Skip to content
2000
Volume 31, Issue 2
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Inflammation is a universal response of mammalian tissue to harm, comprising reactions to injuries, pathogens, and foreign particles. Liver inflammation is commonly associated with hepatocyte necrosis and apoptosis. These forms of liver cell injury initiate a sequence of events independent of the etiological basis for the inflammation and can result in hepatic disorders. It is also common for liver cancer. This review fundamentally focuses on the molecular pathways involved in hepatic inflammation. This review aims to explore the molecular pathways involved in hepatic inflammation, focusing on arachidonic acid, NF-κB, MAPK, PI3K/Akt, and JAK/STAT pathways. It investigates active compounds in herbal plants and their pharmacological characteristics. The review proposes a unique therapeutic blueprint for managing hepatic inflammation and diseases by modifying these pathways with herbal remedies.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128348771240925100639
2024-09-27
2025-01-06
Loading full text...

Full text loading...

References

  1. GehrkeN. SchattenbergJ.M. Metabolic inflammation-A role for hepatic inflammatory pathways as drivers of comorbidities in nonalcoholic fatty liver disease?Gastroenterology2020158719291947.e610.1053/j.gastro.2020.02.02032068022
    [Google Scholar]
  2. GaoB. AhmadM.F. NagyL.E. TsukamotoH. Inflammatory pathways in alcoholic steatohepatitis.J. Hepatol.201970224925910.1016/j.jhep.2018.10.02330658726
    [Google Scholar]
  3. RobinsonM.W. HarmonC. O’FarrellyC. Liver immunology and its role in inflammation and homeostasis.Cell. Mol. Immunol.201613326727610.1038/cmi.2016.327063467
    [Google Scholar]
  4. RingelhanM. PfisterD. O’ConnorT. PikarskyE. HeikenwalderM. The immunology of hepatocellular carcinoma.Nat. Immunol.201819322223210.1038/s41590‑018‑0044‑z29379119
    [Google Scholar]
  5. DonneR. LujambioA. The liver cancer immune microenvironment: Therapeutic implications for hepatocellular carcinoma.Hepatology20237751773179635989535
    [Google Scholar]
  6. KotsariM. DimopoulouV. KoskinasJ. ArmakolasA. Immune system and hepatocellular carcinoma (HCC): New insights into HCC progression.Int. J. Mol. Sci.202324141147110.3390/ijms24141147137511228
    [Google Scholar]
  7. DhanasekaranR. SuzukiH. LemaitreL. KubotaN. HoshidaY. Molecular and immune landscape of hepatocellular carcinoma to guide therapeutic decision-making.Hepatology202310109710.1097/HEP.000000000000051337300379
    [Google Scholar]
  8. IoniucI. LupuA. TarnitaI. MastaleruA. TrandafirL.M. LupuV.V. StarceaI.M. AlecsaM. MorariuI.D. SalaruD.L. AzoicaiA. Insights into the management of chronic hepatitis in children-from oxidative stress to antioxidant therapy.Int. J. Mol. Sci.2024257390810.3390/ijms2507390838612717
    [Google Scholar]
  9. LeeH.L. JangJ.W. LeeS.W. YooS.H. KwonJ.H. NamS.W. BaeS.H. ChoiJ.Y. HanN.I. YoonS.K. Inflammatory cytokines and change of Th1/Th2 balance as prognostic indicators for hepatocellular carcinoma in patients treated with transarterial chemoembolization.Sci. Rep.201991326010.1038/s41598‑019‑40078‑830824840
    [Google Scholar]
  10. OlatundeA. NigamM. SinghR.K. PanwarA.S. LasisiA. AlhumaydhiF.A. Jyoti kumarV. MishraA.P. Sharifi-RadJ. Cancer and diabetes: The interlinking metabolic pathways and repurposing actions of antidiabetic drugs.Cancer Cell Int.202121149910.1186/s12935‑021‑02202‑534535145
    [Google Scholar]
