Skip to content
2000
image of Retinoic Acid Improves Vascular Endothelial Dysfunction by Inhibiting PI3K/AKT/YAP-mediated Ferroptosis in Diabetes Mellitus

Abstract

Background

Vascular endothelial dysfunction is the initial factor involved in cardiovascular injury in patients with diabetes. Retinoic acid is involved in improving vascular complications with diabetes, but its protective mechanism is still unclear. This study aimed to evaluate the effect and mechanism of All-Trans Retinoic Acid (ATRA) on endothelial dysfunction induced by diabetes.

Methods

In the present study, streptozotocin (STZ)-induced diabetic rats and high glucose (HG)-induced human umbilical vein endothelial cells (HUVECs) were observed, and the effects of ATRA on HG-induced endothelial dysfunction and ferroptosis were evaluated.

Results

ATRA treatment improved impaired vasorelaxation in diabetic aortas in an endothelium-dependent manner, and this effect was accompanied by an increase in the NO concentration and eNOS expression. Ferroptosis, characterized by lipid peroxidation and iron overload induced by HG, was improved by ATRA administration, and a ferroptosis inhibitor (ferrostatin-1, Fer-1) improved endothelial function to a similar extent as ATRA. In addition, the inactivation of phosphoinositol-3-kinase (PI3K)/protein kinases B (AKT) and Yes-Associated Protein (YAP) nuclear localization induced by HG were reversed by ATRA administration. Vascular ring relaxation experiments showed that PI3K/AKT activation and YAP inhibition had similar effects on ferroptosis and endothelial function. However, the vasodilative effect of retinoic acid was affected by PI3K/AKT inhibition, and the inhibitory effects of ATRA on ferroptosis and the improvement of endothelial function were dependent on the retinoic acid receptor.

Conclusion

ATRA could improve vascular endothelial dysfunction by inhibiting PI3K/AKT/YAP-mediated ferroptosis induced by HG, which provides a new idea for the treatment of vascular lesions in diabetes.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128313964240728155100
2024-09-27
2024-11-21
Loading full text...

Full text loading...

References

  1. Atila C. Loughrey P.B. Garrahy A. Winzeler B. Refardt J. Gildroy P. Hamza M. Pal A. Verbalis J.G. Thompson C.J. Hemkens L.G. Hunter S.J. Sherlock M. Levy M.J. Karavitaki N. Newell-Price J. Wass J.A.H. Christ-Crain M. Central diabetes insipidus from a patient’s perspective: Management, psychological co-morbidities, and renaming of the condition: Results from an international web-based survey. Lancet Diabetes Endocrinol. 2022 10 10 700 709 10.1016/S2213‑8587(22)00219‑4 36007536
    [Google Scholar]
  2. Tomkins M. Lawless S. Martin-Grace J. Sherlock M. Thompson C.J. Diagnosis and management of central diabetes insipidus in adults. J. Clin. Endocrinol. Metab. 2022 107 10 2701 2715 10.1210/clinem/dgac381 35771962
    [Google Scholar]
