Skip to content
2000
image of Advances in Machine Learning Models for Healthcare Applications: A Precise and Patient-Centric Approach

Abstract

Background

Healthcare is rapidly leveraging machine learning to enhance patient care, streamline operations, and address complex medical issues. Though ethical issues, model efficiency, and algorithmic bias exist, the COVID-19 pandemic highlighted its usefulness in disease outbreak prediction and treatment optimization.

Aim

This article aims to discuss machine learning applications, benefits, and the ethical and practical challenges in healthcare.

Discussion

Machine learning assists in diagnosis, patient monitoring, and epidemic prediction but faces challenges like algorithmic bias and data quality. Overcoming these requires high-quality data, impartial algorithms, and model monitoring.

Conclusion

Machine learning might revolutionize healthcare by making it more efficient and better for patients. Full acceptance and the advancement of technologies to improve health outcomes on a global scale depend on resolving ethical, practical, and technological concerns.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128353371250119121315
2025-02-11
2025-03-30
Loading full text...

Full text loading...

References

  1. Ben-Israel D. Jacobs W.B. Casha S. Lang S. Ryu W.H. de Lotbiniere-Bassett M. Cadotte D.W. The impact of ML on patient care: A systematic review. N. Engl. J. Med. 2016 375 13 1216 1219 27682033
    [Google Scholar]
  2. Char D.S. Abràmoff M.D. Feudtner C. Identifying ethical considerations for ML healthcare applications. Am. J. Bioeth. 2020 20 11 7 17 10.1080/15265161.2020.1819469 33103967
    [Google Scholar]
  3. Araújo F.H. Santana A.M. de A Santos Neto P. Using machine learning to support healthcare professionals in making preauthorisation decisions. Int. J. Med. Inform. 2016 94 1 7 10.1016/j.ijmedinf.2016.06.007 27573306
    [Google Scholar]
  4. Saxena S. Vyas S. Kumar B.S. Gupta S. Survey on online electronic paymentss security. 2019 Amity International Conference on Artificial Intelligence (AICAI) Dubai, United Arab Emirates, 04-06 February 2019, pp. 756-751 10.1109/AICAI.2019.8701353
    [Google Scholar]
  5. Li J.P. Haq A.U. Din S.U. Khan J. Khan A. Saboor A. Heart disease identification method using ML classification in e-healthcare. IEEE Access 09 June 2020, vol. 8, pp. 107562-107582 10.1109/ACCESS.2020.3001149
    [Google Scholar]
  6. Rahane W. Dalvi H. Magar Y. Kalane A. Jondhale S. Lung cancer detection using image processing and ML healthcare. 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT) Coimbatore, India, 01-03 March 2018, pp. 1-5
    [Google Scholar]
  7. Ahmed Z. Mohamed K. Zeeshan S. Dong X. Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. Database 2020 2020 baaa010 10.1093/database/baaa010 32185396
    [Google Scholar]
  8. Chen P.H.C. Liu Y. Peng L. How to develop machine learning models for healthcare. Nat. Mater. 2019 18 5 410 414 10.1038/s41563‑019‑0345‑0 31000806
    [Google Scholar]
  9. Callahan A Shah NH ML in healthcare. Key Advances in Clinical Informatics Academic Press 2017 279 291
    [Google Scholar]
  10. Shailaja K. Seetharamulu B. Jabbar M.A. ML in healthcare: A review. 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA) Coimbatore, India, 29-31 March 2018, pp. 910-914
    [Google Scholar]
  11. Chen M. Hao Y. Hwang K. Wang L. Wang L. Disease prediction by machine learning over big data from healthcare communities. IEEE Access 26 April 2017, vol. 5, pp. 8869-8879 10.1109/ACCESS.2017.2694446
    [Google Scholar]
  12. Qayyum A. Qadir J. Bilal M. Al-Fuqaha A. Secure and robust ML for healthcare: A survey. IEEE Rev. Biomed. Eng. 2021 14 156 180 10.1109/RBME.2020.3013489 32746371