  11. PandeyM.M. RastogiS. RawatA.K.S. Indian traditional ayurvedic system of medicine and nutritional supplementation.Evid. Based Complement. Alternat. Med.2013201311210.1155/2013/37632723864888
    [Google Scholar]
  12. YuanH. MaQ. YeL. PiaoG. Traditional medicine and modern medicine from natural products.Molecules201621555910.3390/molecules2105055927136524
    [Google Scholar]
  13. ThomfordN.E. SenthebaneD.A. RoweA. MunroD. SeeleP. MaroyiA. DzoboK. Natural products for drug discovery in the 21st century: Innovations for novel drug discovery.Int. J. Mol. Sci.2018196157810.3390/ijms1906157829799486
    [Google Scholar]
  14. ParhamS. KharaziA.Z. Bakhsheshi-RadH.R. NurH. IsmailA.F. SharifS. RamaKrishnaS. BertoF. Antioxidant, antimicrobial and antiviral properties of herbal materials.Antioxidants2020912130910.3390/antiox912130933371338
    [Google Scholar]
  15. MuflihahY.M. GollavelliG. LingY.C. Correlation study of antioxidant activity with phenolic and flavonoid compounds in 12 Indonesian indigenous herbs.Antioxidants20211010153010.3390/antiox1010153034679665
    [Google Scholar]
  16. NourbakhshF. LotfalizadehM. BadpeymaM. ShakeriA. SoheiliV. From plants to antimicrobials: Natural products against bacterial membranes.Phytother. Res.2022361335210.1002/ptr.727534532918
    [Google Scholar]
  17. PortaC. LarghiP. RimoldiM. Grazia TotaroM. AllavenaP. MantovaniA. SicaA. Cellular and molecular pathways linking inflammation and cancer.Immunobiology20092149-1076177710.1016/j.imbio.2009.06.01419616341
    [Google Scholar]
  18. MantovaniA. Molecular pathways linking inflammation and cancer.Curr. Mol. Med.201010436937310.2174/15665241079131696820455855
    [Google Scholar]
  19. LarionovaI. CherdyntsevaN. LiuT. PatyshevaM. RakinaM. KzhyshkowskaJ. Interaction of tumor-associated macrophages and cancer chemotherapy.OncoImmunology201987e159600410.1080/2162402X.2019.159600431143517
    [Google Scholar]
  20. ArvanitakisK. KoletsaT. MitroulisI. GermanidisG. Tumor-associated macrophages in hepatocellular carcinoma pathogenesis, prognosis and therapy.Cancers (Basel)202214122610.3390/cancers1401022635008390
    [Google Scholar]
  21. KadataneS.P. SatarianoM. MasseyM. MonganK. RainaR. The role of inflammation in CKD.Cells20231212158110.3390/cells1212158137371050
    [Google Scholar]
  22. SztolsztenerK. ChabowskiA. Harasim-SymborE. BielawiecP. Konstantynowicz-NowickaK. Arachidonic acid as an early indicator of inflammation during non-alcoholic fatty liver disease development.Biomolecules2020108113310.3390/biom1008113332751983
    [Google Scholar]
  23. TallimaH. El RidiR. Arachidonic acid: Physiological roles and potential health benefits – A review.J. Adv. Res.201811334110.1016/j.jare.2017.11.00430034874
    [Google Scholar]
  24. WangB. WuL. ChenJ. DongL. ChenC. WenZ. HuJ. FlemingI. WangD.W. Metabolism pathways of arachidonic acids: Mechanisms and potential therapeutic targets.Signal Transduct. Target. Ther.2021619410.1038/s41392‑020‑00443‑w33637672
    [Google Scholar]
  25. PatrignaniP. PatronoC. Aspirin and cancer.J. Am. Coll. Cardiol.201668996797610.1016/j.jacc.2016.05.08327561771
    [Google Scholar]
  26. SalaA. ProschakE. SteinhilberD. RovatiG.E. Two-pronged approach to anti-inflammatory therapy through the modulation of the arachidonic acid cascade.Biochem. Pharmacol.201815816117310.1016/j.bcp.2018.10.00730315753
    [Google Scholar]
  27. SamuelssonB. Prostaglandins, thromboxanes, and leukotrienes: Formation and biological roles.Harvey Lect.1979-198075140233643