  3. Gamal Sherif S. Tarek M. Gamal Sabry Y. Hassan Abou Ghalia A. Effect of apigenin on dynamin-related protein 1 in type 1 diabetic rats with cardiovascular complications. Gene 2024 898 148107 10.1016/j.gene.2023.148107 38141690
    [Google Scholar]
  4. Liu H. Wang X. Gao H. Yang C. Xie C. Physiological and pathological characteristics of vascular endothelial injury in diabetes and the regulatory mechanism of autophagy. Front. Endocrinol. 2023 14 1191426 10.3389/fendo.2023.1191426 37441493
    [Google Scholar]
  5. Zhao M. Wang S. Zuo A. Zhang J. Wen W. Jiang W. Chen H. Liang D. Sun J. Wang M. HIF-1α/JMJD1A signaling regulates inflammation and oxidative stress following hyperglycemia and hypoxia-induced vascular cell injury. Cell. Mol. Biol. Lett. 2021 26 1 40 10.1186/s11658‑021‑00283‑8 34479471
    [Google Scholar]
  6. Li G. Hou N. Liu H. Li J. Deng H. Lan H. Xiong S. Dapagliflozin alleviates high glucose-induced injury of endothelial cells via inducing autophagy. Clin. Exp. Pharmacol. Physiol. 2024 51 4 e13846 10.1111/1440‑1681.13846 38382536
    [Google Scholar]
  7. Wang K. Ge Y. Yang Y. Li Z. Liu J. Xue Y. Zhang Y. Pang X. Ngan A.H.W. Tang B. Vascular endothelial cellular mechanics under hyperglycemia and its role in tissue regeneration. Regen. Biomater. 2024 11 rbae004 10.1093/rb/rbae004 38343879
    [Google Scholar]
  8. Zhang X. Leng S. Liu X. Hu X. Liu Y. Li X. Feng Q. Guo W. Li N. Sheng Z. Wang S. Peng J. Ion channel Piezo1 activation aggravates the endothelial dysfunction under a high glucose environment. Cardiovasc. Diabetol. 2024 23 1 150 10.1186/s12933‑024‑02238‑7 38702777
    [Google Scholar]
  9. Gao J. Wang C. Zhang J. Shawuti Z. Wang S. Ma C. Wang J. CircZNF609 inhibits miR-150-5p to promote high glucose-induced damage to retinal microvascular endothelial cells. Mol. Cell. Endocrinol. 2024 590 112261 10.1016/j.mce.2024.112261 38679361
    [Google Scholar]
  10. Zhao Z. Wang X. Lu M. Gao Y. Rosuvastatin improves endothelial dysfunction in diabetes by normalizing endoplasmic reticulum stress via calpain-1 inhibition. Curr. Pharm. Des. 2023 29 32 2579 2590 10.2174/0113816128250494231016065438 37881071
    [Google Scholar]
  11. Di Pietro P. Abate A.C. Prete V. Damato A. Venturini E. Rusciano M.R. Izzo C. Visco V. Ciccarelli M. Vecchione C. Carrizzo A. C2CD4B evokes oxidative stress and vascular dysfunction via a PI3K/Akt/PKCα–signaling pathway. Antioxidants 2024 13 1 101 10.3390/antiox13010101 38247525
    [Google Scholar]
  12. An Y. Xu B. Wan S. Ma X. Long Y. Xu Y. Jiang Z. The role of oxidative stress in diabetes mellitus-induced vascular endothelial dysfunction. Cardiovasc. Diabetol. 2023 22 1 237 10.1186/s12933‑023‑01965‑7 37660030
    [Google Scholar]
  13. Peng R. Liu X. Wang C. Li F. Li T. Li L. Zhang H. Gao Y. Yu X. Zhang S. Zhang J. Iron overload enhances TBI-induced cardiac dysfunction by promoting ferroptosis and cardiac inflammation. Biochem. Biophys. Res. Commun. 2023 682 46 55 10.1016/j.bbrc.2023.09.088 37801989
    [Google Scholar]