    [Google Scholar]
  13. Maity N.G. Das S. ML for improved diagnosis and prognosis in healthcare. 2017 IEEE Aerospace Conference Big Sky, MT, USA, 04-11 March 2017, pp. 1-9
    [Google Scholar]
  14. Durga S. Nag R. Daniel E. Survey on Machine Learning and Deep Learning Algorithms used in Internet of Things (IoT) Healthcare. 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC) Erode, India, 2019, pp. 1018-1022
    [Google Scholar]
  15. Jones L.D. Golan D. Hanna S.A. Ramachandran M. Artificial intelligence, machine learning and the evolution of healthcare. Bone Joint Res. 2018 7 3 223 225 10.1302/2046‑3758.73.BJR‑2017‑0147.R1 29922439
    [Google Scholar]
  16. Ahamed F. Farid F. 2018
  17. Han T. Stone-Weiss N. Huang J. Goel A. Kumar A. Machine learning as a tool to design glasses with controlled dissolution for healthcare applications. Acta Biomater. 2020 107 286 298 10.1016/j.actbio.2020.02.037 32114183
    [Google Scholar]
  18. Rajendran S. Mathivanan S.K. Jayagopal P. Purushothaman Janaki K. Manickam Bernard B.A.M. Pandy S. Sorakaya Somanathan M. Emphasizing privacy and security of edge intelligence with machine learning for healthcare. Int. J. Intell. Comput. Cybern. 2022 15 1 92 109 10.1108/IJICC‑05‑2021‑0099
    [Google Scholar]
  19. Seneviratne M.G. Shah N.H. Chu L. Bridging the implementation gap of machine learning in healthcare. BMJ Innov. 2020 6 2 45 47 10.1136/bmjinnov‑2019‑000359
    [Google Scholar]
  20. Jadhav S. Kasar R. Lade N. Patil M. Kolte S. Disease prediction by ML from healthcare communities. Int. J. Sci. Res. Sci. Technol. 2019 5 8869
    [Google Scholar]
  21. McCradden M.D. Joshi S. Anderson J.A. Mazwi M. Goldenberg A. Zlotnik Shaul R. Patient safety and quality improvement: Ethical principles for a regulatory approach to bias in healthcare machine learning. J. Am. Med. Inform. Assoc. 2020 27 12 2024 2027 10.1093/jamia/ocaa085 32585698
    [Google Scholar]
  22. Haq A.U. Li J.P. Khan J. Memon M.H. Nazir S. Ahmad S. Khan G.A. Ali A. Intelligent ML approach for effective recognition of diabetes in E-healthcare using clinical data. Sensors 2020 20 9 2649 10.3390/s20092649 32384737
    [Google Scholar]
  23. Kempa-Liehr A.W. Lin C.Y.C. Britten R. Armstrong D. Wallace J. Mordaunt D. O’Sullivan M. Healthcare pathway discovery and probabilistic machine learning. Int. J. Med. Inform. 2020 137 104087 10.1016/j.ijmedinf.2020.104087 32126509
    [Google Scholar]
  24. Vaishya R. Javaid M. Khan I.H. Haleem A. Artificial Intelligence (AI) applications for COVID-19 pandemic. Diabetes Metab. Syndr. 2020 14 4 337 339 10.1016/j.dsx.2020.04.012 32305024
    [Google Scholar]
  25. Vyas D.A. Eisenstein L.G. Jones D.S. Hidden in plain sight—reconsidering the use of race correction in clinical algorithms. N. Engl. J. Med. 2020 383 9 874 882 10.1056/NEJMms2004740 32853499
    [Google Scholar]
  26. Holzinger A. Interactive machine learning for health informatics: When do we need the human-in-the-loop? Brain Inform. 2016 3 2 119 131 10.1007/s40708‑016‑0042‑6 27747607
    [Google Scholar]
  27. Aphinyanaphongs Y. Wilt J. Chivers C.J. Sendak M. Translating, implementing, deploying, and evaluating clinical interventions using ML based predictive models: Illustrative case studies. AMIA 2019
    [Google Scholar]
  28. Herold R. van den Berg N. Dörr M. Hoffmann W. Telemedical care and monitoring for patients with chronic heart failure has a positive effect on survival. Health Serv. Res. 2018 53 1 532 555 10.1111/1475‑6773.12661 28138988
    [Google Scholar]