    [Google Scholar]
  28. HuangJ. FuX. ChenX. LiZ. HuangY. LiangC. Promising therapeutic targets for the treatment of rheumatoid arthritis.Front. Immunol.20211268615510.3389/fimmu.2021.68615534305919
    [Google Scholar]
  29. YokomizoT. NakamuraM. ShimizuT. Leukotriene receptors as potential therapeutic targets.J. Clin. Invest.201812872691270110.1172/JCI9794629757196
    [Google Scholar]
  30. RapaS.F. Di IorioB.R. CampigliaP. HeidlandA. MarzoccoS. Inflammation and oxidative stress in chronic kidney disease-The potential therapeutic role of minerals, vitamins, and plant-derived metabolites.Int. J. Mol. Sci.201921126310.3390/ijms2101026331906008
    [Google Scholar]
  31. MurphyR.C. GijónM.A. Biosynthesis and metabolism of leukotrienes.Biochem. J.2007405337939510.1042/BJ2007028917623009
    [Google Scholar]
  32. HaeggströmJ.Z. FunkC.D. Lipoxygenase and leukotriene pathways: Biochemistry, biology, and roles in disease.Chem. Rev.2011111105866589810.1021/cr200246d21936577
    [Google Scholar]
  33. TsaiM.J. ChangW.A. TsaiP.H. WuC.Y. HoY.W. YenM.C. LinY.S. KuoP.L. HsuY.L. Montelukast induces apoptosis-inducing factor-mediated cell death of lung cancer cells.Int. J. Mol. Sci.2017187135310.3390/ijms1807135328672809
    [Google Scholar]
  34. PanigrahyD. GreeneE.R. PozziA. WangD.W. ZeldinD.C. EET signaling in cancer.Cancer Metastasis Rev.2011303-452554010.1007/s10555‑011‑9315‑y22009066
    [Google Scholar]
  35. LueddeT. SchwabeR.F. NF-κB in the liver-linking injury, fibrosis and hepatocellular carcinoma.Nat. Rev. Gastroenterol. Hepatol.20118210811810.1038/nrgastro.2010.21321293511
    [Google Scholar]
  36. GhoshG. WangV.Y.F. Origin of the functional distinctiveness of NF-κB/p52.Front. Cell Dev. Biol.2021976416410.3389/fcell.2021.76416434888310
    [Google Scholar]
  37. DembinskiH.E. WismerK. VargasJ.D. SuryawanshiG.W. KernN. KroonG. DysonH.J. HoffmannA. KomivesE.A. Functional importance of stripping in NFκB signaling revealed by a stripping-impaired IκBα mutant.Proc. Natl. Acad. Sci. USA201711481916192110.1073/pnas.161019211428167786
    [Google Scholar]
  38. YuH. LinL. ZhangZ. ZhangH. HuH. Targeting NF-κB pathway for the therapy of diseases: Mechanism and clinical study.Signal Transduct. Target. Ther.20205120910.1038/s41392‑020‑00312‑632958760
    [Google Scholar]
  39. FortingoN. MelnykS. SuttonS.H. WatskyM.A. BollagW.B. Innate immune system activation, inflammation and corneal wound healing.Int. J. Mol. Sci.202223231493310.3390/ijms23231493336499260
    [Google Scholar]
  40. OeckinghausA. GhoshS. The NF-kappaB family of transcription factors and its regulation.Cold Spring Harb. Perspect. Biol.200914a00003410.1101/cshperspect.a00003420066092
    [Google Scholar]
  41. ChenL. DengH. CuiH. FangJ. ZuoZ. DengJ. LiY. WangX. ZhaoL. Inflammatory responses and inflammation-associated diseases in organs.Oncotarget2018967204721810.18632/oncotarget.2320829467962
    [Google Scholar]
  42. DongJ. JimiE. ZeissC. HaydenM.S. GhoshS. Constitutively active NF-κB triggers systemic TNFα-dependent inflammation and localized TNFα-independent inflammatory disease.Genes Dev.201024161709171710.1101/gad.195841020713516
    [Google Scholar]
  43. HeG. KarinM. NF-κB and STAT3 – key players in liver inflammation and cancer.Cell Res.201121115916810.1038/cr.2010.18321187858
    [Google Scholar]
  44. BoutrosT. ChevetE. MetrakosP. Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: Roles in cell growth, death, and cancer.Pharmacol. Rev.200860326131010.1124/pr.107.0010618922965