  14. Stancic A. Velickovic K. Markelic M. Grigorov I. Saksida T. Savic N. Vucetic M. Martinovic V. Ivanovic A. Otasevic V. Involvement of ferroptosis in diabetes-induced liver pathology. Int. J. Mol. Sci. 2022 23 16 9309 10.3390/ijms23169309 36012572
    [Google Scholar]
  15. Xu X. Xu X.D. Ma M.Q. Liang Y. Cai Y.B. Zhu Z.X. Xu T. Zhu L. Ren K. The mechanisms of ferroptosis and its role in atherosclerosis. Biomed. Pharmacother. 2024 171 116112 10.1016/j.biopha.2023.116112 38171246
    [Google Scholar]
  16. Chen Y. Li S. Yin M. Li Y. Chen C. Zhang J. Sun K. Kong X. Chen Z. Qian J. Isorhapontigenin attenuates cardiac microvascular injury in diabetes via the inhibition of mitochondria-associated ferroptosis through PRDX2-MFN2-ACSL4 pathways. Diabetes 2023 72 3 389 404 10.2337/db22‑0553 36367849
    [Google Scholar]
  17. di Masi A. Leboffe L. De Marinis E. Pagano F. Cicconi L. Rochette-Egly C. Lo-Coco F. Ascenzi P. Nervi C. Retinoic acid receptors: From molecular mechanisms to cancer therapy. Mol. Aspects Med. 2015 41 1 115 10.1016/j.mam.2014.12.003 25543955
    [Google Scholar]
  18. Polcz M.E. Barbul A. The role of vitamin A in wound healing. Nutr. Clin. Pract. 2019 34 5 695 700 10.1002/ncp.10376 31389093
    [Google Scholar]
  19. Szymański Ł. Skopek R. Palusińska M. Schenk T. Stengel S. Lewicki S. Kraj L. Kamiński P. Zelent A. Retinoic acid and its derivatives in skin. Cells 2020 9 12 2660 10.3390/cells9122660 33322246
    [Google Scholar]
  20. Chakraborty S. Bhattacharyya R. Sayal K. Banerjee D. Retinoic acid and iron metabolism: A step towards design of a novel antitubercular drug. Curr. Pharm. Biotechnol. 2014 15 12 1166 1172 10.2174/1389201015666141126121639 25429653
    [Google Scholar]
  21. Germain P. Chambon P. Eichele G. Evans R.M. Lazar M.A. Leid M. De Lera A.R. Lotan R. Mangelsdorf D.J. Gronemeyer H. International union of pharmacology. LXIII. retinoid X receptors. Pharmacol. Rev. 2006 58 4 760 772 10.1124/pr.58.4.7 17132853
    [Google Scholar]
  22. Lai X. Wu A. Bing Y. Liu Y. Luo J. Yan H. Zheng P. Yu J. Chen D. Retinoic acid protects against lipopolysaccharide-induced ferroptotic liver injury and iron disorders by regulating Nrf2/HO-1 and RARβ signaling. Free Radic. Biol. Med. 2023 205 202 213 10.1016/j.freeradbiomed.2023.06.003 37302616
    [Google Scholar]
  23. Jakaria M. Belaidi A.A. Bush A.I. Ayton S. Vitamin A metabolites inhibit ferroptosis. Biomed. Pharmacother. 2023 164 114930 10.1016/j.biopha.2023.114930 37236031
    [Google Scholar]
  24. Du Y. Bao J. Zhang M. Li L. Xu X.L. Chen H. Feng Y. Peng X. Chen F. Targeting ferroptosis contributes to ATPR-induced AML differentiation via ROS-autophagy-lysosomal pathway. Gene 2020 755 144889 10.1016/j.gene.2020.144889 32534056
    [Google Scholar]
  25. Blaner W.S. Vitamin A signaling and homeostasis in obesity, diabetes, and metabolic disorders. Pharmacol. Ther. 2019 197 153 178 10.1016/j.pharmthera.2019.01.006 30703416
    [Google Scholar]
  26. Di Caro V. Phillips B. Engman C. Harnaha J. Trucco M. Giannoukakis N. Involvement of suppressive B-lymphocytes in the mechanism of tolerogenic dendritic cell reversal of type 1 diabetes in NOD mice. PLoS One 2014 9 1 e83575 10.1371/journal.pone.0083575 24465383