  29. Zhang J. Goode K.M. Cuddihy P.E. Cleland J.G.F. Predicting hospitalization due to worsening heart failure using daily weight measurement: Analysis of the Trans‐European network‐home‐care management system (TEN‐HMS) study. Eur. J. Heart Fail. 2009 11 4 420 427 10.1093/eurjhf/hfp033 19252210
    [Google Scholar]
  30. Cuba Gyllensten I. Bonomi A.G. Goode K.M. Reiter H. Habetha J. Amft O. Cleland J.G.F. Early indication of decompensated heart failure in patients on home-telemonitoring: A comparison of prediction algorithms based on daily weight and noninvasive transthoracic bio-impedance. JMIR Med. Inform. 2016 4 1 e3 10.2196/medinform.4842 26892844
    [Google Scholar]
  31. Larburu N. Artetxe A. Escolar V. Lozano A. Kerexeta J. Artificial intelligence to prevent mobile heart failure patients decompensation in real time: Monitoring-based predictive model. Mob. Inf. Syst. 2018 2018 1 11 10.1155/2018/1546210
    [Google Scholar]
  32. Gilliam F.R. Ewald G.A. Feasibility of automated heart failure decompensation detection using remote patient monitoring: Results from the decompensation detection study. Innovat Cardiac Rhythm Manage 2012 3 1 10
    [Google Scholar]
  33. Gao Y. Cai G.Y. Fang W. Li H.Y. Wang S.Y. Chen L. Yu Y. Liu D. Xu S. Cui P.F. Zeng S.Q. Feng X.X. Yu R.D. Wang Y. Yuan Y. Jiao X.F. Chi J.H. Liu J.H. Li R.Y. Zheng X. Song C.Y. Jin N. Gong W.J. Liu X.Y. Huang L. Tian X. Li L. Xing H. Ma D. Li C.R. Ye F. Gao Q.L. Machine learning based early warning system enables accurate mortality risk prediction for COVID-19. Nat. Commun. 2020 11 1 5033 10.1038/s41467‑020‑18684‑2 33024092
    [Google Scholar]
  34. Segal G. Segev A. Brom A. Lifshitz Y. Wasserstrum Y. Zimlichman E. Reducing drug prescription errors and adverse drug events by application of a probabilistic, machine-learning based clinical decision support system in an inpatient setting. J. Am. Med. Inform. Assoc. 2019 26 12 1560 1565 10.1093/jamia/ocz135 31390471
    [Google Scholar]
  35. De Ramón Fernández A. Ruiz Fernández D. Prieto Sánchez M.T. A decision support system for predicting the treatment of ectopic pregnancies. Int. J. Med. Inform. 2019 129 198 204 10.1016/j.ijmedinf.2019.06.002 31445255
    [Google Scholar]
  36. Esteva A Kuprel B Novoa RA Ko J Swetter SM Blau HM Thrun S Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017 542 7639 115 118
    [Google Scholar]
  37. Doupe P. Faghmous J. Basu S. ML for health services researchers. Value Health 2019 22 7 808 815 10.1016/j.jval.2019.02.012 31277828
    [Google Scholar]
  38. Truett J. Cornfield J. Kannel W. A multivariate analysis of the risk of coronary heart disease in Framingham. J. Chronic Dis. 1967 20 7 511 524 10.1016/0021‑9681(67)90082‑3 6028270
    [Google Scholar]
  39. Morgenstern J.D. Buajitti E. O’Neill M. Piggott T. Goel V. Fridman D. Kornas K. Rosella L.C. Predicting population health with machine learning: A scoping review. BMJ Open 2020 10 10 e037860 10.1136/bmjopen‑2020‑037860 33109649
    [Google Scholar]
  40. Barakat N. Bradley A.P. Barakat M.N.H. Intelligible support vector machines for diagnosis of diabetes mellitus. IEEE Trans. Inf. Technol. Biomed. 2010 14 4 1114 1120 10.1109/TITB.2009.2039485 20071261
    [Google Scholar]
  41. Zaouiat C.A. Latif A. Internet of things and ML convergence: The e-healthcare revolution. ICCWCS'17: Proceedings of the 2nd International Conference on Computing and Wireless Communication Systems Larache, Morocco, 2017, pp. 1-5
    [Google Scholar]
  42. Feldman K. Faust L. Wu X. Huang C. Chawla N.V. Beyond volume: The impact of complex healthcare data on the ML pipeline. InTowards Integrative ML and Knowledge Extraction BIRS Workshop Banff, AB, Canada, July 24-26, 2015, pp. 150-169 150 169 Springer International Publishing.