    [Google Scholar]
  45. KyriakisJ.M. AvruchJ. Mammalian MAPK signal transduction pathways activated by stress and inflammation: A 10-year update.Physiol. Rev.201292268973710.1152/physrev.00028.201122535895
    [Google Scholar]
  46. JagodzikP. Tajdel-ZielinskaM. CieslaA. MarczakM. LudwikowA. Mitogen-activated protein kinase cascades in plant hormone signaling.Front. Plant Sci.20189138710.3389/fpls.2018.0138730349547
    [Google Scholar]
  47. LiW. YangG.L. ZhuQ. ZhongX.H. NieY.C. LiX.H. WangY. TLR4 promotes liver inflammation by activating the JNK pathway.Eur. Rev. Med. Pharmacol. Sci.201923177655766231539158
    [Google Scholar]
  48. WuF. YangJ. LiuJ. WangY. MuJ. ZengQ. DengS. ZhouH. Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer.Signal Transduct. Target. Ther.20216121810.1038/s41392‑021‑00641‑034108441
    [Google Scholar]
  49. LeeS. RauchJ. KolchW. Targeting MAPK signaling in cancer: Mechanisms of drug resistance and sensitivity.Int. J. Mol. Sci.2020213110210.3390/ijms2103110232046099
    [Google Scholar]
  50. TengY. RossJ.L. CowellJ.K. The involvement of JAK-STAT3 in cell motility, invasion, and metastasis.JAK-STAT201431e2808610.4161/jkst.2808624778926
    [Google Scholar]
  51. ThornM. GuhaP. CunettaM. EspatN.J. MillerG. JunghansR.P. KatzS.C. Tumor-associated GM-CSF overexpression induces immunoinhibitory molecules via STAT3 in myeloid-suppressor cells infiltrating liver metastases.Cancer Gene Ther.201623618819810.1038/cgt.2016.1927199222
    [Google Scholar]
  52. LiuJ. WangF. LuoF. The role of JAK/STAT pathway in fibrotic diseases: Molecular and cellular mechanisms.Biomolecules202313111910.3390/biom1301011936671504
    [Google Scholar]
  53. HuQ. BianQ. RongD. WangL. SongJ. HuangH.S. ZengJ. MeiJ. WangP.Y. JAK/STAT pathway: Extracellular signals, diseases, immunity, and therapeutic regimens.Front. Bioeng. Biotechnol.202311111076510.3389/fbioe.2023.111076536911202
    [Google Scholar]
  54. MorrisR. KershawN.J. BabonJ.J. The molecular details of cytokine signaling via the JAK/STAT pathway.Protein Sci.201827121984200910.1002/pro.351930267440
    [Google Scholar]
  55. KondoN. KurodaT. KobayashiD. Cytokine networks in the pathogenesis of rheumatoid arthritis.Int. J. Mol. Sci.202122201092210.3390/ijms22201092234681582
    [Google Scholar]
  56. AsgharianP. TazekandA.P. HosseiniK. ForouhandehH. GhasemnejadT. RanjbarM. HasanM. KumarM. BeiramiS.M. TarhrizV. SoofiyaniS.R. KozhamzharovaL. Sharifi-RadJ. CalinaD. ChoW.C. Potential mechanisms of quercetin in cancer prevention: Focus on cellular and molecular targets.Cancer Cell Int.202222125710.1186/s12935‑022‑02677‑w35971151
    [Google Scholar]
  57. HuX. liJ. FuM. ZhaoX. WangW. The JAK/STAT signaling pathway: From bench to clinic.Signal Transduct. Target. Ther.20216140210.1038/s41392‑021‑00791‑134824210
    [Google Scholar]
  58. VidalS. BouzaherY.H. El MotiamA. SeoaneR. RivasC. Overview of the regulation of the class IA PI3K/AKT pathway by SUMO.Semin. Cell Dev. Biol.2022132516110.1016/j.semcdb.2021.10.01234753687
    [Google Scholar]
  59. ManningB.D. TokerA. AKT/PKB signaling: Navigating the network.Cell2017169338140510.1016/j.cell.2017.04.00128431241
    [Google Scholar]
  60. YangY. JiaX. QuM. YangX. FangY. YingX. ZhangM. WeiJ. PanY. Exploring the potential of treating chronic liver disease targeting the PI3K/Akt pathway and polarization mechanism of macrophages.Heliyon202396e1711610.1016/j.heliyon.2023.e17116.