    [Google Scholar]
  27. Obrochta K.M. Krois C.R. Campos B. Napoli J.L. Insulin regulates retinol dehydrogenase expression and all-trans-retinoic acid biosynthesis through FOXO1. J. Biol. Chem. 2015 290 11 7259 7268 10.1074/jbc.M114.609313 25627686
    [Google Scholar]
  28. Lin Y.W. Park S.W. Lin Y.L. Burton F.H. Wei L.N. Cellular retinoic acid binding protein 1 protects mice from high-fat diet-induced obesity by decreasing adipocyte hypertrophy. Int. J. Obes. 2020 44 2 466 474 10.1038/s41366‑019‑0379‑z 31164723
    [Google Scholar]
  29. Wu Y. Huang T. Li X. Shen C. Ren H. Wang H. Wu T. Fu X. Deng S. Feng Z. Xiong S. Li H. Gao S. Yang Z. Gao F. Dong L. Cheng J. Cai W. Retinol dehydrogenase 10 reduction mediated retinol metabolism disorder promotes diabetic cardiomyopathy in male mice. Nat. Commun. 2023 14 1 1181 10.1038/s41467‑023‑36837‑x 36864033
    [Google Scholar]
  30. Uruno A. Sugawara A. Kanatsuka H. Kagechika H. Saito A. Sato K. Kudo M. Takeuchi K. Ito S. Upregulation of nitric oxide production in vascular endothelial cells by all-trans retinoic acid through the phosphoinositide 3-kinase/Akt pathway. Circulation 2005 112 5 727 736 10.1161/CIRCULATIONAHA.104.500959 16043647
    [Google Scholar]
  31. Wu Y. Wang X. Zhou Q. Wang Y. Zhou J. Jiang Q. Wang Y. Zhu H. ATRA improves endothelial dysfunction in atherosclerotic rabbits by decreasing CAV-1 expression and enhancing eNOS activity. Mol. Med. Rep. 2018 17 5 6796 6802 10.3892/mmr.2018.8647 29488619
    [Google Scholar]
  32. Magesh S. Cai D. Roles of YAP/TAZ in ferroptosis. Trends Cell Biol. 2022 32 9 729 732 10.1016/j.tcb.2022.05.005 35701310
    [Google Scholar]
  33. Sun T. Chi J.T. Regulation of ferroptosis in cancer cells by YAP/TAZ and Hippo pathways: The therapeutic implications. Genes Dis. 2021 8 3 241 249 10.1016/j.gendis.2020.05.004 33997171
    [Google Scholar]
  34. Sun X. Sun P. Zhen D. Xu X. Yang L. Fu D. Wei C. Niu X. Tian J. Li H. Melatonin alleviates doxorubicin-induced mitochondrial oxidative damage and ferroptosis in cardiomyocytes by regulating YAP expression. Toxicol. Appl. Pharmacol. 2022 437 115902 10.1016/j.taap.2022.115902 35093381
    [Google Scholar]
  35. Lin Z. Zhou P. von Gise A. Gu F. Ma Q. Chen J. Guo H. van Gorp P.R.R. Wang D.Z. Pu W.T. Pi3kcb links Hippo-YAP and PI3K-AKT signaling pathways to promote cardiomyocyte proliferation and survival. Circ. Res. 2015 116 1 35 45 10.1161/CIRCRESAHA.115.304457 25249570
    [Google Scholar]
  36. Liu Y. Jiang B. Li Y. Zhang X. Wang L. Yao Y. Zhu B. Shi H. Chai X. Hu X. Zhang B. Li H. Effect of traditional Chinese medicine in osteosarcoma: Cross-interference of signaling pathways and potential therapeutic targets. Medicine 2024 103 3 e36467 10.1097/MD.0000000000036467 38241548
    [Google Scholar]
  37. Pourhanifeh M.H. Hosseinzadeh A. Koosha F. Reiter R.J. Mehrzadi S. Therapeutic effects of melatonin in the regulation of ferroptosis: A review of current evidence. Curr. Drug Targets 2024 25 10.2174/0113894501284110240426074746 38706348