    [Google Scholar]
  43. McWilliams C.J. Lawson D.J. Santos-Rodriguez R. Gilchrist I.D. Champneys A. Gould T.H. Thomas M.J.C. Bourdeaux C.P. Towards a decision support tool for intensive care discharge: Machine learning algorithm development using electronic healthcare data from MIMIC-III and Bristol, UK. BMJ Open 2019 9 3 e025925 10.1136/bmjopen‑2018‑025925 30850412
    [Google Scholar]
  44. Chatterjee S. Goyal D. Prakash A. Sharma J. Exploring healthcare/health-product ecommerce satisfaction: A text mining and machine learning application. J. Bus. Res. 2021 131 815 825 10.1016/j.jbusres.2020.10.043
    [Google Scholar]
  45. Gupta S. Sedamkar R.R. Apply ML for Healthcare to enhance performance and identify informative features. 2019 6th International Conference on Computing for Sustainable Global Development (INDIACom) New Delhi, India, 13-15 March 2019, pp. 368-372 2019
    [Google Scholar]
  46. Chen J.H. Verghese A. Planning for the known unknown: ML for human healthcare systems. Am. J. Bioeth. 2020 20 11 1 3 10.1080/15265161.2020.1822674 33103968
    [Google Scholar]
  47. Li W. Chai Y. Khan F. Jan S.R.U. Verma S. Menon V.G. Kavita F. Li X. A comprehensive survey on ML-based big data analytics for IoT-enabled smart healthcare system. Mob. Netw. Appl. 2021 26 1 234 252 10.1007/s11036‑020‑01700‑6
    [Google Scholar]
  48. Javaid M. Haleem A. Vaishya R. Bahl S. Suman R. Vaish A. Industry 4.0 technologies and their applications in fighting COVID-19 pandemic. Diabetes Metab. Syndr. 2020 14 4 419 422 10.1016/j.dsx.2020.04.032 32344370
    [Google Scholar]
  49. Seh A.H. Al-Amri J.F. Subahi A.F. Agrawal A. Kumar R. Khan R.A. ML based framework for maintaining privacy of healthcare data. Intell. Autom. Soft Comput. 2021 29 3 697 712 10.32604/iasc.2021.018048
    [Google Scholar]
  50. Mastoli M.M. Pol U.R. Patil R.D. ML classification algorithms for predictive analysis in healthcare. Mach. Learn. 2019 6 12 1225 1229
    [Google Scholar]
  51. Watson D.S. Krutzinna J. Bruce I.N. Griffiths C.E.M. McInnes I.B. Barnes M.R. Floridi L. Clinical applications of machine learning algorithms: Beyond the black box. BMJ 2019 364 l886 10.1136/bmj.l886 30862612
    [Google Scholar]
  52. Shukla S. Hassan M.F. Jung L.T. Awang A. Khan M.K. A 3-Tier Architecture for Network Latency Reduction in Healthcare Internet-of-Things Using Fog Computing and Machine Learning. ICSCA '19: Proceedings of the 2019 8th International Conference on Software and Computer Applications Penang, Malaysia, 2019, pp. 522–528
    [Google Scholar]
  53. Shah P. Kendall F. Khozin S. Goosen R. Hu J. Laramie J. Ringel M. Schork N. Artificial intelligence and machine learning in clinical development: A translational perspective. NPJ Digit. Med. 2019 2 1 69 10.1038/s41746‑019‑0148‑3 31372505
    [Google Scholar]
  54. Aazam M. Zeadally S. Flushing E.F. Task offloading in edge computing for machine learning-based smart healthcare. Comput. Netw. 2021 191 108019 10.1016/j.comnet.2021.108019
    [Google Scholar]
  55. Bærøe K. Jansen M. Kerasidou A. ML in healthcare: Exceptional technologies require exceptional ethics. Am. J. Bioeth. 2020 20 11 48 51 10.1080/15265161.2020.1820103 33103974