    [Google Scholar]
  61. ChenY. WangB.C. XiaoY. PI3K: A potential therapeutic target for cancer.J. Cell. Physiol.201222772818282110.1002/jcp.2303821938729
    [Google Scholar]
  62. VergadiE. IeronymakiE. LyroniK. VaporidiK. TsatsanisC. Akt signaling pathway in macrophage activation and M1/M2 polarization.J. Immunol.201719831006101410.4049/jimmunol.160151528115590
    [Google Scholar]
  63. DuanT. DuY. XingC. WangH.Y. WangR.F. Toll-like receptor signaling and its role in cell-mediated immunity.Front. Immunol.20221381277410.3389/fimmu.2022.81277435309296
    [Google Scholar]
  64. HeX. LiY. DengB. LinA. ZhangG. MaM. WangY. YangY. KangX. The PI3K/Akt signalling pathway in inflammation, cell death and glial scar formation after traumatic spinal cord injury: Mechanisms and therapeutic opportunities.Cell Prolif.2022559e1327510.1111/cpr.1327535754255
    [Google Scholar]
  65. ArcaroA. GuerreiroA. The phosphoinositide 3-kinase pathway in human cancer: Genetic alterations and therapeutic implications.Curr. Genomics20078527130610.2174/13892020778244616019384426
    [Google Scholar]
  66. WuL. ZhangQ. MoW. FengJ. LiS. LiJ. LiuT. XuS. WangW. LuX. YuQ. ChenK. XiaY. LuJ. XuL. ZhouY. FanX. GuoC. Quercetin prevents hepatic fibrosis by inhibiting hepatic stellate cell activation and reducing autophagy via the TGF-β1/Smads and PI3K/Akt pathways.Sci. Rep.201771928910.1038/s41598‑017‑09673‑528839277
    [Google Scholar]
  67. SunX. ZhuoX. HuY. ZhengX. ZhaoQ. A novel matrine derivative WM622 inhibits hepatocellular carcinoma by inhibiting PI3K/Akt signaling pathways.Mol. Cell. Biochem.20184491-2475410.1007/s11010‑018‑3341‑929532226
    [Google Scholar]
  68. SaraswatI. GoelA. Cervical cancer therapeutics: An in-depth significance of herbal and chemical approaches of nanoparticles.Anticancer Agents Med Chem2024248627-3610.2174/0118715206289468240130051102.
    [Google Scholar]
  69. TyagiA.K. PrasadS. MajeedM. AggarwalB.B. Calebin A, a novel component of turmeric, suppresses NF-κB regulated cell survival and inflammatory gene products leading to inhibition of cell growth and chemosensitization.Phytomedicine20173417118110.1016/j.phymed.2017.08.02128899500
    [Google Scholar]
  70. AbdelsalamH.M. SamakM.A. AlsemehA.E. Synergistic therapeutic effects of Vitis vinifera extract and Silymarin on experimentally induced cardiorenal injury: The pertinent role of Nrf2.Biomed. Pharmacother.2019110374610.1016/j.biopha.2018.11.05330458346
    [Google Scholar]
  71. LeeH.S. KwonY.J. SeoE.B. KimS.K. LeeH. LeeJ.T. ChangP.S. ChoiY.J. LeeS.H. YeS.K. Anti-inflammatory effects of Allium cepa L. peel extracts via inhibition of JAK-STAT pathway in LPS-stimulated RAW264.7 cells.J. Ethnopharmacol.202331711685110.1016/j.jep.2023.11685137385574
    [Google Scholar]
  72. MarefatiN. GhoraniV. ShakeriF. BoskabadyM. KianianF. RezaeeR. BoskabadyM.H. A review of anti-inflammatory, antioxidant, and immunomodulatory effects of Allium cepa and its main constituents.Pharm. Biol.202159128530010.1080/13880209.2021.187402833645419
    [Google Scholar]
  73. MokraD. JoskovaM. MokryJ. Therapeutic effects of green tea polyphenol (‒)-Epigallocatechin-3-Gallate (EGCG) in relation to molecular pathways controlling inflammation, oxidative stress, and apoptosis.Int. J. Mol. Sci.202224134010.3390/ijms2401034036613784
    [Google Scholar]
  74. ChakrabortyP. ChatterjeeM. ChakrabortyA. PadmaS. MukherjeeS. Phytochemicals as modulators of toll-like receptors: An immunopharmacological perspective.Medicinal Plants and Antimicrobial Therapies.SingaporeSpringer Nature Singapore2024498310.1007/978‑981‑99‑7261‑6_3
    [Google Scholar]
  75. SallerR. MelzerJ. ReichlingJ. BrignoliR. MeierR. An updated systematic review of the pharmacology of silymarin.Forsch Komplementmed2007142708010.1159/000100581.
