Skip to content
2000
image of A Mini-Review on EGFR-Tyrosine Kinase Inhibitors and their Resistance Mechanisms

Abstract

Background

An essential component of cell development, proliferation, and survival is the transmembrane receptor known as the epidermal growth factor receptor (EGFR). Dysregulated EGFR signalling is an appealing pathway that has been linked to the genesis and progression of several cancer types. EGFR tyrosine kinase inhibitors (TKIs) are targeted drugs that show promise in the fight against cancer. EGFR tyrosine kinase inhibitors obstruct cancer growth and survival signalling pathways by blocking the receptor's tyrosine kinase domain. Patients with non-small cell lung cancer (NSCLC) that have EGFR mutations have shown increased progression-free survival and overall survival rates when treated with EGFR TKIs as compared to conventional chemotherapy, according to many clinical studies.

Objectives

This review is aimed to present the journey of EGFR-tyrosine kinase inhibitors, their signalling cascade, and various resistant mechanisms.

Methods

The literature search was carried out on electronic databases like PubMed, Medline, ., by employing search keywords, such as EGFR, EGFR inhibitors, cancer, tyrosine kinase, ., and data on EGFR signaling pathways and the types of potential inhibitors in a hierarchical manner, followed by various resistance mechanisms that have emerged, were collected.

Results

Drug resistance is still an issue in long-term therapy of patients, even though EGFR TKIs provide substantial therapeutic advantages. Common routes of resistance to EGFR TKIs include acquired resistance mechanisms, which include the development of secondary EGFR mutations and the activation of alternative signalling pathways. To improve the therapeutic effectiveness of EGFR TKIs, future research will center on searching indicators of response and resistance, finding ways to employ these medicines most effectively, and creating new treatment approaches.

Conclusion

This review provides insight into the use of EGFR kinase inhibitors for treating cancer patients and outlines potential advancements in current therapies to develop more effective molecules.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128349342250121053445
2025-03-11
2025-04-02
Loading full text...

Full text loading...

References

  1. Bhatia P. Sharma V. Alam O. Manaithiya A. Alam P. Kahksha Alam M.T. Imran M. Novel quinazoline-based EGFR kinase inhibitors: A review focussing on SAR and molecular docking studies (2015-2019). Eur. J. Med. Chem. 2020 204 112640 10.1016/j.ejmech.2020.112640 32739648
    [Google Scholar]
  2. Herbst R.S. Review of epidermal growth factor receptor biology. Int. J. Radiat. Oncol. Biol. Phys. 2004 59 2 Suppl. S21 S26 10.1016/j.ijrobp.2003.11.041 15142631
    [Google Scholar]
  3. Cohen S. Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. J. Biol. Chem. 1962 237 5 1555 1562 10.1016/S0021‑9258(19)83739‑0 13880319
    [Google Scholar]
  4. Burgess A.W. Cho H.S. Eigenbrot C. Ferguson K.M. Garrett T.P.J. Leahy D.J. Lemmon M.A. Sliwkowski M.X. Ward C.W. Yokoyama S. An open-and-shut case? Recent insights into the activation of EGF/ErbB receptors. Mol. Cell 2003 12 3 541 552 10.1016/S1097‑2765(03)00350‑2 14527402
    [Google Scholar]
  5. Lee N.Y. Hazlett T.L. Koland J.G. Structure and dynamics of the epidermal growth factor receptor C‐terminal phosphorylation domain. Protein Sci. 2006 15 5 1142 1152 10.1110/ps.052045306 16597832
    [Google Scholar]
  6. Linggi B. Carpenter G. ErbB receptors: New insights on mechanisms and biology. Trends Cell Biol. 2006 16 12 649 656 10.1016/j.tcb.2006.10.008 17085050
    [Google Scholar]
  7. Downward J. Parker P. Waterfield M.D. Autophosphorylation sites on the epidermal growth factor receptor. Nature 1984 311 5985 483 485 10.1038/311483a0 6090945
    [Google Scholar]
  8. Abourehab M.A.S. Alqahtani A.M. Youssif B.G.M. Gouda A.M. Globally approved EGFR inhibitors: Insights into their syntheses, target kinases, biological activities, receptor interactions, and metabolism. Molecules 2021 26 21 6677 10.3390/molecules26216677 34771085
    [Google Scholar]
  9. Xu N. Fang W. Mu L. Tang Y. Gao L. Ren S. Cao D. Zhou L. Zhang A. Liu D. Zhou C. Wong K.K. Yu L. Zhang L. Chen L. Overexpression of wildtype EGFR is tumorigenic and denotes a therapeutic target in non-small cell lung cancer. Oncotarget 2016 7 4 3884 3896 10.18632/oncotarget.6461 26646697