    [Google Scholar]
  38. Gui L. Wang F. Hu X. Liu X. Yang H. Cai Z. Qi M. Dai C. Epigallocatechin gallate protects diabetes mellitus rats complicated with cardiomyopathy through TGF-β1/JNK Signaling Pathway. Curr. Pharm. Des. 2022 28 33 2758 2770 10.2174/1381612828666220902115437 36173051
    [Google Scholar]
  39. Wang X. Gu H. Huang W. Peng J. Li Y. Yang L. Qin D. Essandoh K. Wang Y. Peng T. Fan G.C. Hsp20-mediated activation of exosome biogenesis in cardiomyocytes improves cardiac function and angiogenesis in diabetic mice. Diabetes 2016 65 10 3111 3128 10.2337/db15‑1563 27284111
    [Google Scholar]
  40. Yu L. Liang Q. Zhang W. Liao M. Wen M. Zhan B. Bao H. Cheng X. HSP22 suppresses diabetes-induced endothelial injury by inhibiting mitochondrial reactive oxygen species formation. Redox Biol. 2019 21 101095 10.1016/j.redox.2018.101095 30640127
    [Google Scholar]
  41. Priyamvada S. Anbazhagan A.N. Gujral T. Borthakur A. Saksena S. Gill R.K. Alrefai W.A. Dudeja P.K. All-trans-retinoic acid increases SLC26A3 DRA (down-regulated in adenoma) expression in intestinal epithelial cells via HNF-1β. J. Biol. Chem. 2015 290 24 15066 15077 10.1074/jbc.M114.566356 25887398
    [Google Scholar]
  42. Wu Z. Graf F.E. Hirsch H.H. Acitretin and retinoic acid derivatives inhibit BK polyomavirus replication in primary human proximal renal tubular epithelial and urothelial cells. J. Virol. 2021 95 15 e00127-21 10.1128/JVI.00127‑21 34011542
    [Google Scholar]
  43. Li J. Li Y. Wang D. Liao R. Wu Z. PLAG1 interacts with GPX4 to conquer vulnerability to sorafenib induced ferroptosis through a PVT1/miR-195-5p axis-dependent manner in hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 2024 43 1 143 10.1186/s13046‑024‑03061‑4 38745179
    [Google Scholar]
  44. Sanz R.L. Menéndez S.G. Inserra F. Ferder L. Manucha W. Cellular and mitochondrial pathways contribute to SGLT2 inhibitors- mediated tissue protection: Experimental and clinical data. Curr. Pharm. Des. 2024 30 13 969 974 10.2174/0113816128289350240320063045 38551044
    [Google Scholar]
  45. Oikonomou E. Xenou M. Zakynthinos G.E. Tsaplaris P. Lampsas S. Bletsa E. Gialamas I. Kalogeras K. Goliopoulou A. Gounaridi M.I. Pesiridis T. Tsatsaragkou A. Vavouranakis M. Siasos G. Tousoulis D. Novel approaches to the management of diabetes mellitus in patients with coronary artery disease. Curr. Pharm. Des. 2023 29 23 1844 1862 10.2174/1381612829666230703161058 37403390
    [Google Scholar]
  46. Hosomi Y. Ushigome E. Kitagawa N. Kitagawa N. Tanaka T. Hasegawa G. Ohnishi M. Tsunoda S. Ushigome H. Nakamura N. Asano M. Hamaguchi M. Yamazaki M. Fukui M. Predictive power of isolated high home systolic blood pressure for cardiovascular outcomes in individuals with type 2 diabetes mellitus: KAMOGAWA-HBP study. Diab. Vasc. Dis. Res. 2023 20 6 14791641231221264 10.1177/14791641231221264 38063417
    [Google Scholar]
