Skip to content
2000
image of Recent Developments in the Synthesis of Benzothiazoles and their Anti-cancer Mechanistic Discoveries

Abstract

Benzothiazole derivatives have garnered considerable attention owing to their versatile chemical scaffold and remarkable biological activities. The article provides an in-depth analysis of the diverse structural modifications and strategies employed to enhance the anticancer potential of these compounds from the period of 2020 to 2024. It discusses the role of structure-activity relationships (SAR) and computational approaches in optimizing benzothiazole derivatives for selective and effective cancer treatment.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128355783250212043621
2025-03-05
2025-03-30
Loading full text...

Full text loading...

References

  1. Meacham C.E. Morrison S.J. Tumour heterogeneity and cancer cell plasticity. Nature 2013 501 7467 328 337 10.1038/nature12624 24048065
    [Google Scholar]
  2. Fisher R. Pusztai L. Swanton C. Cancer heterogeneity: Implications for targeted therapeutics. Br. J. Cancer 2013 108 3 479 485 10.1038/bjc.2012.581 23299535
    [Google Scholar]
  3. Srivastava V. Negi A.S. Kumar J.K. Gupta M.M. Khanuja S.P.S. Plant-based anticancer molecules: A chemical and biological profile of some important leads. Bioorg. Med. Chem. 2005 13 21 5892 5908 10.1016/j.bmc.2005.05.066 16129603
    [Google Scholar]
  4. Beger H.G. Rau B. Gansauge F. Leder G. Schwarz M. Poch B. Pancreatic cancer--Low survival rates. Dtsch. Arztebl. Int. 2008 105 14 255 262 19629206
    [Google Scholar]
  5. Siegel R.L. Miller K.D. Wagle N.S. Jemal A. Cancer statistics, 2023. CA Cancer J. Clin. 2023 73 1 17 48 10.3322/caac.21763 36633525
    [Google Scholar]
  6. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834
    [Google Scholar]
  7. Park S.K. Kim Y. Kang D. Jung E.J. Yoo K.Y. Risk factors and control strategies for the rapidly rising rate of breast cancer in Korea. J. Breast Cancer 2011 14 2 79 87 10.4048/jbc.2011.14.2.79 21847401
    [Google Scholar]
  8. Parkin D.M. The global health burden of infection‐associated cancers in the year 2002. Int. J. Cancer 2006 118 12 3030 3044 10.1002/ijc.21731 16404738
    [Google Scholar]
  9. Ferlay J. Soerjomataram I. Dikshit R. Eser S. Mathers C. Rebelo M. Parkin D.M. Forman D. Bray F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 2015 136 5 E359 E386 10.1002/ijc.29210 25220842
    [Google Scholar]
  10. Portela A. Esteller M. Epigenetic modifications and human disease. Nat. Biotechnol. 2010 28 10 1057 1068 10.1038/nbt.1685 20944598
    [Google Scholar]
  11. Bray F. Ferlay J. Soerjomataram I. Siegel R.L. Torre L.A. Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018 68 6 394 424 10.3322/caac.21492 30207593
    [Google Scholar]
  12. Elgemeie G.H. Azzam R.A. Zaghary W.A. Khedr M.A. Elsherif G.E. Medicinal chemistry of pyrazolopyrimidine scaffolds substituted with different heterocyclic nuclei. Curr. Pharm. Des. 2022 28 41 3374 3403 https://www.eurekaselect.com/210578/article 10.2174/1381612829666221102162000 36330628
    [Google Scholar]
  13. Hanahan D. Hallmarks of cancer: New dimensions. Cancer Discov. 2022 12 1 31 46 10.1158/2159‑8290.CD‑21‑1059 35022204
    [Google Scholar]
  14. Meng X. Zhong J. Liu S. Murray M. Gonzalez-Angulo A.M. A new hypothesis for the cancer mechanism. Cancer Metastasis Rev. 2012 31 1-2 247 268 10.1007/s10555‑011‑9342‑8 22179983
    [Google Scholar]
  15. Hait W.N. Anticancer drug development: The grand challenges. Nat. Rev. Drug Discov. 2010 9 4 253 254 10.1038/nrd3144 20369394
    [Google Scholar]
  16. Alfarouk K.O. Stock C.M. Taylor S. Walsh M. Muddathir A.K. Verduzco D. Bashir A.H.H. Mohammed O.Y. Elhassan G.O. Harguindey S. Reshkin S.J. Ibrahim M.E. Rauch C. Resistance to cancer chemotherapy: Failure in drug response from ADME to P-gp. Cancer Cell Int. 2015 15 1 71 10.1186/s12935‑015‑0221‑1 26180516
    [Google Scholar]
  17. Wu Q. Qian W. Sun X. Jiang S. Small-molecule inhibitors, immune checkpoint inhibitors, and more: FDA-approved novel therapeutic drugs for solid tumors from 1991 to 2021. J. Hematol. Oncol. 2022 15 1 143 10.1186/s13045‑022‑01362‑9 36209184
    [Google Scholar]
  18. Hampton T. Cancer prevention efforts stalled. 2008 Available from: http://jama.jamanetwork.com/article.aspx? doi=10.1001/ 10.1001/jama.299.19.2264
  19. Sharma P.C. Sinhmar A. Sharma A. Rajak H. Pathak D.P. Medicinal significance of benzothiazole scaffold: An insight view. J. Enzyme Inhib. Med. Chem. 2013 28 2 240 266 10.3109/14756366.2012.720572 23030043
    [Google Scholar]
  20. Henary M. Paranjpe S. Owens E.A. Substituted benzothiazoles: Synthesis and medicinal characteristics. Heterocycl. Commun. 2013 19 2 89 99
    [Google Scholar]