    [Google Scholar]
  10. Sigismund S. Avanzato D. Lanzetti L. Emerging functions of the EGFR in cancer. Mol. Oncol. 2018 12 1 3 20 10.1002/1878‑0261.12155 29124875
    [Google Scholar]
  11. Ayati A. Moghimi S. Salarinejad S. Safavi M. Pouramiri B. Foroumadi A. A review on progression of epidermal growth factor receptor (EGFR) inhibitors as an efficient approach in cancer targeted therapy. Bioorg. Chem. 2020 99 103811 10.1016/j.bioorg.2020.103811 32278207
    [Google Scholar]
  12. Soltan O.M. Shoman M.E. Abdel-Aziz S.A. Narumi A. Konno H. Abdel-Aziz M. Molecular hybrids: A five-year survey on structures of multiple targeted hybrids of protein kinase inhibitors for cancer therapy. Eur. J. Med. Chem. 2021 225 113768 10.1016/j.ejmech.2021.113768 34450497
    [Google Scholar]
  13. Lynch T.J. Bell D.W. Sordella R. Gurubhagavatula S. Okimoto R.A. Brannigan B.W. Harris P.L. Haserlat S.M. Supko J.G. Haluska F.G. Louis D.N. Christiani D.C. Settleman J. Haber D.A. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 2004 350 21 2129 2139 10.1056/NEJMoa040938 15118073
    [Google Scholar]
  14. Mok T.S. Wu Y.L. Thongprasert S. Yang C.H. Chu D.T. Saijo N. Sunpaweravong P. Han B. Margono B. Ichinose Y. Nishiwaki Y. Ohe Y. Yang J.J. Chewaskulyong B. Jiang H. Duffield E.L. Watkins C.L. Armour A.A. Fukuoka M. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 2009 361 10 947 957 10.1056/NEJMoa0810699 19692680
    [Google Scholar]
  15. Yarden Y. Sliwkowski M.X. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol. 2001 2 2 127 137 10.1038/35052073 11252954
    [Google Scholar]
  16. Pao W. Chmielecki J. Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer. Nat. Rev. Cancer 2010 10 11 760 774 10.1038/nrc2947 20966921
    [Google Scholar]
  17. Song Y. Bi Z. Liu Y. Qin F. Wei Y. Wei X. Targeting RAS–RAF–MEK–ERK signaling pathway in human cancer: Current status in clinical trials. Genes Dis. 2023 10 1 76 88 10.1016/j.gendis.2022.05.006 37013062
    [Google Scholar]
  18. Porta C. Paglino C. Mosca A. Targeting PI3K/Akt/mTOR signaling in cancer. Front. Oncol. 2014 4 64 10.3389/fonc.2014.00064 24782981
    [Google Scholar]
  19. Yang J.C.H. Wu Y.L. Schuler M. Sebastian M. Popat S. Yamamoto N. Zhou C. Hu C.P. O’Byrne K. Feng J. Lu S. Huang Y. Geater S.L. Lee K.Y. Tsai C.M. Gorbunova V. Hirsh V. Bennouna J. Orlov S. Mok T. Boyer M. Su W.C. Lee K.H. Kato T. Massey D. Shahidi M. Zazulina V. Sequist L.V. Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUX-Lung 3 and LUX-Lung 6): analysis of overall survival data from two randomised, phase 3 trials. Lancet Oncol. 2015 16 2 141 151 10.1016/S1470‑2045(14)71173‑8 25589191
    [Google Scholar]
  20. Cross D.A.E. Ashton S.E. Ghiorghiu S. Eberlein C. Nebhan C.A. Spitzler P.J. Orme J.P. Finlay M.R.V. Ward R.A. Mellor M.J. Hughes G. Rahi A. Jacobs V.N. Brewer M.R. Ichihara E. Sun J. Jin H. Ballard P. Al-Kadhimi K. Rowlinson R. Klinowska T. Richmond G.H.P. Cantarini M. Kim D.W. Ranson M.R. Pao W. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov. 2014 4 9 1046 1061 10.1158/2159‑8290.CD‑14‑0337 24893891
    [Google Scholar]
  21. Wang Y.T. Yang P.C. Zhang J.Y. Sun J.F. Synthetic routes and clinical application of representative small-molecule EGFR inhibitors for cancer therapy. Molecules 2024 29 7 1448 10.3390/molecules29071448 38611728
    [Google Scholar]
  22. Johnson J.R. Bross P. Cohen M. Rothmann M. Chen G. Zajicek A. Gobburu J. Rahman A. Staten A. Pazdur R. Approval summary: Imatinib mesylate capsules for treatment of adult patients with newly diagnosed philadelphia chromosome-positive chronic myelogenous leukemia in chronic phase. Clin. Cancer Res. 2003 9 6 1972 1979 12796358
    [Google Scholar]
  23. Cohen M.H. Williams G.A. Sridhara R. Chen G. Pazdur R. FDA drug approval summary: Gefitinib (ZD1839) (Iressa) tablets. Oncologist 2003 8 4 303 306 10.1634/theoncologist.8‑4‑303 12897327
    [Google Scholar]
  24. Cohen M.H. Johnson J.R. Chen Y.F. Sridhara R. Pazdur R. FDA drug approval summary: Erlotinib (Tarceva) tablets. Oncologist 2005 10 7 461 466 10.1634/theoncologist.10‑7‑461 16079312
    [Google Scholar]
  25. Tay R.Y. Wong R. Hawkes E.A. Treatment of metastatic colorectal cancer: Focus on panitumumab. Cancer Manag. Res. 2015 7 189 198 26150735