  47. Zhong W. Dong Y. Hong C. Li Y. Xiao C. Liu X. Chang J. ASH2L upregulation contributes to diabetic endothelial dysfunction in mice through STEAP4-mediated copper uptake. Acta Pharmacol. Sin. 2023 45 3 558 569 10.1038/s41401‑023‑01174‑8 37903897
    [Google Scholar]
  48. Incalza M.A. D’Oria R. Natalicchio A. Perrini S. Laviola L. Giorgino F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul. Pharmacol. 2018 100 1 19 10.1016/j.vph.2017.05.005 28579545
    [Google Scholar]
  49. Xiang J. Zhang C. Di T. Chen L. Zhao W. Wei L. Zhou S. Wu X. Wang G. Zhang Y. Salvianolic acid B alleviates diabetic endothelial and mitochondrial dysfunction by down-regulating apoptosis and mitophagy of endothelial cells. Bioengineered 2022 13 2 3486 3502 10.1080/21655979.2022.2026552 35068334
    [Google Scholar]
  50. Nizamutdinova I.T. Guleria R.S. Singh A.B. Kendall J.A. Jr Baker K.M. Pan J. Retinoic acid protects cardiomyocytes from high glucose-induced apoptosis through inhibition of NF-κB signaling Pathway. J. Cell. Physiol. 2013 228 2 380 392 10.1002/jcp.24142 22718360
    [Google Scholar]
  51. Manolescu D.C. Jankowski M. Danalache B.A. Wang D. Broderick T.L. Chiasson J.L. Gutkowska J. All-trans retinoic acid stimulates gene expression of the cardioprotective natriuretic peptide system and prevents fibrosis and apoptosis in cardiomyocytes of obese ob/ob mice. Appl. Physiol. Nutr. Metab. 2014 39 10 1127 1136 10.1139/apnm‑2014‑0005 25017112
    [Google Scholar]
  52. Geng H. Zhang H. Cheng L. Dong S. Sivelestat ameliorates sepsis-induced myocardial dysfunction by activating the PI3K/AKT/mTOR signaling pathway. Int. Immunopharmacol. 2024 128 111466 10.1016/j.intimp.2023.111466 38176345
    [Google Scholar]
  53. Pang P.P. Sun H. Yu P. Yang W. Zheng Y.T. Li X. Zheng C.B. The hydroxamic acid derivative YPX-C-05 alleviates hypertension and vascular dysfunction through the PI3K/Akt/eNOS pathway. Vascul. Pharmacol. 2024 154 107251 10.1016/j.vph.2023.107251 38052330
    [Google Scholar]
  54. Chen G. Luo S. Guo H. Lin J. Xu S. Licochalcone A alleviates ferroptosis in doxorubicin-induced cardiotoxicity via the PI3K/AKT/MDM2/p53 pathway. Naunyn Schmiedebergs Arch. Pharmacol. 2024 397 6 4247 4262 10.1007/s00210‑023‑02863‑1 38078919
    [Google Scholar]
  55. Li Y.Z. Chao R. Qu S.L. Huang L. Zhang C. ZNF667 suppressed LPS-induced macrophages inflammation through mTOR-dependent aerobic glycolysis regulation. Curr. Pharm. Des. 2023 29 17 1361 1369 10.2174/1381612829666230530143129 37259213
    [Google Scholar]
  56. Wang F. Wang J. Liang X. Wu Z. Xue J. Yin L. Wei L. Zhang X. Ghrelin inhibits myocardial pyroptosis in diabetic cardiomyopathy by regulating ERS and NLRP3 inflammasome crosstalk through the PI3K/AKT pathway. J. Drug Target. 2024 32 2 148 158 10.1080/1061186X.2023.2295268 38088811
    [Google Scholar]
  57. Huang W. Hutabarat R.P. Chai Z. Zheng T. Zhang W. Li D. Antioxidant blueberry anthocyanins induce vasodilation via PI3K/Akt signaling pathway in high-glucose-induced human umbilical vein endothelial cells. Int. J. Mol. Sci. 2020 21 5 1575 10.3390/ijms21051575 32106617