  21. Mendieta-Wejebe J.E. Rosales-Hernández M.C. Padilla-Martínez I.I. García-Báez E.V. Cruz A. Design, synthesis and biological activities of (Thio)urea benzothiazole derivatives. Int. J. Mol. Sci. 2023 24 11 9488 10.3390/ijms24119488 37298442
    [Google Scholar]
  22. Anand K. Synthesis, biological activity and recent advancement of benzothiazoles: A classical review. World J. Pharm. Pharm. Sci. 2018 2017 1842 1869
    [Google Scholar]
  23. Yadav K.P. Rahman M.A. Nishad S. Maurya S.K. Anas M. Mujahid M. Synthesis and biological activities of benzothiazole derivatives: A review. Intelligent Pharmacy 2023 1 3 122 132 10.1016/j.ipha.2023.06.001
    [Google Scholar]
  24. Padi PR Chaganti SR Satyanarayana B Ganta MR Chaganti R Akula R Process for preparing riluzole. Patent US 2008/0108827 A1, 2008
  25. Heilig M.L. Stereoscopic-television apparatus for individual use. Patent US 2955156, 1994
  26. Thongchot S. Duangkaew S. Yotchai W. Maungsomboon S. Phimolsarnti R. Asavamongkolkul A. Thuwajit P. Thuwajit C. Chandhanayingyong C. Novel CSF1R-positive tenosynovial giant cell tumor cell lines and their pexidartinib (PLX3397) and sotuletinib (BLZ945)-induced apoptosis. Hum. Cell 2022 36 1 456 467 10.1007/s13577‑022‑00823‑0 36456782
    [Google Scholar]
  27. Wiah S Roper A Zhao P Shekarabi A Watson MN Farkas DJ Troriluzole inhibits methamphetamine place preference in rats and normalizes methamphetamine-evoked glutamate carboxypeptidase II (GCPII) protein levels in the mesolimbic pathway Drug Alcohol Depend. 2023 242 109719 10.1016/j.drugalcdep.2022.109719
    [Google Scholar]
  28. Corvaro M. Gollapudi B.B. Mehta J. A critical assessment of the genotoxicity profile of the fungicide tricyclazole. Environ. Mol. Mutagen. 2020 61 3 300 315 10.1002/em.22344 31633836
    [Google Scholar]
  29. Liu F.T. Lu J.Y. Li X.Y. Liang X.N. Jiao F.Y. Ge J.J. Wu P. Li G. Shen B. Wu B. Sun Y.M. Zhu Y.H. Luo J.F. Yen T.C. Wu J.J. Zuo C.T. Wang J. 18F-Florzolotau PET imaging captures the distribution patterns and regional vulnerability of tau pathology in progressive supranuclear palsy. Eur. J. Nucl. Med. Mol. Imaging 2023 50 5 1395 1405 10.1007/s00259‑022‑06104‑0 36627498
    [Google Scholar]
  30. Møllerhøj M.B. Veidal S.S. Thrane K.T. Oró D. Overgaard A. Salinas C.G. Madsen M.R. Pfisterer L. Vyberg M. Simon E. Broermann A. Vrang N. Jelsing J. Feigh M. Hansen H.H. Hepatoprotective effects of semaglutide, lanifibranor and dietary intervention in the GAN diet‐induced obese and biopsy‐confirmed mouse model of NASH. Clin. Transl. Sci. 2022 15 5 1167 1186 10.1111/cts.13235 35143711
    [Google Scholar]
  31. Palmer S.S. Altan M. Denis D. Tos E.G. Gotteland J.P. Osteen K.G. Bruner-Tran K.L. Nataraja S.G. Bentamapimod (JNK Inhibitor AS602801) induces regression of endometriotic lesions in animal models. Reprod. Sci. 2016 23 1 11 23 10.1177/1933719115600553 26335175
    [Google Scholar]
  32. Martínez G. Vernooij R.W. Fuentes Padilla P. Zamora J. Flicker L. Bonfill Cosp X. 18F PET with florbetaben for the early diagnosis of Alzheimer's disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev. 2017 11 11 CD012883
    [Google Scholar]
  33. Barret O. Hannestad J. Alagille D. Vala C. Tavares A. Papin C. Morley T. Fowles K. Lee H. Seibyl J. Tytgat D. Laruelle M. Tamagnan G. Adenosine 2A receptor occupancy by tozadenant and preladenant in rhesus monkeys. J. Nucl. Med. 2014 55 10 1712 1718 10.2967/jnumed.114.142067 25082853
    [Google Scholar]
  34. Noh H.L. Hu Y. Park T.S. DiCioccio T. Nichols A.J. Okajima K. Homma S. Goldberg I.J. Regulation of plasma fructose and mortality in mice by the aldose reductase inhibitor lidorestat. J. Pharmacol. Exp. Ther. 2009 328 2 496 503 10.1124/jpet.108.136283 18974362
    [Google Scholar]
  35. Angevin E. Spitaleri G. Rodon J. Dotti K. Isambert N. Salvagni S. Moreno V. Assadourian S. Gomez C. Harnois M. Hollebecque A. Azaro A. Hervieu A. Rihawi K. De Marinis F. A first-in-human phase I study of SAR125844, a selective MET tyrosine kinase inhibitor, in patients with advanced solid tumours with MET amplification. Eur. J. Cancer 2017 87 131 139 10.1016/j.ejca.2017.10.016 29145039
    [Google Scholar]
  36. Williams R. Discontinued in 2013: Oncology drugs. Expert Opin. Investig. Drugs 2015 24 1 95 110 10.1517/13543784.2015.971154 25315907
    [Google Scholar]
  37. Xu H. Hurley L.H. A first-in-class clinical G-quadruplex-targeting drug. The bench-to-bedside translation of the fluoroquinolone QQ58 to CX-5461 (Pidnarulex). Bioorg. Med. Chem. Lett. 2022 77 September 129016 10.1016/j.bmcl.2022.129016 36195286
    [Google Scholar]
  38. Sewell K.R. Rainey-Smith S.R. Villemagne V.L. Peiffer J. Sohrabi H.R. Taddei K. The interaction between physical activity and sleep on cognitive function and brain beta-amyloid in older adults. Behav Brain Res. 2023 437 114108