    [Google Scholar]
  26. Quesnelle K.M. Boehm A.L. Grandis J.R. STAT‐mediated EGFR signaling in cancer. J. Cell. Biochem. 2007 102 2 311 319 10.1002/jcb.21475 17661350
    [Google Scholar]
  27. Hunter T. The genesis of tyrosine phosphorylation. Cold Spring Harb. Perspect. Biol. 2014 6 5 a020644 10.1101/cshperspect.a020644 24789824
    [Google Scholar]
  28. Stamos J. Sliwkowski M.X. Eigenbrot C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J. Biol. Chem. 2002 277 48 46265 46272 10.1074/jbc.M207135200 12196540
    [Google Scholar]
  29. Martin-Fernandez M.L. Clarke D.T. Roberts S.K. Zanetti-Domingues L.C. Gervasio F.L. Structure and dynamics of the EGF receptor as revealed by experiments and simulations and its relevance to non-small cell lung cancer. Cells 2019 8 4 316 10.3390/cells8040316 30959819
    [Google Scholar]
  30. Zhao Z. Xie L. Bourne P.E. Structural insights into characterizing binding sites in epidermal growth factor receptor kinase mutants. J. Chem. Inf. Model. 2019 59 1 453 462 10.1021/acs.jcim.8b00458 30582689
    [Google Scholar]
  31. Amelia T. Kartasasmita R.E. Ohwada T. Tjahjono D.H. Structural insight and development of EGFR tyrosine kinase inhibitors. Molecules 2022 27 3 819 10.3390/molecules27030819 35164092
    [Google Scholar]
  32. Guo Y. Du Z. Shi T. Structural analysis of interactions between epidermal growth factor receptor (EGFR) mutants and their inhibitors. Biophysica 2023 3 1 203 213 10.3390/biophysica3010013
    [Google Scholar]
  33. Shao J. Ye Z. Shen Z. Liu N. Zhang L. Tachibana M. Xie Z. Chidamide improves gefitinib treatment outcomes in NSCLC by attenuating recruitment and immunosuppressive function of myeloid-derived suppressor cells. Biomed. Pharmacother. 2024 173 116306 10.1016/j.biopha.2024.116306 38401520
    [Google Scholar]
  34. Rawluk J. Waller C.F. Gefitinib. Small Mol Oncol. 2018 235 246
    [Google Scholar]
  35. Pedersen M.W. Pedersen N. Ottesen L.H. Poulsen H.S. Differential response to gefitinib of cells expressing normal EGFR and the mutant EGFRvIII. Br. J. Cancer 2005 93 8 915 923 10.1038/sj.bjc.6602793 16189524
    [Google Scholar]
  36. Kris M.G. Natale R.B. Herbst R.S. Lynch T.J. Jr Prager D. Belani C.P. Schiller J.H. Kelly K. Spiridonidis H. Sandler A. Albain K.S. Cella D. Wolf M.K. Averbuch S.D. Ochs J.J. Kay A.C. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: A randomized trial. JAMA 2003 290 16 2149 2158 10.1001/jama.290.16.2149 14570950
    [Google Scholar]
  37. Bazaei M. Honarvar B. Esfandiari N. Sajadian S.A. Aboosadi Z.A. Measurement and thermodynamic modeling of solubility of Erlotinib hydrochloride, as an anti-cancer drug, in supercritical carbon dioxide. Fluid Phase Equilib. 2023 573 113877 10.1016/j.fluid.2023.113877
    [Google Scholar]
  38. Wang X. Cao J. Li Z. Xu R. Guo Y. Pu F. Xiao X. Du H. He J. Lu S. Co-amorphous mixture of erlotinib hydrochloride and gallic acid for enhanced antitumor effects. J. Drug Deliv. Sci. Technol. 2024 91 105200 10.1016/j.jddst.2023.105200
    [Google Scholar]
  39. Kobayashi K. Hagiwara K. Epidermal growth factor receptor (EGFR) mutation and personalized therapy in advanced nonsmall cell lung cancer (NSCLC). Target. Oncol. 2013 8 1 27 33 10.1007/s11523‑013‑0258‑9 23361373
    [Google Scholar]
  40. Brower J.V. Robins H.I. Erlotinib for the treatment of brain metastases in non-small cell lung cancer. Expert Opin. Pharmacother. 2016 17 7 1013 1021 10.1517/14656566.2016.1165206 26967582
    [Google Scholar]
  41. Abdelgalil A.A. Al-Kahtani H.M. Al-Jenoobi F.I. Erlotinib. Profiles of Drug Substances, Excipients and Related Methodology Academic Press 2020 45 93 117
    [Google Scholar]
  42. Tanaji Mane P. Sopanrao Wakure B. Shridhar Wakte P. Enhancement in the therapeutic potential of lapatinib ditosylate against breast cancer by the use of β-cyclodextrin based ternary nanosponge system. Int. J. Pharm. 2023 642 123210 10.1016/j.ijpharm.2023.123210 37433350
    [Google Scholar]
  43. Geyer C.E. Forster J. Lindquist D. Chan S. Romieu C.G. Pienkowski T. Jagiello-Gruszfeld A. Crown J. Chan A. Kaufman B. Skarlos D. Campone M. Davidson N. Berger M. Oliva C. Rubin S.D. Stein S. Cameron D. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N. Engl. J. Med. 2006 355 26 2733 2743 10.1056/NEJMoa064320 17192538
    [Google Scholar]