    [Google Scholar]
  76. NavarreteS. AlarcónM. PalomoI. Aqueous extract of tomato (Solanum lycopersicum L.) and ferulic acid reduce the expression of TNF-α and IL-1β in LPS-activated macrophages.Molecules2015208153191532910.3390/molecules20081531926307961
    [Google Scholar]
  77. HasanI.H. El-DesoukyM.A. HozayenW.G. AbdelazizG.M. Protective effect of Zingiber officinale against CCl4-induced liver fibrosis is mediated through downregulating the TGF-ß1/Smad3 and NF-κB/IκB pathways.Pharmacology2016971-21910.1159/00044122926551763
    [Google Scholar]
  78. MandalS.K. MajiA.K. MishraS.K. IshfaqP.M. DevkotaH.P. SilvaA.S. DasN. Goldenseal (Hydrastis canadensis L.) and its active constituents: A critical review of their efficacy and toxicological issues.Pharmacol. Res.202016010508510.1016/j.phrs.2020.10508532683037
    [Google Scholar]
  79. Parra-PerezA.M. Pérez-JiménezA. Gris-CárdenasI. Bonel-PérezG.C. Carrasco-DíazL.M. MokhtariK. García-SalgueroL. LupiáñezJ.A. Rufino-PalomaresE.E. Involvement of the PI3K/AKT intracellular signaling pathway in the anticancer activity of hydroxytyrosol, a polyphenol from Olea europaea , in hematological cells and implication of HSP60 levels in its anti-inflammatory activity.Int. J. Mol. Sci.20222313705310.3390/ijms2313705335806065
    [Google Scholar]
  80. ArafaE.S.A. RefaeyM.S. Abd El-GhafarO.A.M. HassaneinE.H.M. SayedA.M. The promising therapeutic potentials of ginsenosides mediated through p38 MAPK signaling inhibition.Heliyon2021711e0835410.1016/j.heliyon.2021.e0835434825082
    [Google Scholar]
  81. LiY. HeS. TangJ. DingN. ChuX. ChengL. DingX. LiangT. FengS. RahmanS.U. WangX. Andrographolide inhibits inflammatory cytokines secretion in LPS-stimulated RAW264. 7 cells through suppression of NF-κB/MAPK signaling pathway.Evid. Based Complement. Alternat. Med.20172017
    [Google Scholar]
  82. DingN. WeiB. FuX. WangC. WuY. Natural products that target the NLRP3 inflammasome to treat fibrosis.Front. Pharmacol.20201159139310.3389/fphar.2020.59139333390969
    [Google Scholar]
  83. ZhangX. WangG. GurleyE.C. ZhouH. Flavonoid apigenin inhibits lipopolysaccharide-induced inflammatory response through multiple mechanisms in macrophages.PLoS One201499e10707210.1371/journal.pone.010707225192391
    [Google Scholar]
  84. ChuL.L. HanhN.T.Y. QuyenM.L. NguyenQ.H. LienT.T.P. DoK.V. Compound K Production: Achievements and Perspectives.Life (Basel)2023137156510.3390/life1307156537511939
    [Google Scholar]
  85. ChenC.Y. PengW.H. TsaiK.D. HsuS.L. Luteolin suppresses inflammation-associated gene expression by blocking NF-κB and AP-1 activation pathway in mouse alveolar macrophages.Life Sci.20078123-241602161410.1016/j.lfs.2007.09.02817977562
    [Google Scholar]
  86. ZhengK.Y.Z. ZhangZ.X. GuoA.J.Y. BiC.W.C. ZhuK.Y. XuS.L. ZhanJ.Y.X. LauD.T.W. DongT.T.X. ChoiR.C.Y. TsimK.W.K. Salidroside stimulates the accumulation of HIF-1α protein resulted in the induction of EPO expression: A signaling via blocking the degradation pathway in kidney and liver cells.Eur. J. Pharmacol.20126791-3343910.1016/j.ejphar.2012.01.02722309741
    [Google Scholar]
  87. XiongY. WangY. XiongY. TengL. Protective effect of Salidroside on hypoxia-related liver oxidative stress and inflammation via Nrf2 and JAK2/STAT3 signaling pathways.Food Sci. Nutr.2021995060506910.1002/fsn3.245934532015
    [Google Scholar]
  88. LeeS.E. JeongS.I. YangH. JeongS.H. JangY.P. ParkC.S. KimJ. ParkY.S. Extract of Salvia miltiorrhiza (Danshen) induces Nrf2-mediated heme oxygenase-1 expression as a cytoprotective action in RAW 264.7 macrophages.J. Ethnopharmacol.2012139254154810.1016/j.jep.2011.11.04622155388
    [Google Scholar]