    [Google Scholar]
  39. Lee B.C. Kim J.S. Kim B.S. Son J.Y. Hong S.K. Park H.S. Moon B.S. Jung J.H. Jeong J.M. Kim S.E. Aromatic radiofluorination and biological evaluation of 2-aryl-6-[18F]fluorobenzothiazoles as a potential positron emission tomography imaging probe for β-amyloid plaques. Bioorg. Med. Chem. 2011 19 9 2980 2990 10.1016/j.bmc.2011.03.029 21478020
    [Google Scholar]
  40. Kumar S. Dubey B. A review on emerging benzothiazoles: Biological aspects. J. Drug Deliv. Ther. 2022 12 4-S 270 274 10.22270/jddt.v12i4‑S.5549
    [Google Scholar]
  41. Azzam R.A. Gad N.M. Elgemeie G.H. Novel thiophene thioglycosides substituted with the benzothiazole moiety: Synthesis, characterization, antiviral and anticancer evaluations, and NS3/4A and USP7 enzyme inhibitions. ACS Omega 2022 7 40 35656 35667 10.1021/acsomega.2c03444 36249371
    [Google Scholar]
  42. Khedr M.A. Zaghary W.A. Elsherif G.E. Azzam R.A. Elgemeie G.H. Purine analogs: Synthesis, evaluation and molecular dynamics of pyrazolopyrimidines based benzothiazole as anticancer and antimicrobial CDK inhibitors. Nucleosides Nucleotides Nucleic Acids. 2023 42 1 77 104 10.1080/15257770.2022.2109169 35949161
    [Google Scholar]
  43. Ali R. Siddiqui N. Biological aspects of emerging benzothiazoles: A short review. J. Chem. 2013 2013 1 345198 10.1155/2013/345198
    [Google Scholar]
  44. Kumar A. Uddin K. Singh L.R. Biological potential of benzothiazole derivatives: Bench to bed side. J. Pharm. Negative Results. 2023 13 8 5100 5112
    [Google Scholar]
  45. Kamal A. Syed M.A.H. Mohammed S.M. Therapeutic potential of benzothiazoles: A patent review (2010 - 2014). Expert Opin Ther Pat. 2015 25 3 335 349 2015
    [Google Scholar]
  46. Azzam R.A. Elgemeie G.H. Osman R.R. Synthesis of novel pyrido[2,1-b]benzothiazole and N-substituted 2-pyridylbenzothiazole derivatives showing remarkable fluorescence and biological activities. J. Mol. Struct. 2020 1201 127194 10.1016/j.molstruc.2019.127194
    [Google Scholar]
  47. Chander Sharma P. Sharma D. Sharma A. Bansal K.K. Rajak H. Sharma S. Thakur V.K. New horizons in benzothiazole scaffold for cancer therapy: Advances in bioactivity, functionality, and chemistry. Appl. Mater. Today 2020 20 100783 [Internet]. 10.1016/j.apmt.2020.100783
    [Google Scholar]
  48. Keri R.S. Patil M.R. Patil S.A. Budagumpi S. A comprehensive review in current developments of benzothiazole-based molecules in medicinal chemistry. Eur. J. Med. Chem. 2015 89 207 251 10.1016/j.ejmech.2014.10.059 25462241
    [Google Scholar]
  49. Gill R.K. Rawal R.K. Bariwal J. Recent advances in the chemistry and biology of benzothiazoles. Arch. Pharm. 2015 348 3 155 178 10.1002/ardp.201400340 25682746
    [Google Scholar]
  50. Popli J.V. Kumbhare M.R. Surana A.R. Bhalerao M.R. Agrawal P.A. Benzothiazole analogues and their biological aspects: A review. Indian J. Chem. Sect. B 2021 60 12 1659 1669
    [Google Scholar]
  51. Haider K Shrivastava N Pathak A Prasad Dewangan R Yahya S Shahar Yar M. Recent advances and SAR study of 2-substituted benzothiazole scaffold based potent chemotherapeutic agents. Results Chem.. 2022 4 100258 2021 10.1016/j.rechem.2021.100258
    [Google Scholar]
  52. Singh M. Singh S. Benzothiazoles: How relevant in cancer drug design strategy? Anticancer. Agents Med. Chem. 2014 14 1 127 146 10.2174/18715206113139990312 23869774
    [Google Scholar]
  53. Pathak N. Rathi E. Kumar N. Kini S.G. Rao C.M. A review on anticancer potentials of benzothiazole derivatives. Mini-Rev. Med. Chem. 2020 20 1 12 23 10.2174/1389557519666190617153213
    [Google Scholar]
  54. Irfan A. Batool F. Zahra Naqvi S.A. Islam A. Osman S.M. Nocentini A. Alissa S.A. Supuran C.T. Benzothiazole derivatives as anticancer agents. J. Enzyme Inhib. Med. Chem. 2020 35 1 265 279 10.1080/14756366.2019.1698036 31790602
    [Google Scholar]
  55. Dhadda S. Raigar A.K. Saini K. Manju Guleria A. Benzothiazoles: From recent advances in green synthesis to anti-cancer potential. Sustain. Chem. Pharm. 2021 24 September 100521 [Internet]. 10.1016/j.scp.2021.100521
    [Google Scholar]
  56. Pathak A.K. Saroj R. Clinical efficacy of benzothiazole in antitumor activity: A recent trends. World J. Pharm. Pharm. Sci. 2020 9 5 796 836
    [Google Scholar]
  57. Honore S. Pasquier E. Braguer D. Understanding microtubule dynamics for improved cancer therapy. Cell Mol Life Sci. 2005 62 24 3039 3056
    [Google Scholar]
  58. Pellegrini F. Budman D.R. Review: Tubulin function, action of antitubulin drugs, and new drug development. Cancer Invest. 2005 23 3 264 273 10.1081/CNV‑200055970 15948296
    [Google Scholar]
  59. Kaur R. Kaur G. Gill R.K. Soni R. Bariwal J. Recent developments in tubulin polymerization inhibitors: An overview. Eur. J. Med. Chem. 2014 87 89 124 10.1016/j.ejmech.2014.09.051 25240869