  44. Scaltriti M. Verma C. Guzman M. Jimenez J. Parra J.L. Pedersen K. Smith D.J. Landolfi S. Ramon y Cajal S. Arribas J. Baselga J. Lapatinib, a HER2 tyrosine kinase inhibitor, induces stabilization and accumulation of HER2 and potentiates trastuzumab-dependent cell cytotoxicity. Oncogene 2009 28 6 803 814 10.1038/onc.2008.432 19060928
    [Google Scholar]
  45. Bilancia D. Rosati G. Dinota A. Germano D. Romano R. Manzione L. Lapatinib in breast cancer. Ann. Oncol. 2007 18 Suppl. 6 vi26 vi30 10.1093/annonc/mdm220 17591827
    [Google Scholar]
  46. Qadir A. Samad D.A. Asif M. Ali M.M. Zain S. Investigating the effect of vandetanib and celecoxib combination on angiogenesis. J. Taibah Univ. Med. Sci. 2023 18 5 1011 1017 10.1016/j.jtumed.2023.02.016 36959917
    [Google Scholar]
  47. Carlomagno F. Vitagliano D. Guida T. Ciardiello F. Tortora G. Vecchio G. Ryan A.J. Fontanini G. Fusco A. Santoro M. ZD6474, an orally available inhibitor of KDR tyrosine kinase activity, efficiently blocks oncogenic RET kinases. Cancer Res. 2002 62 24 7284 7290 12499271
    [Google Scholar]
  48. Wells S.A. Jr Robinson B.G. Gagel R.F. Dralle H. Fagin J.A. Santoro M. Baudin E. Elisei R. Jarzab B. Vasselli J.R. Read J. Langmuir P. Ryan A.J. Schlumberger M.J. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: A randomized, double-blind phase III trial. J. Clin. Oncol. 2012 30 2 134 141 10.1200/JCO.2011.35.5040 22025146
    [Google Scholar]
  49. Ciardiello F. Tortora G. EGFR antagonists in cancer treatment. N. Engl. J. Med. 2008 358 11 1160 1174 10.1056/NEJMra0707704 18337605
    [Google Scholar]
  50. Vanza J. Zinzuvadia D. Koria H. Lalani J. Patel R.B. Patel M.R. Assessment of nanocarrier mediated afatinib pharmacokinetic: A comparative in-vivo study in rat model for enhanced therapeutic efficacy in lung cancer management. J. Drug Deliv. Sci. Technol. 2024 95 105573 10.1016/j.jddst.2024.105573
    [Google Scholar]
  51. Solca F. Dahl G. Zoephel A. Bader G. Sanderson M. Klein C. Kraemer O. Himmelsbach F. Haaksma E. Adolf G.R. Target binding properties and cellular activity of afatinib (BIBW 2992), an irreversible ErbB family blocker. J. Pharmacol. Exp. Ther. 2012 343 2 342 350 10.1124/jpet.112.197756 22888144
    [Google Scholar]
  52. Harvey R.D. Adams V.R. Beardslee T. Medina P. Afatinib for the treatment of EGFR mutation-positive NSCLC: A review of clinical findings. J. Oncol. Pharm. Pract. 2020 26 6 1461 1474 10.1177/1078155220931926 32567494
    [Google Scholar]
  53. Sartori G. Belluomini L. Lombardo F. Avancini A. Trestini I. Vita E. Tregnago D. Menis J. Bria E. Milella M. Pilotto S. Efficacy and safety of afatinib for non-small-cell lung cancer: State-of-the-art and future perspectives. Expert Rev. Anticancer Ther. 2020 20 7 531 542 10.1080/14737140.2020.1776119 32529917
    [Google Scholar]
  54. Konishi H. Haga Y. Lin Y. Tsujino H. Higashisaka K. Tsutsumi Y. Osimertinib-tolerant lung cancer cells are susceptible to ferroptosis. Biochem. Biophys. Res. Commun. 2023 641 116 122 10.1016/j.bbrc.2022.12.029 36527745
    [Google Scholar]
  55. Soria J.C. Ohe Y. Vansteenkiste J. Reungwetwattana T. Chewaskulyong B. Lee K.H. Dechaphunkul A. Imamura F. Nogami N. Kurata T. Okamoto I. Zhou C. Cho B.C. Cheng Y. Cho E.K. Voon P.J. Planchard D. Su W.C. Gray J.E. Lee S.M. Hodge R. Marotti M. Rukazenkov Y. Ramalingam S.S. FLAURA Investigators Osimertinib in untreated EGFR-mutated advanced non–small-cell lung cancer. N. Engl. J. Med. 2018 378 2 113 125 10.1056/NEJMoa1713137 29151359
    [Google Scholar]
  56. Ballard P. Yates J.W.T. Yang Z. Kim D.W. Yang J.C.H. Cantarini M. Pickup K. Jordan A. Hickey M. Grist M. Box M. Johnström P. Varnäs K. Malmquist J. Thress K.S. Jänne P.A. Cross D. Preclinical comparison of osimertinib with other EGFR-TKIs in EGFR-mutant NSCLC brain metastases models, and early evidence of clinical brain metastases activity. Clin. Cancer Res. 2016 22 20 5130 5140 10.1158/1078‑0432.CCR‑16‑0399 27435396
    [Google Scholar]
  57. Mok T.S. Wu Y.L. Ahn M.J. Garassino M.C. Kim H.R. Ramalingam S.S. Shepherd F.A. He Y. Akamatsu H. Theelen W.S.M.E. Lee C.K. Sebastian M. Templeton A. Mann H. Marotti M. Ghiorghiu S. Papadimitrakopoulou V.A. AURA3 Investigators Osimertinib or platinum–pemetrexed in EGFR T790M–positive lung cancer. N. Engl. J. Med. 2017 376 7 629 640 10.1056/NEJMoa1612674 27959700
    [Google Scholar]
