan W.L. Zhou A.P. Zhang Y.J. Liu T.S. Bi F. Yuan X.L. Rao S.X. Xin Y. Sheng W.Q. Xu H.M. Li G.X. Ji J.F. Zhou Z.W. Liang H. Zhang Y.Q. Jin J. Shen L. Li J. Xu R.H. The Chinese Society of Clinical Oncology (CSCO): Clinical guidelines for the diagnosis and treatment of gastric cancer, 2021. Cancer Commun. (Lond.) 2021 41 8 747 795 10.1002/cac2.12193 34197702
    [Google Scholar]
  38. Srivastava S. Mohanty A. Nam A. Singhal S. Salgia R. Chemokines and NSCLC: Emerging role in prognosis, heterogeneity, and therapeutics. Semin. Cancer Biol. 2022 86 Pt 2 233 246 10.1016/j.semcancer.2022.06.010 35787939
    [Google Scholar]
  39. Duma N. Santana-Davila R. Molina J.R. Non–small cell lung cancer: Epidemiology, screening, diagnosis, and treatment. Mayo Clin. Proc. 2019 94 8 1623 1640 10.1016/j.mayocp.2019.01.013 31378236
    [Google Scholar]
  40. Wang L.M. Englander Z.K. Miller M.L. Bruce J.N. Malignant glioma. Adv. Exp. Med. Biol. 2023 1405 1 30 10.1007/978‑3‑031‑23705‑8_1 37452933
    [Google Scholar]
  41. Mohamed Jiffry M.Z. Kloss R. Ahmed-khan M. Carmona-Pires F. Okam N. Weeraddana P. Dharmaratna D. Dandwani M. Moin K. A review of treatment options employed in relapsed/refractory AML. Hematology 2023 28 1 2196482 10.1080/16078454.2023.2196482 37036019
    [Google Scholar]
  42. Liu H. Emerging agents and regimens for AML. J. Hematol. Oncol. 2021 14 1 49 10.1186/s13045‑021‑01062‑w 33757574
    [Google Scholar]
  43. Morton L.M. Dores G.M. Schonfeld S.J. Linet M.S. Sigel B.S. Lam C.J.K. Tucker M.A. Curtis R.E. Association of chemotherapy for solid tumors with development of therapy-related myelodysplastic syndrome or acute myeloid leukemia in the modern era. JAMA Oncol. 2019 5 3 318 325 10.1001/jamaoncol.2018.5625 30570657
    [Google Scholar]
  44. Xi Y. Xu P. Global colorectal cancer burden in 2020 and projections to 2040. Transl. Oncol. 2021 14 10 101174 10.1016/j.tranon.2021.101174 34243011
    [Google Scholar]
  45. Xie Y.H. Chen Y.X. Fang J.Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct. Target. Ther. 2020 5 1 22 10.1038/s41392‑020‑0116‑z 32296018
    [Google Scholar]
  46. Yang J.D. Hainaut P. Gores G.J. Amadou A. Plymoth A. Roberts L.R. A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nat. Rev. Gastroenterol. Hepatol. 2019 16 10 589 604 10.1038/s41575‑019‑0186‑y 31439937
    [Google Scholar]
  47. Chidambaranathan-Reghupaty S. Fisher P.B. Sarkar D. Hepatocellular carcinoma (HCC): Epidemiology, etiology and molecular classification. Adv. Cancer Res. 2021 149 1 61 10.1016/bs.acr.2020.10.001 33579421
    [Google Scholar]
  48. Xu Y. Yu X. Zhang Q. He Y. Guo W. A novel classification of HCC basing on fatty-acid-associated lncRNA. Sci. Rep. 2022 12 1 18863 10.1038/s41598‑022‑23681‑0 36344648
    [Google Scholar]
  49. Sambasivan S. Epithelial ovarian cancer: Review article. Cancer Treat. Res. Commun. 2022 33 100629 10.1016/j.ctarc.2022.100629 36127285
    [Google Scholar]
  50. Terp S.K. Stoico M.P. Dybkær K. Pedersen I.S. Early diagnosis of ovarian cancer based on methylation profiles in peripheral blood cell-free DNA: A systematic review. Clin. Epigenetics 2023 15 1 24 10.1186/s13148‑023‑01440‑w 36788585
    [Google Scholar]
  51. Statello L. Guo C.J. Chen L.L. Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 2021 22 2 96 118 10.1038/s41580‑020‑00315‑9 33353982
    [Google Scholar]
  52. Ferrer J. Dimitrova N. Transcription regulation by long non-coding RNAs: Mechanisms and disease relevance. Nat. Rev. Mol. Cell Biol. 2024 25 5 396 415 10.1038/s41580‑023‑00694‑9 38242953
    [Google Scholar]
  53. Toden S. Zumwalt T.J. Goel A. Non-coding RNAs and potential therapeutic targeting in cancer. Biochim. Biophys. Acta Rev. Cancer 2021 1875 1 188491 10.1016/j.bbcan.2020.188491 33316377
    [Google Scholar]
  54. McCabe E.M. Rasmussen T.P. lncRNA involvement in cancer stem cell function and epithelial-mesenchymal transitions. Semin. Cancer Biol. 2021 75 38 48 10.1016/j.semcancer.2020.12.012 33346133
    [Google Scholar]
  55. Tang Y. Cheung B.B. Atmadibrata B. Marshall G.M. Dinger M.E. Liu P.Y. Liu T. The regulatory role of long noncoding RNAs in cancer. Cancer Lett. 2017 391 12 19 10.1016/j.canlet.2017.01.010 28111137
    [Google Scholar]
  56. Marchese F.P. Raimondi I. Huarte M. The multidimensional mechanisms of long noncoding RNA function. Genome Biol. 2017 18 1 206 10.1186/s13059‑017‑1348‑2 29084573
    [Google Scholar]
  57. Wang H. Meng Q. Qian J. Li M. Gu C. Yang Y. Review: RNA-based diagnostic markers discovery and therapeutic targets development in cancer. Pharmacol. Ther. 2022 234 108123 10.1016/j.pharmthera.2022.108123 35121000
    [Google Scholar]
  58. Zhang L. Yu D. Exosomes in cancer development, metastasis, and immunity. Biochim. Biophys. Acta Rev. Cancer 2019 1871 2 455 468 10.1016/j.bbcan.2019.04.004 31047959
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128356231250212050707
Loading
/content/journals/cpd/10.2174/0113816128356231250212050707
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Long non-coding RNA ; biomarker ; therapeutic target ; cancer ; SNHG10
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test