    [Google Scholar]
  60. Ems-McClung S.C. Walczak C.E. Kinesin-13s in mitosis: Key players in the spatial and temporal organization of spindle microtubules. Semin. Cell Dev. Biol. 2010 21 3 276 282 10.1016/j.semcdb.2010.01.016 20109574
    [Google Scholar]
  61. Song J. Gao Q.L. Wu B.W. Zhu T. Cui X.X. Jin C.J. Wang S.Y. Wang S.H. Fu D.J. Liu H.M. Zhang S.Y. Zhang Y.B. Li Y.C. Discovery of tertiary amide derivatives incorporating benzothiazole moiety as anti-gastric cancer agents in vitro via inhibiting tubulin polymerization and activating the Hippo signaling pathway. Eur. J. Med. Chem. 2020 203 112618 10.1016/j.ejmech.2020.112618 32682200
    [Google Scholar]
  62. Fu D.J. Liu S.M. Li F.H. Yang J.J. Li J. Antiproliferative benzothiazoles incorporating a trimethoxyphenyl scaffold as novel colchicine site tubulin polymerisation inhibitors. J. Enzyme Inhib. Med. Chem. 2020 35 1 1050 1059 10.1080/14756366.2020.1753721 32299262
    [Google Scholar]
  63. Komuraiah B. Ren Y. Xue M. Cheng B. Liu J. Liu Y. Chen J. Design, synthesis and biological evaluation of benz‐fused five‐membered heterocyclic compounds as tubulin polymerization inhibitors with anticancer activities. Chem. Biol. Drug Des. 2021 97 5 1109 1116 10.1111/cbdd.13832 33638903
    [Google Scholar]
  64. Kumar N M. Nukala S.K. Swamy T N. M R. Krishna T.M. Narsimha S. Benzothiazole-[1,2,3]triazolo[5,1-a]isoindoles: Synthesis, anticancer activity, bioavailability and in silico studies against Gama-Tubulin protein. J. Mol. Struct. 2022 1250 131722 [Internet]. 10.1016/j.molstruc.2021.131722
    [Google Scholar]
  65. Barman S. Ghosh S. Roy R. Gupta V. Ghosh S. Ghosh S. A potent estrogen receptor and microtubule specific purine-benzothiazole-based fluorescent molecular probe induces apoptotic death of breast cancer cells. Sci. Rep. 2022 12 1 10772 10.1038/s41598‑022‑12933‑8 35750870
    [Google Scholar]
  66. Gallego-Yerga L. Ceña V. Peláez R. Potent and selective benzothiazole-based antimitotics with improved water solubility: Design, synthesis, and evaluation as novel anticancer agents. Pharmaceutics 2023 15 6 1698 10.3390/pharmaceutics15061698 37376146
    [Google Scholar]
  67. Wu B-W Huang W-J Liu Y-H Liu Q-G Song J Hu T Design, synthesis and biological evaluation of 1,2,3-triazole benzothiazole derivatives as tubulin polymerization inhibitors with potent anti-esophageal cancer activities. Eur. J. Med. Chem. 2024 265 116118 2023 10.1016/j.ejmech.2023.116118
    [Google Scholar]
  68. Otrock Z.K. Makarem J.A. Shamseddine A.I. Vascular endothelial growth factor family of ligands and receptors: Review. Blood Cells Mol. Dis. 2007 38 3 258 268 10.1016/j.bcmd.2006.12.003 17344076
    [Google Scholar]
  69. Gotink K.J. Verheul H.M.W. Anti-angiogenic tyrosine kinase inhibitors: What is their mechanism of action? Angiogenesis 2010 13 1 1 14 10.1007/s10456‑009‑9160‑6 20012482
    [Google Scholar]
  70. Farghaly T.A. Al-Hasani W.A. Abdulwahab H.G. An updated patent review of VEGFR-2 inhibitors (2017-present). Expert Opin. Ther. Pat. 2021 31 11 989 1007 10.1080/13543776.2021.1935872 34043477
    [Google Scholar]
  71. Hicklin D.J. Ellis L.M. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J. Clin. Oncol. 2005 23 5 1011 1027 10.1200/JCO.2005.06.081 15585754
    [Google Scholar]
  72. Husain A. Bedi S. Parveen S. Khan S.A. Ahmad A. Iqbal M.A. Farooq A. Ahmed A. Furanone-functionalized benzothiazole derivatives: Synthesis, in vitro cytotoxicity, ADME, and molecular docking studies. Z. Naturforsch. B. J. Chem. Sci. 2022 77 1 41 53 10.1515/znb‑2021‑0146
    [Google Scholar]
  73. Al-Sanea M.M. Hamdi A. Mohamed A.A.B. El-Shafey H.W. Moustafa M. Elgazar A.A. Eldehna W.M. Ur Rahman H. Parambi D.G.T. Elbargisy R.M. Selim S. Bukhari S.N.A. Magdy Hendawy O. Tawfik S.S. New benzothiazole hybrids as potential VEGFR-2 inhibitors: Design, synthesis, anticancer evaluation, and in silico study. J. Enzyme Inhib. Med. Chem. 2023 38 1 2166036 10.1080/14756366.2023.2166036 36691927
    [Google Scholar]
  74. Yuan T.L. Cantley L.C. PI3K pathway alterations in cancer: Variations on a theme. Oncogene 2008 27 41 5497 5510 10.1038/onc.2008.245 18794884
    [Google Scholar]
  75. Vogt P.K. Gymnopoulos M. Hart J.R. Jr PI 3-kinase and cancer: Changing accents. Curr. Opin. Genet. Dev. 2009 19 1 12 17 10.1016/j.gde.2008.11.011 19185485
    [Google Scholar]
  76. Cui J. Hu Y.F. Feng X.M. Tian T. Guo Y.H. Ma J.W. Nan K.J. Zhang H.Y. EGFR inhibitors and autophagy in cancer treatment. Tumour Biol. 2014 35 12 11701 11709 10.1007/s13277‑014‑2660‑z 25293518
    [Google Scholar]
  77. Wells A. EGF receptor. Int. J. Biochem. Cell Biol. 1999 31 6 637 643 10.1016/S1357‑2725(99)00015‑1 10404636
    [Google Scholar]