  58. Goss G. Tsai C.M. Shepherd F.A. Ahn M.J. Bazhenova L. Crinò L. de Marinis F. Felip E. Morabito A. Hodge R. Cantarini M. Johnson M. Mitsudomi T. Jänne P.A. Yang J.C.H. CNS response to osimertinib in patients with T790M-positive advanced NSCLC: Pooled data from two phase II trials. Ann. Oncol. 2018 29 3 687 693 10.1093/annonc/mdx820 29293889
    [Google Scholar]
  59. Wu Y.L. Ahn M.J. Garassino M.C. Han J.Y. Katakami N. Kim H.R. Hodge R. Kaur P. Brown A.P. Ghiorghiu D. Papadimitrakopoulou V.A. Mok T.S.K. CNS efficacy of osimertinib in patients with T790M-positive advanced non–small-cell lung cancer: Data from a randomized phase III trial (AURA3). J. Clin. Oncol. 2018 36 26 2702 2709 10.1200/JCO.2018.77.9363 30059262
    [Google Scholar]
  60. Colclough N. Ballard P.G. Barton P. Chen K. Cross D.A.E. Finlay M.R.V. Han L. Janefeldt A. Johnström P. Ward R.A. Wrigley G.L. Yan Y. Yates J.W.T. Zhang D. Zhang Z. Preclinical comparison of the blood brain barrier (BBB) permeability of osimertinib (AZD9291) with other irreversible next generation EGFR TKIs. Eur. J. Cancer 2016 69 S28 10.1016/S0959‑8049(16)32664‑8
    [Google Scholar]
  61. Yang J.C. Cho B.C. Kim D.W. Kim S.W. Lee J.S. Su W.C. John T. Kao S.C. Natale R. Goldman J.W. Overend P. Osimertinib for patients (pts) with leptomeningeal metastases (LM) from EGFR-mutant non-small cell lung cancer (NSCLC): Updated results from the BLOOM study. J. Clin. Oncol. 2017 35 15 10.1200/JCO.2017.35.15_suppl.2020
    [Google Scholar]
  62. Zhang Z. Guo X. To K.K.W. Chen Z. Fang X. Luo M. Ma C. Xu J. Yan S. Fu L. Olmutinib (HM61713) reversed multidrug resistance by inhibiting the activity of ATP-binding cassette subfamily G member 2 in vitro and in vivo. Acta Pharm. Sin. B 2018 8 4 563 574 10.1016/j.apsb.2018.06.002 30109181
    [Google Scholar]
  63. Kim E.S. Olmutinib: First global approval. Drugs 2016 76 11 1153 1157 10.1007/s40265‑016‑0606‑z 27357069
    [Google Scholar]
  64. Lee K.O. Cha M.Y. Kim M. Song J.Y. Lee J.H. Kim Y.H. Lee Y.M. Suh K.H. Son J. Abstract LB-100: Discovery of HM61713 as an orally available and mutant EGFR selective inhibitor. Cancer Res. 2014 74 19_Supplement Suppl. LB-100 10.1158/1538‑7445.AM2014‑LB‑100
    [Google Scholar]
  65. Park K. Jӓnne P.A. Kim D.W. Han J.Y. Wu M.F. Lee J.S. Kang J.H. Lee D.H. Cho B.C. Yu C.J. Pang Y.K. Felip E. Kim H. Baek E. Noh Y.S. Olmutinib in T790M‐positive non–small cell lung cancer after failure of first‐line epidermal growth factor receptor‐tyrosine kinase inhibitor therapy: A global, phase 2 study. Cancer 2021 127 9 1407 1416 10.1002/cncr.33385 33434335
    [Google Scholar]
  66. Camidge D.R. Kim H.R. Ahn M.J. Yang J.C.H. Han J.Y. Lee J.S. Hochmair M.J. Li J.Y.C. Chang G.C. Lee K.H. Gridelli C. Delmonte A. Garcia Campelo R. Kim D.W. Bearz A. Griesinger F. Morabito A. Felip E. Califano R. Ghosh S. Spira A. Gettinger S.N. Tiseo M. Gupta N. Haney J. Kerstein D. Popat S. Brigatinib versus crizotinib in ALK-positive non–small-cell lung cancer. N. Engl. J. Med. 2018 379 21 2027 2039 10.1056/NEJMoa1810171 30280657
    [Google Scholar]
  67. Garcia Campelo M.R. Wan Y. Lin H.M. Chen T. Shen J. Zhang P. Camidge D.R. Q-TWiST analysis of survival benefits with brigatinib versus crizotinib in patients with anaplastic lymphoma kinase-positive non-small cell lung cancer based on results of the ALTA-1L trial. Lung Cancer 2023 185 107376 10.1016/j.lungcan.2023.107376 37722340
    [Google Scholar]
  68. Markham A. Brigatinib: First global approval. Drugs 2017 77 10 1131 1135 10.1007/s40265‑017‑0776‑3 28597393
    [Google Scholar]
  69. Kim D.W. Tiseo M. Ahn M.J. Reckamp K.L. Hansen K.H. Kim S.W. Huber R.M. West H.L. Groen H.J.M. Hochmair M.J. Leighl N.B. Gettinger S.N. Langer C.J. Paz-Ares Rodríguez L.G. Smit E.F. Kim E.S. Reichmann W. Haluska F.G. Kerstein D. Camidge D.R. Brigatinib in patients with crizotinib-refractory anaplastic lymphoma kinase-positive non-small-cell lung cancer: A randomized, multicenter phase II trial. J. Clin. Oncol. 2017 35 22 2490 2498 10.1200/JCO.2016.71.5904 28475456
    [Google Scholar]
  70. Siaw J.T. Wan H. Pfeifer K. Rivera V.M. Guan J. Palmer R.H. Hallberg B. Brigatinib, an anaplastic lymphoma kinase inhibitor, abrogates activity and growth in ALK-positive neuroblastoma cells, Drosophila and mice. Oncotarget 2016 7 20 29011 29022 10.18632/oncotarget.8508 27049722
    [Google Scholar]