    [Google Scholar]
  58. Iqbal S. Jabeen F. Kahwa I. Omara T. Suberosin alleviates thiazolidinedione-induced cardiomyopathy in diabetic rats by inhibiting ferroptosis via modulation of ACSL4-LPCAT3 and PI3K-AKT signaling pathways. Cardiovasc. Toxicol. 2023 23 9-10 295 304 10.1007/s12012‑023‑09804‑7 37676618
    [Google Scholar]
  59. Li L. Xi H.M. Lu H. Cai X. Combination of ethacrynic acid and ATRA triggers differentiation and/or apoptosis of acute myeloid leukemia cells through ROS. Anticancer. Agents Med. Chem. 2024 24 6 412 422 10.2174/0118715206273000231211092743 38204257
    [Google Scholar]
  60. Wang K. Ou Z. Deng G. Li S. Su J. Xu Y. Zhou R. Hu W. Chen F. The translational landscape revealed the sequential treatment containing ATRA plus PI3K/AKT inhibitors as an efficient strategy for AML therapy. Pharmaceutics 2022 14 11 2329 10.3390/pharmaceutics14112329 36365147
    [Google Scholar]
  61. Liu Y. Liu Q. Chen S. Liu Y. Huang Y. Chen P. Li X. Gao G. Xu K. Fan S. Zeng Z. Xiong W. Tan M. Li G. Zhang W. APLNR is involved in ATRA-induced growth inhibition of nasopharyngeal carcinoma and may suppress EMT through PI3K-Akt-mTOR signaling. FASEB J. 2019 33 11 11959 11972 10.1096/fj.201802416RR 31408612
    [Google Scholar]
  62. Liang L. Wang X. Zheng Y. Liu Y. All-trans-retinoic acid modulates TGF-β-induced apoptosis, proliferation, migration and extracellular matrix synthesis of conjunctival fibroblasts by inhibiting PI3K/AKT signaling. Mol. Med. Rep. 2019 20 3 2929 2935 10.3892/mmr.2019.10507 31322252
    [Google Scholar]
  63. Wei S. Zhang J. Han B. Liu J. Xiang X. Zhang M. Xia S. Zhang W. Zhang X. Novel zinc finger transcription factor ZFP580 facilitates all-trans retinoic acid-induced vascular smooth muscle cells differentiation by rarα-mediated PI3K/Akt and ERK signaling. Cell. Physiol. Biochem. 2018 50 6 2390 2405 10.1159/000495098 30423583
    [Google Scholar]
  64. Cui J. Wang Y. Tian X. Miao Y. Ma L. Zhang C. Xu X. Wang J. Fang W. Zhang X. LPCAT3 is transcriptionally regulated by YAP/ZEB/EP300 and collaborates with ACSL4 and YAP to determine ferroptosis sensitivity. Antioxid. Redox Signal. 2023 39 7-9 491 511 10.1089/ars.2023.0237 37166352
    [Google Scholar]
  65. Niu X. Han P. Liu J. Chen Z. Ma X. Zhang T. Li B. Ma X. Regulation of Hippo/YAP signaling pathway ameliorates cochlear hair cell injury by regulating ferroptosis. Tissue Cell 2023 82 102051 10.1016/j.tice.2023.102051 36889225
    [Google Scholar]
  66. Wu J. Minikes A.M. Gao M. Bian H. Li Y. Stockwell B.R. Chen Z.N. Jiang X. Intercellular interaction dictates cancer cell ferroptosis via NF2–YAP signalling. Nature 2019 572 7769 402 406 10.1038/s41586‑019‑1426‑6 31341276
    [Google Scholar]
  67. Zhao M.Y. Liu P. Sun C. Pei L.J. Huang Y.G. Propofol Augments paclitaxel-induced cervical cancer cell ferroptosis in vitro. Front. Pharmacol. 2022 13 816432 10.3389/fphar.2022.816432 35517791
    [Google Scholar]