  78. Bianco R. Gelardi T. Damiano V. Ciardiello F. Tortora G. Mechanisms of resistance to EGFR inhibitors. Target. Oncol. 2007 2 1 31 37 10.1007/s11523‑006‑0038‑x 18045190
    [Google Scholar]
  79. Ramya Sucharitha E. Kumar Nukala S. Swamy Thirukovela N. Palabindela R. Sreerama R. Narsimha S. Synthesis and Biological Evaluation of Benzo[d] thiazolyl‐Sulfonyl‐Benzo[4,5]isothiazolo [2,3‐c][1,2,3] triazole Derivatives as EGFR Targeting Anticancer Agents. ChemistrySelect 2023 8 6 e202204256 [Internet]. 10.1002/slct.202204256
    [Google Scholar]
  80. Ahmad I. Iwata T. Leung H.Y. Mechanisms of FGFR-mediated carcinogenesis. Biochim. Biophys. Acta Mol. Cell Res. 2012 1823 4 850 860 10.1016/j.bbamcr.2012.01.004 22273505
    [Google Scholar]
  81. Beenken A. Mohammadi M. The FGF family: Biology, pathophysiology and therapy. Nat. Rev. Drug Discov. 2009 8 3 235 253 10.1038/nrd2792 19247306
    [Google Scholar]
  82. Koch G. Computer-aided discovery of new FGFR-1 inhibitors followed by in vitro validation. IB Chemistry Revision Guide. Internet Anthem Press 2019 222 238
    [Google Scholar]
  83. Haugsten E.M. Wiedlocha A. Olsnes S. Wesche J. Roles of fibroblast growth factor receptors in carcinogenesis. Mol. Cancer Res. 2010 8 11 1439 1452 10.1158/1541‑7786.MCR‑10‑0168 21047773
    [Google Scholar]
  84. Abd El-Meguid EA Mohi El-Deen EM Moustafa GO Awad HM Nossier ES Synthesis, anticancer evaluation and molecular docking of new benzothiazole scaffolds targeting FGFR-1. Bioorg Chem. 2022 119 105504 10.1016/j.bioorg.2021.105504
    [Google Scholar]
  85. Abdel-Mohsen H.T. Abd El-Meguid E.A. El Kerdawy A.M. Mahmoud A.E.E. Ali M.M. Design, synthesis, and molecular docking of novel 2‐arylbenzothiazole multiangiokinase inhibitors targeting breast cancer. Arch. Pharm. 2020 353 4 1900340 10.1002/ardp.201900340 32045054
    [Google Scholar]
  86. Abd El-Meguid EA Naglah AM Moustafa GO Awad HM El Kerdawy AM Novel benzothiazole-based dual VEGFR-2/EGFR inhibitors targeting breast and liver cancers: Synthesis, cytotoxic activity, QSAR and molecular docking studies. Bioorg Med Chem Lett. 2022 58 128529 10.1016/j.bmcl.2022.128529
    [Google Scholar]
  87. Weisberg E. Manley P.W. Cowan-Jacob S.W. Hochhaus A. Griffin J.D. Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat. Rev. Cancer 2007 7 5 345 356 10.1038/nrc2126 17457302
    [Google Scholar]
  88. Groffen J. Stephenson J. Heisterkamp N. Deklein A. Bartram C. Grosveld G. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell 1984 36 1 93 99 10.1016/0092‑8674(84)90077‑1 6319012
    [Google Scholar]
  89. Liu J. Zhang Y. Huang H. Lei X. Tang G. Cao X. Peng J. Recent advances in Bcr‐Abl tyrosine kinase inhibitors for overriding T315I mutation. Chem. Biol. Drug Des. 2021 97 3 649 664 10.1111/cbdd.13801 33034143
    [Google Scholar]
  90. Tauchi T. Ohyashiki K. The second generation of BCR-ABL tyrosine kinase inhibitors. Int. J. Hematol. 2006 83 4 294 300 10.1532/IJH97.06025 16757427
    [Google Scholar]
  91. Munikrishnappa C.S. Puranik S.B. Kumar G.V.S. Prasad Y.R. Part-1: Design, synthesis and biological evaluation of novel bromo-pyrimidine analogs as tyrosine kinase inhibitors. Eur. J. Med. Chem. 2016 119 70 82 10.1016/j.ejmech.2016.04.056 27155464
    [Google Scholar]
  92. El-Damasy A.K. Jin H. Park J.W. Kim H.J. Khojah H. Seo S.H. Lee J.H. Bang E.K. Keum G. Overcoming the imatinib-resistant BCR-ABL mutants with new ureidobenzothiazole chemotypes endowed with potent and broad-spectrum anticancer activity. J. Enzyme Inhib. Med. Chem. 2023 38 1 2189097 10.1080/14756366.2023.2189097 36927348
    [Google Scholar]
  93. Yano K. Shiotani B. Emerging strategies for cancer therapy by ATR inhibitors. Cancer Sci. 2023 114 7 2709 2721 10.1111/cas.15845 37189251
    [Google Scholar]
  94. Qiu Z. Oleinick N.L. Zhang J. ATR/CHK1 inhibitors and cancer therapy. Radiother. Oncol. 2018 126 3 450 464 10.1016/j.radonc.2017.09.043 29054375
    [Google Scholar]
  95. Lu Y. Knapp M. Crawford K. Warne R. Elling R. Yan K. Doyle M. Pardee G. Zhang L. Ma S. Mamo M. Ornelas E. Pan Y. Bussiere D. Jansen J. Zaror I. Lai A. Barsanti P. Sim J. Rationally designed PI3Kα mutants to mimic ATR and their use to understand binding specificity of ATR inhibitors. J. Mol. Biol. 2017 429 11 1684 1704 10.1016/j.jmb.2017.04.006 28433539
    [Google Scholar]
  96. Wagner J.M. Kaufmann S.H. Prospects for the use of ATR inhibitors to treat cancer. Pharmaceuticals 2010 3 5 1311 1334 10.3390/ph3051311 27713304
    [Google Scholar]
  97. Frasinyuk M. Chhabria D. Kartsev V. Dilip H. Sirakanyan S.N. Kirubakaran S. Petrou A. Geronikaki A. Spinelli D. Benzothiazole and chromone derivatives as potential ATR kinase inhibitors and anticancer agents. molecules 2022 27 14 4637 10.3390/molecules27144637 35889508