  71. Zhang S. Anjum R. Squillace R. Nadworny S. Zhou T. Keats J. Ning Y. Wardwell S.D. Miller D. Song Y. Eichinger L. Moran L. Huang W.S. Liu S. Zou D. Wang Y. Mohemmad Q. Jang H.G. Ye E. Narasimhan N. Wang F. Miret J. Zhu X. Clackson T. Dalgarno D. Shakespeare W.C. Rivera V.M. The potent ALK inhibitor brigatinib (AP26113) overcomes mechanisms of resistance to first-and second-generation ALK inhibitors in preclinical models. Clin. Cancer Res. 2016 22 22 5527 5538 10.1158/1078‑0432.CCR‑16‑0569 27780853
    [Google Scholar]
  72. Gupta N. Hanley M.J. Griffin R.J. Zhang P. Venkatakrishnan K. Sinha V. Clinical pharmacology of brigatinib: A next-generation anaplastic lymphoma kinase inhibitor. Clin. Pharmacokinet. 2023 62 8 1063 1079 10.1007/s40262‑023‑01284‑w 37493887
    [Google Scholar]
  73. Gupta N. Wang X. Offman E. Prohn M. Narasimhan N. Kerstein D. Hanley M.J. Venkatakrishnan K. Population pharmacokinetics of brigatinib in healthy volunteers and patients with cancer. Clin. Pharmacokinet. 2021 60 2 235 247 10.1007/s40262‑020‑00929‑4 32816246
    [Google Scholar]
  74. Gainor J.F. Dardaei L. Yoda S. Friboulet L. Leshchiner I. Katayama R. Dagogo-Jack I. Gadgeel S. Schultz K. Singh M. Chin E. Parks M. Lee D. DiCecca R.H. Lockerman E. Huynh T. Logan J. Ritterhouse L.L. Le L.P. Muniappan A. Digumarthy S. Channick C. Keyes C. Getz G. Dias-Santagata D. Heist R.S. Lennerz J. Sequist L.V. Benes C.H. Iafrate A.J. Mino-Kenudson M. Engelman J.A. Shaw A.T. Molecular mechanisms of resistance to first-and second-generation ALK inhibitors in ALK-rearranged lung cancer. Cancer Discov. 2016 6 10 1118 1133 10.1158/2159‑8290.CD‑16‑0596 27432227
    [Google Scholar]
  75. Friedman C.F. D’Souza A. Bello Roufai D. Tinker A.V. de Miguel M. Gambardella V. Goldman J. Loi S. Melisko M.E. Oaknin A. Spanggaard I. Shapiro G.I. ElNaggar A.C. Panni S. Ravichandran V. Frazier A.L. DiPrimeo D. Eli L.D. Solit D.B. Targeting HER2-mutant metastatic cervical cancer with neratinib: Final results from the phase 2 SUMMIT basket trial. Gynecol. Oncol. 2024 181 162 169 10.1016/j.ygyno.2023.12.004 38211393
    [Google Scholar]
  76. Echavarria I. López-Tarruella S. Márquez-Rodas I. Jerez Y. Martin M. Neratinib for the treatment of HER2-positive early stage breast cancer. Expert Rev. Anticancer Ther. 2017 17 8 669 679 10.1080/14737140.2017.1338954 28649882
    [Google Scholar]
  77. Rabindran S.K. Discafani C.M. Rosfjord E.C. Baxter M. Floyd M.B. Golas J. Hallett W.A. Johnson B.D. Nilakantan R. Overbeek E. Reich M.F. Shen R. Shi X. Tsou H.R. Wang Y.F. Wissner A. Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase. Cancer Res. 2004 64 11 3958 3965 10.1158/0008‑5472.CAN‑03‑2868 15173008
    [Google Scholar]
  78. Chan A. Delaloge S. Holmes F.A. Moy B. Iwata H. Harvey V.J. Robert N.J. Silovski T. Gokmen E. von Minckwitz G. Ejlertsen B. Chia S.K.L. Mansi J. Barrios C.H. Gnant M. Buyse M. Gore I. Smith J. II Harker G. Masuda N. Petrakova K. Zotano A.G. Iannotti N. Rodriguez G. Tassone P. Wong A. Bryce R. Ye Y. Yao B. Martin M. ExteNET Study Group Neratinib after trastuzumab-based adjuvant therapy in patients with HER2-positive breast cancer (ExteNET): A multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2016 17 3 367 377 10.1016/S1470‑2045(15)00551‑3 26874901
    [Google Scholar]
  79. Shirley M. Dacomitinib: First global approval. Drugs 2018 78 18 1947 1953 10.1007/s40265‑018‑1028‑x 30506139
    [Google Scholar]
  80. Jung H.A. Park S. Lee S.H. Ahn J.S. Ahn M.J. Sun J.M. Dacomitinib in EGFR-mutant non-small-cell lung cancer with brain metastasis: A single-arm, phase II study. ESMO Open 2023 8 6 102068 10.1016/j.esmoop.2023.102068 38016250
    [Google Scholar]
  81. Tan C.S. Gilligan D. Pacey S. Treatment approaches for EGFR-inhibitor-resistant patients with non-small-cell lung cancer. Lancet Oncol. 2015 16 9 e447 e459 10.1016/S1470‑2045(15)00246‑6 26370354
    [Google Scholar]
  82. Li X. Yang C. Wan H. Zhang G. Feng J. Zhang L. Chen X. Zhong D. Lou L. Tao W. Zhang L. Discovery and development of pyrotinib: A novel irreversible EGFR/HER2 dual tyrosine kinase inhibitor with favorable safety profiles for the treatment of breast cancer. Eur. J. Pharm. Sci. 2017 110 51 61 10.1016/j.ejps.2017.01.021 28115222
    [Google Scholar]
  83. Blair H.A. Pyrotinib: First global approval. Drugs 2018 78 16 1751 1755 10.1007/s40265‑018‑0997‑0 30341682