  89. SarkarK.K. MitraT. AcharyyaR.N. SadhuS.K. Phytochemical screening and evaluation of the pharmacological activities of ethanolic extract of Argemone mexicana Linn. aerial parts.Orient. Pharm. Exp. Med.20191919110610.1007/s13596‑018‑0357‑3
    [Google Scholar]
  90. XiaY. YanM. WangP. HamadaK. YanN. HaoH. GonzalezF.J. YanT. Withaferin A in the treatment of liver diseases: Progress and pharmacokinetic insights.Drug Metab. Dispos.202250568569310.1124/dmd.121.00045534903587
    [Google Scholar]
  91. BuhrmannC. MobasheriA. BuschF. AldingerC. StahlmannR. MontaseriA. ShakibaeiM. Curcumin modulates nuclear factor kappaB (NF-kappaB)-mediated inflammation in human tenocytes in vitro: Role of the phosphatidylinositol 3-kinase/Akt pathway.J. Biol. Chem.201128632285562856610.1074/jbc.M111.25618021669872
    [Google Scholar]
  92. FarkhondehT. FolgadoS.L. Pourbagher-ShahriA.M. AshrafizadehM. SamarghandianS. The therapeutic effect of resveratrol: Focusing on the Nrf2 signaling pathway.Biomed. Pharmacother.202012711023410.1016/j.biopha.2020.11023432559855
    [Google Scholar]
  93. WangR. ZhangH. WangY. SongF. YuanY. Inhibitory effects of quercetin on the progression of liver fibrosis through the regulation of NF-кB/IкBα, p38 MAPK, and Bcl-2/Bax signaling.Int. Immunopharmacol.20174712613310.1016/j.intimp.2017.03.02928391159
    [Google Scholar]
  94. HamedF. McDonaghA. AlmaghrabiS. BakriY. MessengerA. Tazi-AhniniR. Epigallocatechin-3 gallate inhibits STAT-1/ JAK2/IRF-1/HLA-DR/HLA-B and reduces CD8 MKG2D lymphocytes of alopecia areata patients.Int. J. Environ. Res. Public Health20181512288210.3390/ijerph1512288230558329
    [Google Scholar]
  95. CongL. XieX. LiuS. XiangL. FuX. Genistein promotes M1 macrophage apoptosis and reduces inflammatory response by disrupting miR-21/TIPE2 pathway.Saudi Pharm. J.202230793494510.1016/j.jsps.2022.05.00935903524
    [Google Scholar]
  96. AltındağF. Silymarin ameliorates cisplatin-induced nephrotoxicity by downregulating TNF-α and NF-kB and by upregulating IL-10.J. Exp. Clin. Med. (Samsun)202239121622010.52142/omujecm.39.1.42
    [Google Scholar]
  97. DongJ. LiW. ChengL.M. WangG.G. Lycopene attenuates LPS-induced liver injury by inactivation of NF-κB/COX-2 signaling.Int. J. Clin. Exp. Pathol.201912381782531933889
    [Google Scholar]
  98. ChoiJ. KimKJ. KimBH. KohEJ. SeoMJ. LeeBY. 6-Gingerol suppresses adipocyte-derived mediators of inflammation in vitro and in high-fat diet-induced obese zebra fish.Planta Med2017833-424525310.1055/s‑0042‑112371.
    [Google Scholar]
  99. SaraswatI. GoelA. GuptaJ. An In-depth review on Argemone mexicana in the management of liver health and liver cancer.Anticancer. Agents Med. Chem.20242410.2174/011871520630796424082105175639225208
    [Google Scholar]
  100. HadrichF. GarciaM. MaalejA. MoldesM. IsodaH. FeveB. SayadiS. Oleuropein activated AMPK and induced insulin sensitivity in C2C12 muscle cells.Life Sci.201615116717310.1016/j.lfs.2016.02.02726872981
    [Google Scholar]
  101. HeK. YuX. WangX. TangL. CaoY. XiaJ. ChengJ. Baicalein and Ly294002 induces liver cancer cells apoptosis via regulating phosphatidyl inositol 3-kinase/Akt signaling pathway.J. Cancer Res. Ther.201814S519S52510.4103/0973‑1482.23535629970718
    [Google Scholar]
  102. XinC. QuanH. KimJ.M. HurY.H. ShinJ.Y. BaeH.B. ChoiJ.I. Ginsenoside Rb1 increases macrophage phagocytosis through p38 mitogen-activated protein kinase/Akt pathway.J. Ginseng Res.201943339440110.1016/j.jgr.2018.05.00331308811
    [Google Scholar]
  103. NaomiR. BahariH. OngZ.Y. KeongY.Y. EmbongH. RajandramR. TeohS.H. OthmanF. HashamR. YinK.B. KaniappanP. YazidM.D. ZakariaZ.A. Mechanisms of natural extracts of Andrographis paniculata that target lipid-dependent cancer pathways: A view from the signaling pathway.Int. J. Mol. Sci.20222311597210.3390/ijms2311597235682652