    [Google Scholar]
  98. Hernández Boluda J.C. Gómez M. Pérez A. Inhibidores de JAK2. Med. Clín. 2016 147 2 70 75 10.1016/j.medcli.2016.02.014 27033437
    [Google Scholar]
  99. Mesa R. Gale R.P. Hypothesis: How do JAK2-inhibitors work in myelofibrosis. Leuk. Res. 2009 33 9 1156 1157 10.1016/j.leukres.2009.04.011 19450878
    [Google Scholar]
  100. James C. Ugo V. Le Couédic J.P. Staerk J. Delhommeau F. Lacout C. Garçon L. Raslova H. Berger R. Bennaceur-Griscelli A. Villeval J.L. Constantinescu S.N. Casadevall N. Vainchenker W. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005 434 7037 1144 1148 10.1038/nature03546 15793561
    [Google Scholar]
  101. Pardanani A. JAK2 inhibitor therapy in myeloproliferative disorders: Rationale, preclinical studies and ongoing clinical trials. Leukemia 2008 22 1 23 30 10.1038/sj.leu.2404948 17882282
    [Google Scholar]
  102. Granchi C. Bertini S. Macchia M. Minutolo F. Inhibitors of lactate dehydrogenase isoforms and their therapeutic potentials. Curr. Med. Chem. 2010 17 7 672 697 10.2174/092986710790416263 20088761
    [Google Scholar]
  103. Nilov D.K. Kulikov A.V. Prokhorova E.A. Švedas V.K. Identification of new structural fragments for the design of lactate dehydrogenase A inhibitors. Acta Nat. 2016 8 3 118 122 10.32607/20758251‑2016‑8‑3‑118‑122 27795851
    [Google Scholar]
  104. Tang P. Xu J. Oliveira C.L. Li Z.J. Liu S. A mechanistic kinetic description of lactate dehydrogenase elucidating cancer diagnosis and inhibitor evaluation. J. Enzyme Inhib. Med. Chem. 2017 32 1 564 571 10.1080/14756366.2016.1275606 28114833
    [Google Scholar]
  105. Nilov D.K. Prokhorova E.A. Švedas V.K. I Search for human lactate dehydrogenase a inhibitors using structure-based modeling. Acta Nat. 2015 7 2 57 63 http://actanaturae.ru/2075-8251/article/view/10496 10.32607/20758251‑2015‑7‑2‑57‑63 26085945
    [Google Scholar]
  106. JawalePatil P.D. Bhamidipati K. Damale M.G. Sangshetti J.N. Puvvada N. Bhosale R.S. Ingle R.D. Pawar R.P. Bhosale S.V. Bhosale S.V. Synthesis of naphthalimide derivatives bearing benzothiazole and thiazole moieties: In vitro anticancer and in silico ADMET study. J. Mol. Struct. 2022 1263 133173 [Internet]. 10.1016/j.molstruc.2022.133173
    [Google Scholar]
  107. Artunc T. Menzek A. Taslimi P. Gulcin I. Kazaz C. Sahin E. Synthesis and antioxidant activities of phenol derivatives from 1,6-bis(dimethoxyphenyl)hexane-1,6-dione. Bioorg. Chem. 2020 100 February 103884 10.1016/j.bioorg.2020.103884 32388430
    [Google Scholar]
  108. Caglayan C. Taslimi P. Türk C. Gulcin İ. Kandemir F.M. Demir Y. Beydemir Ş. Inhibition effects of some pesticides and heavy metals on carbonic anhydrase enzyme activity purified from horse mackerel (Trachurus trachurus) gill tissues. Environ. Sci. Pollut. Res. Int. 2020 27 10 10607 10616 10.1007/s11356‑020‑07611‑z 31942715
    [Google Scholar]
  109. Capasso C. Supuran C.T. An overview of the alpha-, beta- and gamma-carbonic anhydrases from Bacteria : Can bacterial carbonic anhydrases shed new light on evolution of bacteria? J. Enzyme Inhib. Med. Chem. 2015 30 2 325 332 10.3109/14756366.2014.910202 24766661
    [Google Scholar]
  110. Kumar S. Rulhania S. Jaswal S. Monga V. Recent advances in the medicinal chemistry of carbonic anhydrase inhibitors. Eur. J. Med. Chem. 2021 209 112923 10.1016/j.ejmech.2020.112923 33121862
    [Google Scholar]
  111. Al-Warhi T. Elbadawi M.M. Bonardi A. Nocentini A. Al-Karmalawy A.A. Aljaeed N. Alotaibi O.J. Abdel-Aziz H.A. Supuran C.T. Eldehna W.M. Design and synthesis of benzothiazole-based SLC-0111 analogues as new inhibitors for the cancer-associated carbonic anhydrase isoforms IX and XII. J. Enzyme Inhib. Med. Chem. 2022 37 1 2635 2643 10.1080/14756366.2022.2124409 36146927
    [Google Scholar]
  112. Reed J.C. Apoptosis-based therapies. Nat. Rev. Drug Discov. 2002 1 2 111 121 10.1038/nrd726 12120092
    [Google Scholar]
  113. Lim B. Greer Y. Lipkowitz S. Takebe N. Novel apoptosis-inducing agents for the treatment of cancer, a new arsenal in the toolbox. Cancers 2019 11 8 1087 10.3390/cancers11081087 31370269
    [Google Scholar]