    [Google Scholar]
  84. Xuhong J.C. Qi X.W. Zhang Y. Jiang J. Mechanism, safety and efficacy of three tyrosine kinase inhibitors lapatinib, neratinib and pyrotinib in HER2-positive breast cancer. Am. J. Cancer Res. 2019 9 10 2103 2119 31720077
    [Google Scholar]
  85. Ma F. Ouyang Q. Li W. Jiang Z. Tong Z. Liu Y. Li H. Yu S. Feng J. Wang S. Hu X. Zou J. Zhu X. Xu B. Pyrotinib or lapatinib combined with capecitabine in HER2–positive metastatic breast cancer with prior taxanes, anthracyclines, and/or trastuzumab: A randomized, phase II study. J. Clin. Oncol. 2019 37 29 2610 2619 10.1200/JCO.19.00108 31430226
    [Google Scholar]
  86. Shi Y. Zhang S. Hu X. Feng J. Ma Z. Zhou J. Yang N. Wu L. Liao W. Zhong D. Han X. Wang Z. Zhang X. Qin S. Ying K. Feng J. Fang J. Liu L. Jiang Y. Safety, clinical activity, and pharmacokinetics of alflutinib (AST2818) in patients with advanced NSCLC with EGFR T790M mutation. J. Thorac. Oncol. 2020 15 6 1015 1026 10.1016/j.jtho.2020.01.010 32007598
    [Google Scholar]
  87. Dong R.F. Zhu M.L. Liu M.M. Xu Y.T. Yuan L.L. Bian J. Xia Y.Z. Kong L.Y. EGFR mutation mediates resistance to EGFR tyrosine kinase inhibitors in NSCLC: From molecular mechanisms to clinical research. Pharmacol. Res. 2021 167 105583 10.1016/j.phrs.2021.105583 33775864
    [Google Scholar]
  88. Chul Cho B. Han J.Y. Hyeong Lee K. Lee Y.G. Kim D.W. Joo Min Y. Kim S.W. Kyung Cho E. Kim J.H. Lee G.W. Sook Lee S. Lee N. Young Wang J. Park H. Ahn M.J. Lazertinib as a frontline treatment in patients with EGFR-mutated advanced non-small cell lung cancer: Long-term follow-up results from LASER201. Lung Cancer 2024 190 107509 10.1016/j.lungcan.2024.107509 38432025
    [Google Scholar]
  89. Dhillon S. Lazertinib: First approval. Drugs 2021 81 9 1107 1113 10.1007/s40265‑021‑01533‑x 34028784
    [Google Scholar]
  90. Ahn M.J. Han J.Y. Lee K.H. Kim S.W. Kim D.W. Lee Y.G. Cho E.K. Kim J.H. Lee G.W. Lee J.S. Min Y.J. Kim J.S. Lee S.S. Kim H.R. Hong M.H. Ahn J.S. Sun J.M. Kim H.T. Lee D.H. Kim S. Cho B.C. Lazertinib in patients with EGFR mutation-positive advanced non-small-cell lung cancer: Results from the dose escalation and dose expansion parts of a first-in-human, open-label, multicentre, phase 1–2 study. Lancet Oncol. 2019 20 12 1681 1690 10.1016/S1470‑2045(19)30504‑2 31587882
    [Google Scholar]
  91. FDA approves lazertinib with amivantamab-vmjw for non-small lung cancer. 2024 Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-lazertinib-amivantamab-vmjw-non-small-lung-cancer
  92. Pacheco J.M. Mobocertinib: A potential treatment for NSCLC with EGFR exon 20 insertions. Cancer Discov. 2021 11 7 1617 1619 10.1158/2159‑8290.CD‑21‑0379 34284994
    [Google Scholar]
  93. Vasconcelos P.E.N.S. Kobayashi I.S. Kobayashi S.S. Costa D.B. Preclinical characterization of mobocertinib highlights the putative therapeutic window of this novel EGFR inhibitor to EGFR exon 20 insertion mutations. JTO Clin. Res. Rep. 2021 2 3 100105 10.1016/j.jtocrr.2020.100105 33728415
    [Google Scholar]
  94. Wang M. Fan Y. Sun M. Wang Y. Zhao Y. Jin B. Hu Y. Han Z. Song X. Liu A. Tang K. Sunvozertinib for the treatment of NSCLC with EGFR Exon20 insertion mutations: The first Pivotal Study Results. J. Clin. Oncol. 2023 41 16 10.1200/JCO.2023.41.16_suppl.900
    [Google Scholar]
  95. Wang M. Yang J.C.H. Mitchell P.L. Fang J. Camidge D.R. Nian W. Chiu C.H. Zhou J. Zhao Y. Su W.C. Yang T.Y. Zhu V.W. Millward M. Fan Y. Huang W.T. Cheng Y. Jiang L. Brungs D. Bazhenova L. Lee C.K. Gao B. Xu Y. Hsu W.H. Zheng L. Jänne P.A. Sunvozertinib, a selective EGFR inhibitor for previously treated non–small cell lung cancer with EGFR exon 20 insertion mutations. Cancer Discov. 2022 12 7 1676 1689 10.1158/2159‑8290.CD‑21‑1615 35404393
    [Google Scholar]
  96. Zhang Y.C. Chen Z.H. Zhang X.C. Xu C.R. Yan H.H. Xie Z. Chuai S.K. Ye J.Y. Han-Zhang H. Zhang Z. Bai X.Y. Su J. Gan B. Yang J.J. Li W.F. Tang W. Luo F.R. Xu X. Wu Y.L. Zhou Q. Analysis of resistance mechanisms to abivertinib, a third-generation EGFR tyrosine kinase inhibitor, in patients with EGFR T790M-positive non-small cell lung cancer from a phase I trial. EBioMedicine 2019 43 180 187 10.1016/j.ebiom.2019.04.030 31027916
    [Google Scholar]