    [Google Scholar]
  104. Usui-KawanishiF. KaniK. KarasawaT. HondaH. TakayamaN. TakahashiM. TakatsuK. NagaiY. Isoliquiritigenin inhibits NLRP3 inflammasome activation with CAPS mutations by suppressing caspase-1 activation and mutated NLRP3 aggregation.Genes Cells202429542343110.1111/gtc.1310838366709
    [Google Scholar]
  105. ElliottE.I. SutterwalaF.S. Initiation and perpetuation of NLRP3 inflammasome activation and assembly.Immunol. Rev.20152651355210.1111/imr.1228625879282
    [Google Scholar]
  106. AzamS. JakariaM. KimI.S. KimJ. HaqueM.E. ChoiD.K. Regulation of toll-like receptor (TLR) signaling pathway by polyphenols in the treatment of age-linked neurodegenerative diseases: Focus on TLR4 signaling.Front. Immunol.201910100010.3389/fimmu.2019.0100031134076
    [Google Scholar]
  107. ZhuL. YiX. ZhaoJ. YuanZ. WenL. PozniakB. Obminska-MrukowiczB. TianY. TanZ. WuJ. YiJ. Betulinic acid attenuates dexamethasone-induced oxidative damage through the JNK-P38 MAPK signaling pathway in mice.Biomed. Pharmacother.201810349950810.1016/j.biopha.2018.04.07329677535
    [Google Scholar]
  108. JangS. KelleyK.W. JohnsonR.W. Luteolin reduces IL-6 production in microglia by inhibiting JNK phosphorylation and activation of AP-1.Proc. Natl. Acad. Sci. USA2008105217534753910.1073/pnas.080286510518490655
    [Google Scholar]
  109. YanX. LiuJ. ZhuM. LiuL. ChenY. ZhangY. FengM. JiaZ. XiaoH. Salidroside orchestrates metabolic reprogramming by regulating the Hif-1α signalling pathway in acute mountain sickness.Pharm. Biol.20215911538154810.1080/13880209.2021.199244934739769
    [Google Scholar]
  110. YangG.L. JiaL.Q. WuJ. MaY.X. CaoH.M. SongN. ZhangN. Effect of tanshinone IIA on oxidative stress and apoptosis in a rat model of fatty liver.Exp. Ther. Med.20171454639464610.3892/etm.2017.516229201162
    [Google Scholar]
  111. LaiL. ChenY. TianX. LiX. ZhangX. LeiJ. BiY. FangB. SongX. Artesunate alleviates hepatic fibrosis induced by multiple pathogenic factors and inflammation through the inhibition of LPS/TLR4/NF-κB signaling pathway in rats.Eur. J. Pharmacol.201576523424110.1016/j.ejphar.2015.08.04026318197
    [Google Scholar]
  112. SemwalP. PainuliS. Abu-IzneidT. RaufA. SharmaA. DaştanS.D. KumarM. AlshehriM.M. TaheriY. DasR. MitraS. EmranT.B. Sharifi-RadJ. CalinaD. ChoW.C. Diosgenin: An updated pharmacological review and therapeutic perspectives.Oxid. Med. Cell. Longev.2022202211710.1155/2022/103544135677108
    [Google Scholar]
  113. DaiW. WangF. HeL. LinC. WuS. ChenP. ZhangY. ShenM. WuD. WangC. LuJ. ZhouY. XuX. XuL. GuoC. Genistein inhibits hepatocellular carcinoma cell migration by reversing the epithelial–mesenchymal transition: Partial mediation by the transcription factor NFAT1.Mol. Carcinog.201554430131110.1002/mc.2210024243709
    [Google Scholar]
  114. AhmedO.M. FahimH.I. AhmedH.Y. Al-MuzafarH.M. AhmedR.R. AminK.A. El-NahassE.S. AbdelazeemW.H. The preventive effects and the mechanisms of action of navel orange peel hydroethanolic extract, naringin, and naringenin in N-acetyl-p-aminophenol-induced liver injury in Wistar rats.Oxid. Med. Cell. Longev.2019201911910.1155/2019/274535231049130
    [Google Scholar]
  115. FakhriS. MoradiS.Z. YarmohammadiA. NarimaniF. WallaceC.E. BishayeeA. Modulation of TLR/NF-κB/NLRP signaling by bioactive phytocompounds: A promising strategy to augment cancer chemotherapy and immunotherapy.Front. Oncol.20221283407210.3389/fonc.2022.83407235299751
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128348771240925100639
Loading
/content/journals/cpd/10.2174/0113816128348771240925100639
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test