  114. Galluzzi L. Vitale I. Aaronson S.A. Abrams J.M. Adam D. Agostinis P. Alnemri E.S. Altucci L. Amelio I. Andrews D.W. Annicchiarico-Petruzzelli M. Antonov A.V. Arama E. Baehrecke E.H. Barlev N.A. Bazan N.G. Bernassola F. Bertrand M.J.M. Bianchi K. Blagosklonny M.V. Blomgren K. Borner C. Boya P. Brenner C. Campanella M. Candi E. Carmona-Gutierrez D. Cecconi F. Chan F.K.M. Chandel N.S. Cheng E.H. Chipuk J.E. Cidlowski J.A. Ciechanover A. Cohen G.M. Conrad M. Cubillos-Ruiz J.R. Czabotar P.E. D’Angiolella V. Dawson T.M. Dawson V.L. De Laurenzi V. De Maria R. Debatin K.M. DeBerardinis R.J. Deshmukh M. Di Daniele N. Di Virgilio F. Dixit V.M. Dixon S.J. Duckett C.S. Dynlacht B.D. El-Deiry W.S. Elrod J.W. Fimia G.M. Fulda S. García-Sáez A.J. Garg A.D. Garrido C. Gavathiotis E. Golstein P. Gottlieb E. Green D.R. Greene L.A. Gronemeyer H. Gross A. Hajnoczky G. Hardwick J.M. Harris I.S. Hengartner M.O. Hetz C. Ichijo H. Jäättelä M. Joseph B. Jost P.J. Juin P.P. Kaiser W.J. Karin M. Kaufmann T. Kepp O. Kimchi A. Kitsis R.N. Klionsky D.J. Knight R.A. Kumar S. Lee S.W. Lemasters J.J. Levine B. Linkermann A. Lipton S.A. Lockshin R.A. López-Otín C. Lowe S.W. Luedde T. Lugli E. MacFarlane M. Madeo F. Malewicz M. Malorni W. Manic G. Marine J.C. Martin S.J. Martinou J.C. Medema J.P. Mehlen P. Meier P. Melino S. Miao E.A. Molkentin J.D. Moll U.M. Muñoz-Pinedo C. Nagata S. Nuñez G. Oberst A. Oren M. Overholtzer M. Pagano M. Panaretakis T. Pasparakis M. Penninger J.M. Pereira D.M. Pervaiz S. Peter M.E. Piacentini M. Pinton P. Prehn J.H.M. Puthalakath H. Rabinovich G.A. Rehm M. Rizzuto R. Rodrigues C.M.P. Rubinsztein D.C. Rudel T. Ryan K.M. Sayan E. Scorrano L. Shao F. Shi Y. Silke J. Simon H.U. Sistigu A. Stockwell B.R. Strasser A. Szabadkai G. Tait S.W.G. Tang D. Tavernarakis N. Thorburn A. Tsujimoto Y. Turk B. Vanden Berghe T. Vandenabeele P. Vander Heiden M.G. Villunger A. Virgin H.W. Vousden K.H. Vucic D. Wagner E.F. Walczak H. Wallach D. Wang Y. Wells J.A. Wood W. Yuan J. Zakeri Z. Zhivotovsky B. Zitvogel L. Melino G. Kroemer G. Molecular mechanisms of cell death: Recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 2018 25 3 486 541 10.1038/s41418‑017‑0012‑4 29362479
    [Google Scholar]
  115. Gonzalvez F. Ashkenazi A. New insights into apoptosis signaling by Apo2L/TRAIL. Oncogene 2010 29 34 4752 4765 10.1038/onc.2010.221 20531300
    [Google Scholar]
  116. Baehrecke E.H. How death shapes life during development. Nat. Rev. Mol. Cell Biol. 2002 3 10 779 787 10.1038/nrm931 12360194
    [Google Scholar]
  117. Ranjan A. Sharma D. Srivastava A.K. Varma A. Jayadev M.S.K. Joshi R.K. Evaluation of anticancer activity of ferrocene based benzothiazole and β-ketooxothioacetal. J. Organomet. Chem. 2022 979 122500 [Internet]. 10.1016/j.jorganchem.2022.122500
    [Google Scholar]
  118. Sever B. Ciftci H. Evaluation of anti-glioma effects of benzothiazoles as efficient apoptosis inducers and DNA cleaving agents. Mol. Cell. Biochem. 2023 478 5 1099 1108 10.1007/s11010‑022‑04580‑4 36219355
    [Google Scholar]
  119. Yu F. Xu Y. Wang H. Chi L. Si X. Gao C. 2023
  120. Dedon P.C. Determination of binding mode: Intercalation. Curr. Protoc. Nucleic Acid Chem. 2000 00 1 1 13 [Internet]. 18428878
    [Google Scholar]
  121. Lerman L.S. Structural considerations in the interaction of DNA and acridines. J. Mol. Biol. 1961 3 1 18 IN14 10.1016/S0022‑2836(61)80004‑1 13761054
    [Google Scholar]
  122. Tera M. Harati Taji Z. Luedtke N.W. Intercalation‐enhanced “Click” Crosslinking of DNA. Angew. Chem. Int. Ed. 2018 57 47 15405 15409 10.1002/anie.201808054 30240107
    [Google Scholar]
  123. Biebricher A.S. Heller I. Roijmans R.F.H. Hoekstra T.P. Peterman E.J.G. Wuite G.J.L. The impact of DNA intercalators on DNA and DNA-processing enzymes elucidated through force-dependent binding kinetics. Nat. Commun. 2015 6 1 7304 10.1038/ncomms8304 26084388
    [Google Scholar]
  124. Chen Z. Wu Y. Zhang Q. Zhang Y. Biological properties of a benzothiazole-based mononuclear platinum(II) complex as a potential anticancer agent. J. Coord. Chem. 2020 73 12 1817 1832 10.1080/00958972.2020.1793966
    [Google Scholar]
  125. Almehmadi M.A. Aljuhani A. Alraqa S.Y. Ali I. Rezki N. Aouad M.R. Hagar M. Design, synthesis, DNA binding, modeling, anticancer studies and DFT calculations of Schiff bases tethering benzothiazole-1,2,3-triazole conjugates. J. Mol. Struct. 2021 1225 129148 [Internet]. 10.1016/j.molstruc.2020.129148
    [Google Scholar]
  126. Islam M.K. Baek A.R. Sung B. Yang B.W. Choi G. Park H.J. Kim Y.H. Kim M. Ha S. Lee G.H. Kim H.K. Chang Y. Synthesis, characterization, and anticancer activity of benzothiazole aniline derivatives and their platinum (II) complexes as new chemotherapy agents. Pharmaceuticals 2021 14 8 832 10.3390/ph14080832 34451928
    [Google Scholar]
  127. Islam M.K. Ha S. Baek A.R. Yang B.W. Kim Y.H. Park H.J. Kim M. Nam S.W. Lee G.H. Chang Y. The synthesis, characterization, molecular docking and in vitro antitumor activity of benzothiazole aniline (BTA) conjugated metal-salen complexes as non-platinum chemotherapeutic agents. Pharmaceuticals 2022 15 6 751 10.3390/ph15060751 35745670
    [Google Scholar]
  128. Akhter S. Rehman A. Abidi S.M.A. Arjmand F. Tabassum S. Synthesis, structural insights, and biological screening of DNA targeted Ru( ii )(η 6 - p -cymene) complexes containing bioactive amino-benzothiazole ligand scaffolds. New J. Chem. 2022 46 23 11462 11473 [Internet]. 10.1039/D2NJ00883A