    [Google Scholar]
  56. Arjun K.P. Kumar K.S. ML-A neoteric medicine to healthcare. Int. J. Emerg. Technol. 2020 11 3 195 201
    [Google Scholar]
  57. Qaisar S.M. Hussain S.F. Effective epileptic seizure detection by using level-crossing EEG sampling sub-bands statistical features selection and machine learning for mobile healthcare. Comput. Methods Programs Biomed. 2021 203 106034 10.1016/j.cmpb.2021.106034 33744752
    [Google Scholar]
  58. Khan M.I. Jan M.A. Muhammad Y. Do D.T. Rehman A.U. Mavromoustakis C.X. Pallis E. Tracking vital signs of a patient using channel state information and ML for a smart healthcare system. Neural Comput. Appl. 2021 ••• 1 5
    [Google Scholar]
  59. Birkhead G.S. Klompas M. Shah N.R. Uses of electronic health records for public health surveillance to advance public health. Annu. Rev. Public Health 2015 36 1 345 359 10.1146/annurev‑publhealth‑031914‑122747 25581157
    [Google Scholar]
  60. Kolachalama V.B. Garg P.S. Machine learning and medical education. NPJ Digit. Med. 2018 1 1 54 10.1038/s41746‑018‑0061‑1 31304333
    [Google Scholar]
  61. Rajpurkar P. Chen E. Banerjee O. Topol E.J. AI in health and medicine. Nat. Med. 2022 28 1 31 38 10.1038/s41591‑021‑01614‑0 35058619
    [Google Scholar]
  62. Price W.N. II Gerke S. Cohen I.G. Potential liability for physicians using artificial intelligence. JAMA 2019 322 18 1765 1766 10.1001/jama.2019.15064 31584609
    [Google Scholar]
  63. Lee C Zame W Yoon J Van Der Schaar M. Deephit: A deep learning approach to survival analysis with competing risks. AAAI Conference on Artificial Intelligence Palo Alto, California USA, 2018 AAAI Press 10.1609/aaai.v32i1.11842
    [Google Scholar]
  64. Roth G.A. Johnson C. Abajobir A. Abd-Allah F. Abera S.F. Abyu G. Ahmed M. Aksut B. Alam T. Alam K. Alla F. Alvis-Guzman N. Amrock S. Ansari H. Ärnlöv J. Asayesh H. Atey T.M. Avila-Burgos L. Awasthi A. Banerjee A. Barac A. Bärnighausen T. Barregard L. Bedi N. Belay Ketema E. Bennett D. Berhe G. Bhutta Z. Bitew S. Carapetis J. Carrero J.J. Malta D.C. Castañeda-Orjuela C.A. Castillo-Rivas J. Catalá-López F. Choi J.Y. Christensen H. Cirillo M. Cooper L. Jr Criqui M. Cundiff D. Damasceno A. Dandona L. Dandona R. Davletov K. Dharmaratne S. Dorairaj P. Dubey M. Ehrenkranz R. El Sayed Zaki M. Faraon E.J.A. Esteghamati A. Farid T. Farvid M. Feigin V. Ding E.L. Fowkes G. Gebrehiwot T. Gillum R. Gold A. Gona P. Gupta R. Habtewold T.D. Hafezi-Nejad N. Hailu T. Hailu G.B. Hankey G. Hassen H.Y. Abate K.H. Havmoeller R. Hay S.I. Horino M. Hotez P.J. Jacobsen K. James S. Javanbakht M. Jeemon P. John D. Jonas J. Kalkonde Y. Karimkhani C. Kasaeian A. Khader Y. Khan A. Khang Y.H. Khera S. Khoja A.T. Khubchandani J. Kim D. Kolte D. Kosen S. Krohn K.J. Kumar G.A. Kwan G.F. Lal D.K. Larsson A. Linn S. Lopez A. Lotufo P.A. El Razek H.M.A. Malekzadeh R. Mazidi M. Meier T. Meles K.G. Mensah G. Meretoja A. Mezgebe H. Miller T. Mirrakhimov E. Mohammed S. Moran A.E. Musa K.I. Narula J. Neal B. Ngalesoni F. Nguyen G. Obermeyer C.M. Owolabi M. Patton G. Pedro J. Qato D. Qorbani M. Rahimi K. Rai R.K. Rawaf S. Ribeiro A. Safiri S. Salomon