  97. Wang H. Pan R. Zhang X. Si X. Wang M. Zhang L. Abivertinib in patients with T790M‐positive advanced NSCLC and its subsequent treatment with osimertinib. Thorac. Cancer 2020 11 3 594 602 10.1111/1759‑7714.13302 31943845
    [Google Scholar]
  98. He J. Huang Z. Han L. Gong Y. Xie C. Mechanisms and management of 3rd‑generation EGFR‑TKI resistance in advanced non‑small cell lung cancer (Review). Int. J. Oncol. 2021 59 5 90 10.3892/ijo.2021.5270 34558640
    [Google Scholar]
  99. Cornelissen R. Prelaj A. Sun S. Baik C. Wollner M. Haura E.B. Mamdani H. Riess J.W. Cappuzzo F. Garassino M.C. Heymach J.V. Socinski M.A. Leu S.Y. Bhat G. Lebel F. Le X. ZENITH20-4 Investigators Poziotinib in treatment-naive NSCLC harboring HER2 exon 20 mutations: ZENITH20-4, a multicenter, multicohort, open-label, phase 2 trial (cohort 4). J. Thorac. Oncol. 2023 18 8 1031 1041 10.1016/j.jtho.2023.03.016 36958688
    [Google Scholar]
  100. Elamin Y.Y. Robichaux J.P. Carter B.W. Altan M. Tran H. Gibbons D.L. Heeke S. Fossella F.V. Lam V.K. Le X. Negrao M.V. Nilsson M.B. Patel A. Vijayan R.S.K. Cross J.B. Zhang J. Byers L.A. Lu C. Cascone T. Feng L. Luthra R. San Lucas F.A. Mantha G. Routbort M. Blumenschein G. Jr Tsao A.S. Heymach J.V. Poziotinib for EGFR exon 20-mutant NSCLC: Clinical efficacy, resistance mechanisms, and impact of insertion location on drug sensitivity. Cancer Cell 2022 40 7 754 767.e6 10.1016/j.ccell.2022.06.006 35820397
    [Google Scholar]
  101. Rosell R. Cardona Zorrilla A.F. Poziotinib treatment in intractable NSCLC: Epidermal growth factor receptor and human epidermal growth factor receptor 2 exon 20 insertion mutation disease. Eur. J. Cancer 2021 149 233 234 10.1016/j.ejca.2021.02.039 33824058
    [Google Scholar]
  102. Haber D.A. Bell D.W. Settleman J.E. Sordella R. Godin-Heymann N.G. Kwak E.L. Rabindran S.K. Method for treating gefitinib resistant cancer. US Patent no. US10603314B2 2020
  103. Westheim R.J.H. Hydrates of erlotinib hydrochloride. US Patent no. US8372856B2 2013
  104. Bing N. Briley L.P. Budde L.R. Cox C.J. Spraggs C.F. Lapatinib for treating cancer. European Patent no. EP2467140B1 2016
  105. Tung R. Vandetanib derivatives. US Patent no. US8609673B2 2013
  106. Singh S.K. Verma S.S. Singh K. Prasad M. Crystalline form of afatinib dimaleate. US Patent no. US20170240533A1 2018
  107. Khapra P.K. Dabre R. Ghosh S. Pharmaceutical composition of Osimertinib. World Patent no. WO2019138346A1 2019
  108. Zhang Y. Liu B. Yang B. Deuterium-modified brigatinib derivatives, pharmaceutical compositions comprising same, and use thereof. US Patent no. US10717753B2 2020
  109. Ashraf M. Ghosh K. Goolcharran C. Mahmud M. Nagi A.S. Tablet formulations of neratinib maleate. World Patent no. WO2011055303A1 2011
  110. Li L.H. Wang Y. Xiaoli Z.H. Preparation method of dacomitinib. Chinese Patent no. CN113004212A 2021
  111. Kim S Lee D Kim S Yang J Park Y Pharmaceutical composition for oral administration comprising aminopyrimidine derivative or its salt. World Patent no. WO2020079637A1 2020
  112. Yanwu L. Preparation method of Sunvozertinib intermediate. Chinese Patent no. CN115181093B 2023
  113. Santoni-Rugiu E. Melchior L.C. Urbanska E.M. Jakobsen J.N. de Stricker K. Grauslund M. Sørensen J.B. Intrinsic resistance to EGFR-tyrosine kinase inhibitors in EGFR-mutant non-small cell lung cancer: differences and similarities with acquired resistance. Cancers (Basel) 2019 11 7 923 10.3390/cancers11070923 31266248
    [Google Scholar]
  114. Huang L. Fu L. Mechanisms of resistance to EGFR tyrosine kinase inhibitors. Acta Pharm. Sin. B 2015 5 5 390 401 10.1016/j.apsb.2015.07.001 26579470
    [Google Scholar]
  115. Morgillo F. Della Corte C.M. Fasano M. Ciardiello F. Mechanisms of resistance to EGFR-targeted drugs: Lung cancer. ESMO Open 2016 1 3 e000060 10.1136/esmoopen‑2016‑000060 27843613
    [Google Scholar]
  116. Jackman D. Pao W. Riely G.J. Engelman J.A. Kris M.G. Jänne P.A. Lynch T. Johnson B.E. Miller V.A. Clinical definition of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. J. Clin. Oncol. 2010 28 2 357 360 10.1200/JCO.2009.24.7049 19949011
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128349342250121053445
Loading
/content/journals/cpd/10.2174/0113816128349342250121053445
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: resistance ; tyrosine kinase ; EGFR ; EGFR inhibitors ; NSCLC ; cancer ; EGFR-TKIs
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test