    [Google Scholar]
  129. Wu Y Ding T Zeng Y Liu R Liu Y Liang H. Synthesis, crystal structure, DNA binding, and anticancer activity of the cobalt(II), nickel(II), and copper(II) complexes of 9-benzothiazolanthrahydrazone. J. Mol. Struct. 2023 1299 137099 10.1016/j.molstruc.2023.137099
    [Google Scholar]
  130. Ganapathi R.N. Ganapathi M.K. Mechanisms regulating resistance to inhibitors of topoisomerase II. Front. Pharmacol. 2013 4 August 89 10.3389/fphar.2013.00089 23914174
    [Google Scholar]
  131. Denny W. Baguley B. Dual topoisomerase I/II inhibitors in cancer therapy. Curr. Top. Med. Chem. 2003 3 3 339 353 10.2174/1568026033452555 12570767
    [Google Scholar]
  132. Boos G. Stopper H. Genotoxicity of several clinically used topoisomerase II inhibitors. Toxicol. Lett. 2000 116 1-2 7 16 10.1016/S0378‑4274(00)00192‑2 10906417
    [Google Scholar]
  133. Larsen A.K. Escargueil A.E. Skladanowski A. Catalytic topoisomerase II inhibitors in cancer therapy. Pharmacol. Ther. 2003 99 2 167 181 10.1016/S0163‑7258(03)00058‑5 12888111
    [Google Scholar]
  134. Tokala R Mahajan S Kiranmai G Sigalapalli DK Sana S John SE Development of β-carboline-benzothiazole hybrids via carboxamide formation as cytotoxic agents: DNA intercalative topoisomerase IIα inhibition and apoptosis induction. Bioorg. Chem. 2020 106 104481 10.1016/j.bioorg.2020.104481
    [Google Scholar]
  135. Singh I. Luxami V. Choudhury D. Paul K. Synthesis and photobiological applications of naphthalimide–benzothiazole conjugates: cytotoxicity and topoisomerase IIα inhibition. RSC Advances 2021 12 1 483 497 10.1039/D1RA04148G 35424470
    [Google Scholar]
  136. Pizzino G. Irrera N. Cucinotta M. Pallio G. Mannino F. Arcoraci V. Squadrito F. Altavilla D. Bitto A. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev. 2017 2017 1 8416763 https://www.hindawi.com/journals/omcl/2017/8416763/ 10.1155/2017/8416763 28819546
    [Google Scholar]
  137. Forman H.J. Zhang H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021 20 9 689 709 10.1038/s41573‑021‑00233‑1 34194012
    [Google Scholar]
  138. Losada-Barreiro S. Sezgin-Bayindir Z. Paiva-Martins F. Bravo-Díaz C. Biochemistry of antioxidants: Mechanisms and pharmaceutical applications. Biomedicines 2022 10 12 3051 10.3390/biomedicines10123051 36551806
    [Google Scholar]
  139. Rudrapal M. Khairnar S.J. Khan J. Dukhyil A. Dietary polyphenols and their role in oxidative stress-induced human diseases: Insights into protective effects, antioxidant potentials and mechanism(s) of action Front Pharmacol. 2022 13 806470
    [Google Scholar]
  140. Ramaiah M.J. Karthikeyan D. Mathavan S. Yamajala R.B.R.D. Ramachandran S. Vasavi P.J. Chandana N.V. Synthesis, in vitro and structural aspects of benzothiazole analogs as anti-oxidants and potential neuroprotective agents. Environ. Toxicol. Pharmacol. 2020 79 February 103415 10.1016/j.etap.2020.103415 32470609
    [Google Scholar]
  141. Kadam P.R. Bodke Y.D. Naik M.D. Nagaraja O. Manjunatha B. One-pot three-component synthesis of thioether linked 4-hydroxycoumarin-benzothiazole derivatives under ambient condition and evaluation of their biological activity. Results Chem. 2022 4 February 100303 [Internet]. 10.1016/j.rechem.2022.100303
    [Google Scholar]
  142. Al-Mutairi A.A. Hafez H.N. El-Gazzar A.R.B.A. Mohamed M.Y.A. Synthesis and antimicrobial, anticancer and anti-oxidant activities of novel 2,3-Dihydropyrido[2,3-d]pyrimidine-4-one and Pyrrolo[2,1-b][1,3]benzothiazole derivatives via microwave-assisted synthesis. Molecules 2022 27 4 1246 10.3390/molecules27041246 35209034
    [Google Scholar]
  143. Djuidje E.N. Barbari R. Baldisserotto A. Durini E. Sciabica S. Balzarini J. Liekens S. Vertuani S. Manfredini S. Benzothiazole derivatives as multifunctional antioxidant agents for skin damage: Structure–Activity relationship of a scaffold bearing a five-membered ring system. Antioxidants 2022 11 2 407 10.3390/antiox11020407 35204288
    [Google Scholar]
  144. Wei Q.M. Wei Z.Z. Zeng J.J. Yang L. Qin Q.P. Tan M.X. Liang H. Synthesis, structures and anticancer potentials of five platinum(II) complexes with benzothiazole-benzopyran targeting mitochondria. Polyhedron 2021 196 115004 10.1016/j.poly.2020.115004
    [Google Scholar]
  145. Zhao D Zhen H Xue J Tang Z Han X Chen Z. A novel benzothiazole-based mononuclear platinum(II) complex displaying potent antiproliferative activity in HepG-2 cells via mitochondrial-mediated apoptosis. J Inorg Biochem. 2024 251 112437 10.1016/j.jinorgbio.2023.112437
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128355783250212043621
Loading
/content/journals/cpd/10.2174/0113816128355783250212043621
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test