J.A. Santos I. Santric Milicevic M. Sartorius B. Schutte A. Sepanlou S. Shaikh M.A. Shin M.J. Shishehbor M. Shore H. Silva D.A.S. Sobngwi E. Stranges S. Swaminathan S. Tabarés-Seisdedos R. Tadele Atnafu N. Tesfay F. Thakur J.S. Thrift A. Topor-Madry R. Truelsen T. Tyrovolas S. Ukwaja K.N. Uthman O. Vasankari T. Vlassov V. Vollset S.E. Wakayo T. Watkins D. Weintraub R. Werdecker A. Westerman R. Wiysonge C.S. Wolfe C. Workicho A. Xu G. Yano Y. Yip P. Yonemoto N. Younis M. Yu C. Vos T. Naghavi M. Murray C. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J. Am. Coll. Cardiol. 2017 70 1 1 25 10.1016/j.jacc.2017.04.052 28527533
    [Google Scholar]
  65. Bertsimas D. Bjarnadóttir M.V. Kane M.A. Kryder J.C. Pandey R. Vempala S. Wang G. Algorithmic prediction of health-care costs. Oper. Res. 2008 56 6 1382 1392 10.1287/opre.1080.0619
    [Google Scholar]
  66. Roy P.M. Meyer G. Vielle B. Le Gall C. Verschuren F. Carpentier F. Leveau P. Furber A. Appropriateness of diagnostic management and outcomes of suspected pulmonary embolism. Ann. Intern. Med. 2006 144 3 157 164 10.7326/0003‑4819‑144‑3‑200602070‑00003 16461959
    [Google Scholar]
  67. Tsega S. Cho H.J. Prediction and prevention using deep learning. JAMA Netw. Open 2019 2 7 e197447 10.1001/jamanetworkopen.2019.7447 31322685
    [Google Scholar]
  68. Cohen A.T. Harrington R.A. Goldhaber S.Z. Hull R.D. Wiens B.L. Gold A. Hernandez A.F. Gibson C.M. Extended thromboprophylaxis with betrixaban in acutely ill medical patients. N. Engl. J. Med. 2016 375 6 534 544 10.1056/NEJMoa1601747 27232649
    [Google Scholar]
  69. Rahimian F. Salimi-Khorshidi G. Payberah A.H. Tran J. Ayala Solares R. Raimondi F. Nazarzadeh M. Canoy D. Rahimi K. Predicting the risk of emergency admission with machine learning: Development and validation using linked electronic health records. PLoS Med. 2018 15 11 e1002695 10.1371/journal.pmed.1002695 30458006
    [Google Scholar]
  70. Kurt I. Ture M. Kurum A.T. Comparing performances of logistic regression, classification and regression tree, and neural networks for predicting coronary artery disease. Expert Syst. Appl. 2008 34 1 366 374 10.1016/j.eswa.2006.09.004
    [Google Scholar]
  71. Carroll R.J. Eyler A.E. Denny J.C. Naïve electronic health record phenotype identification for rheumatoid arthritis. AMIA Annu Symp Proc. 2011 2011 189 196 2011
    [Google Scholar]
  72. Hippisley-Cox J. Coupland C. Predicting risk of emergency admission to hospital using primary care data: Derivation and validation of QAdmissions score. BMJ Open 2013 3 8 e003482 10.1136/bmjopen‑2013‑003482 23959760
    [Google Scholar]
  73. Miotto R. Li L. Kidd B.A. Dudley J.T. Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci. Rep. 2016 6 1 26094 10.1038/srep26094 27185194
    [Google Scholar]
  74. Kang H. The prevention and handling of the missing data. Korean J. Anesthesiol. 2013 64 5 402 406 10.4097/kjae.2013.64.5.402 23741561
    [Google Scholar]
  75. Liu Y. Chen P.C. Krause J. Peng L. How to read articles that use ML: Users guides to the medical literature. JAMA 2019 322 18 1806 1816 10.1001/jama.2019.16489 31714992
    [Google Scholar]