  68. Zhu G. Murshed A. Li H. Ma J. Zhen N. Ding M. Zhu J. Mao S. Tang X. Liu L. Sun F. Jin L. Pan Q. O-GlcNAcylation enhances sensitivity to RSL3-induced ferroptosis via the YAP/TFRC pathway in liver cancer. Cell Death Discov. 2021 7 1 83 10.1038/s41420‑021‑00468‑2 33863873
    [Google Scholar]
  69. Ke W. Liao Z. Liang H. Tong B. Song Y. Li G. Ma L. Wang K. Feng X. Li S. Hua W. Wang B. Yang C. Stiff substrate induces nucleus pulposus cell ferroptosis via YAP and N-Cadherin mediated mechanotransduction. Adv. Healthc. Mater. 2023 12 23 2300458 10.1002/adhm.202300458 37022980
    [Google Scholar]
  70. Qian X. He L. Hao M. Li Y. Li X. Liu Y. Jiang H. Xu L. Li C. Wu W. Du L. Yin X. Lu Q. YAP mediates the interaction between the Hippo and PI3K/Akt pathways in mesangial cell proliferation in diabetic nephropathy. Acta Diabetol. 2021 58 1 47 62 10.1007/s00592‑020‑01582‑w 32816106
    [Google Scholar]
  71. Mondal A. Das S. Samanta J. Chakraborty S. sengupta A. YAP1 induces hyperglycemic stress-mediated cardiac hypertrophy and fibrosis in an AKT-FOXM1 dependent signaling pathway. Arch. Biochem. Biophys. 2022 722 109198 10.1016/j.abb.2022.109198 35358489
    [Google Scholar]
  72. Chen J. Harris R.C. Interaction of the EGF receptor and the hippo pathway in the diabetic kidney. J. Am. Soc. Nephrol. 2016 27 6 1689 1700 10.1681/ASN.2015040415 26453611
    [Google Scholar]
  73. Han Y. Yang Y. Kim M. Jee S.H. Yoo H.J. Lee J.H. Serum retinal and retinoic acid predict the development of type 2 diabetes mellitus in korean subjects with impaired fasting glucose from the KCPS-II cohort. Metabolites 2021 11 8 510 10.3390/metabo11080510 34436451
    [Google Scholar]
  74. Sharifzadeh M. Esmaeili-Bandboni A. Emami M.R. Naeini F. Zarezadeh M. Javanbakht M.H. The effects of all trans retinoic acid, vitamin D3 and their combination on plasma levels of miRNA-125a-5p, miRNA-34a, and miRNA-126 in an experimental model of diabetes. Avicenna J. Phytomed. 2022 12 1 67 76 10.22038/AJP.2021.18598 35145896
    [Google Scholar]
  75. Liu Y. Zhao J. Lu M. Wang H. Tang F. Retinoic acid attenuates cardiac injury induced by hyperglycemia in pre- and post-delivery mice. Can. J. Physiol. Pharmacol. 2020 98 1 6 14 10.1139/cjpp‑2019‑0009 31518508
    [Google Scholar]
  76. Koprivica I. Gajic D. Saksida T. Cavalli E. Auci D. Despotovic S. Pejnovic N. Stosic-Grujicic S. Nicoletti F. Stojanovic I. Orally delivered all-trans-retinoic acid- and transforming growth factor-β-loaded microparticles ameliorate type 1 diabetes in mice. Eur. J. Pharmacol. 2019 864 172721 10.1016/j.ejphar.2019.172721 31586630
    [Google Scholar]
  77. Trasino S.E. Tang X.H. Jessurun J. Gudas L.J. Retinoic acid receptor β2 agonists restore glycaemic control in diabetes and reduce steatosis. Diabetes Obes. Metab. 2016 18 2 142 151 10.1111/dom.12590 26462866
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128313964240728155100
Loading
/content/journals/cpd/10.2174/0113816128313964240728155100
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test