  76. Johnson A.E.W. Pollard T.J. Shen L. Lehman L.H. Feng M. Ghassemi M. Moody B. Szolovits P. Anthony Celi L. Mark R.G. MIMIC-III, a freely accessible critical care database. Sci. Data 2016 3 1 160035 10.1038/sdata.2016.35 27219127
    [Google Scholar]
  77. Liu H Motoda H Feature selection for knowledge discovery and data mining. Springer Science+Business Media, LLC 2012
    [Google Scholar]
  78. Chan H.C.S. Shan H. Dahoun T. Vogel H. Yuan S. Advancing drug discovery via artificial intelligence. Trends Pharmacol. Sci. 2019 40 8 592 604 10.1016/j.tips.2019.06.004 31320117
    [Google Scholar]
  79. Rifaioglu A.S. Atas H. Martin M.J. Cetin-Atalay R. Atalay V. Doğan T. Recent applications of deep learning and machine intelligence on in silico drug discovery: Methods, tools and databases. Brief. Bioinform. 2019 20 5 1878 1912 10.1093/bib/bby061 30084866
    [Google Scholar]
  80. Dugger S.A. Platt A. Goldstein D.B. Drug development in the era of precision medicine. Nat. Rev. Drug Discov. 2018 17 3 183 196 10.1038/nrd.2017.226 29217837
    [Google Scholar]
  81. Next generation diagnostic algorithm in non-small cell lung cancer predictive molecular pathology: The KWAY Italian multicenter cost evaluation study. Crit Rev Oncol Hematol 2022 169 103525
    [Google Scholar]
  82. Urbanos G. Martín A. Vázquez G. Villanueva M. Villa M. Jimenez-Roldan L. Chavarrías M. Lagares A. Juárez E. Sanz C. Supervised M.L. Supervised machine learning methods and hyperspectral imaging techniques jointly applied for brain cancer classification. Sensors 2021 21 11 3827 10.3390/s21113827 34073145
    [Google Scholar]
  83. Mirkin S. Albensi B.C. Should artificial intelligence be used in conjunction with Neuroimaging in the diagnosis of alzheimer’s disease? Front. Aging Neurosci. 2023 15 1094233 10.3389/fnagi.2023.1094233 37187577
    [Google Scholar]
  84. MacRaild M. Sarrami-Foroushani A. Lassila T. Frangi A.F. Accelerated simulation methodologies for computational vascular flow modelling. J. R. Soc. Interface 2024 21 211 20230565 10.1098/rsif.2023.0565 38350616
    [Google Scholar]
  85. Ye D. Zun P. Krzhizhanovskaya V. Hoekstra A.G. Uncertainty quantification of a three-dimensional in-stent restenosis model with surrogate modelling. J. R. Soc. Interface 2022 19 187 20210864 10.1098/rsif.2021.0864 35193385
    [Google Scholar]
  86. Chau S.L. Muandet K. Sejdinovic D. Explaining the uncertain: Stochastic shapley values for gaussian process models. arXiv:2305.15167 2024
    [Google Scholar]
  87. Kyrimi E. McLachlan S. Dube K. Neves M.R. Fahmi A. Fenton N. A comprehensive scoping review of Bayesian networks in healthcare: Past, present and future. Artif. Intell. Med. 2021 117 102108 10.1016/j.artmed.2021.102108 34127238
    [Google Scholar]
  88. Freguglia V. Garcia N.L. Inference tools for Markov random fields on lattices: The r package mrf2d. J. Stat. Softw. 2022 101 8 1 36 10.18637/jss.v101.i08
    [Google Scholar]
  89. Wen N. Liu G. Zhang J. Zhang R. Fu Y. Han X. A fingerprints based molecular property prediction method using the BERT model. J. Cheminform. 2022 14 1 71 10.1186/s13321‑022‑00650‑3 36271394
    [Google Scholar]
  90. Chen S.Y-C. Asynchronous training of quantum reinforcement learning. arXiv:2301.05096 2023
    [Google Scholar]
  91. Dave T. Athaluri S.A. Singh S. ChatGPT in medicine: An overview of its applications, advantages, limitations, future prospects, and ethical considerations. Front. Artif. Intell. 2023 6 1169595 10.3389/frai.2023.1169595 37215063
    [Google Scholar]
  92. Thapa S. Adhikari S. ChatGPT, bard, and large language models for biomedical research: Opportunities and pitfalls. Ann. Biomed. Eng. 2023 51 12 2647 2651 10.1007/s10439‑023‑03284‑0 37328703
    [Google Scholar]
  93. Sharma S. Pajai S. Prasad R. Wanjari M.B. Munjewar P.K. Sharma R. Pathade A. A critical review of ChatGPT as a potential substitute for diabetes educators. Cureus 2023 15 5 e38380 10.7759/cureus.38380 37265899
    [Google Scholar]
  94. Kretschmer F. Seipp J. Ludwi M. Klau G.W. Böcker S. Small molecule ML: All models are wrong, some may not even be useful. bioRxiv 2023 10.1101/2023.03.27.534311
    [Google Scholar]
  95. Kang Q. Fang P. Zhang S. Qiu H. Lan Z. Deep graph convolutional network for small-molecule retention time prediction. J Chromatogr A 2023 1711 464439 10.1016/j.chroma.2023.464439
    [Google Scholar]
  96. Shilpa S. Kashyap G. Sunoj R.B. Recent applications of ML in molecular property and chemical reaction outcome predictions. J. Phys. Chem. A 2023 127 40 8253 8271 10.1021/acs.jpca.3c04779 37769193
    [Google Scholar]
  97. Stahl K. Graziadei A. Dau T. Brock O. Rappsilber J. Protein structure prediction with in-cell photo-crosslinking mass spectrometry and deep learning. Nat. Biotechnol. 2023 41 12 1810 1819 10.1038/s41587‑023‑01704‑z 36941363
    [Google Scholar]
  98. Chen S. Wulamu A. Zou Q. Zheng H. Wen L. Guo X. Chen H. Zhang T. Zhang Y. MD-GNN: A mechanism-data- driven graph neural network for molecular properties prediction and new material discovery. J. Mol. Graph. Model. 2023 123 108506 10.1016/j.jmgm.2023.108506 37182505
    [Google Scholar]
  99. Yang L. Jin C. Yang G. Bing Z. Huang L. Niu Y. Yang L. Transformer-based deep learning method for optimizing ADMET properties of lead compounds. Phys. Chem. Chem. Phys. 2023 25 3 2377 2385 10.1039/D2CP05332B 36597997
    [Google Scholar]
  100. Salam A. Siraj H.H. Mohamad N. Das S. Rabeya Y. Bedside teaching in undergraduate medical education: Issues, strategies, and new models for better preparation of new generation doctors. Iran. J. Med. Sci. 2011 36 1 1 6 23365470
    [Google Scholar]
  101. Janicik R.W. Fletcher K.E. Teaching at the bedside: A new model. Med. Teach. 2003 25 2 127 130 10.1080/0142159031000092490 12745518
    [Google Scholar]
  102. Rider E.A. Keefer C.H. Communication skills competencies: Definitions and a teaching toolbox. Med. Educ. 2006 40 7 624 629 10.1111/j.1365‑2929.2006.02500.x 16836534
    [Google Scholar]
  103. Ramani S. Leinster S. AMEE Guide no. 34: Teaching in the clinical environment. Med. Teach. 2008 30 4 347 364 10.1080/01421590802061613 18569655
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128353371250119121315
Loading
/content/journals/cpd/10.2174/0113816128353371250119121315
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test