Skip to content
2000
Volume 31, Issue 2
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background

Vascular endothelial dysfunction is the initial factor involved in cardiovascular injury in patients with diabetes. Retinoic acid is involved in improving vascular complications with diabetes, but its protective mechanism is still unclear. This study aimed to evaluate the effect and mechanism of All-trans Retinoic Acid (ATRA) on endothelial dysfunction induced by diabetes.

Methods

In the present study, streptozotocin (STZ)-induced diabetic rats and high glucose (HG)-induced human umbilical vein endothelial cells (HUVECs) were observed, and the effects of ATRA on HG-induced endothelial dysfunction and ferroptosis were evaluated.

Results

ATRA treatment improved impaired vasorelaxation in diabetic aortas in an endothelium-dependent manner, and this effect was accompanied by an increase in the NO concentration and eNOS expression. Ferroptosis, characterized by lipid peroxidation and iron overload induced by HG, was improved by ATRA administration, and a ferroptosis inhibitor (ferrostatin-1, Fer-1) improved endothelial function to a similar extent as ATRA. In addition, the inactivation of phosphoinositol-3-kinase (PI3K)/protein kinases B (AKT) and Yes-associated Protein (YAP) nuclear localization induced by HG were reversed by ATRA administration. Vascular ring relaxation experiments showed that PI3K/AKT activation and YAP inhibition had similar effects on ferroptosis and endothelial function. However, the vasodilative effect of retinoic acid was affected by PI3K/AKT inhibition, and the inhibitory effects of ATRA on ferroptosis and the improvement of endothelial function were dependent on the retinoic acid receptor.

Conclusion

ATRA could improve vascular endothelial dysfunction by inhibiting PI3K/AKT/YAP-mediated ferroptosis induced by HG, which provides a new idea for the treatment of vascular lesions in diabetes.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128313964240728155100
2024-09-27
2025-04-23
Loading full text...

Full text loading...

References

  1. AtilaC. LoughreyP.B. GarrahyA. WinzelerB. RefardtJ. GildroyP. HamzaM. PalA. VerbalisJ.G. ThompsonC.J. HemkensL.G. HunterS.J. SherlockM. LevyM.J. KaravitakiN. Newell-PriceJ. WassJ.A.H. Christ-CrainM. Central diabetes insipidus from a patient’s perspective: Management, psychological co-morbidities, and renaming of the condition: Results from an international web-based survey.Lancet Diabetes Endocrinol.2022101070070910.1016/S2213‑8587(22)00219‑436007536
    [Google Scholar]
  2. TomkinsM. LawlessS. Martin-GraceJ. SherlockM. ThompsonC.J. Diagnosis and management of central diabetes insipidus in adults.J. Clin. Endocrinol. Metab.2022107102701271510.1210/clinem/dgac38135771962
    [Google Scholar]
  3. Gamal SherifS. TarekM. Gamal SabryY. Hassan Abou GhaliaA. Effect of apigenin on dynamin-related protein 1 in type 1 diabetic rats with cardiovascular complications.Gene202489814810710.1016/j.gene.2023.14810738141690
    [Google Scholar]
  4. LiuH. WangX. GaoH. YangC. XieC. Physiological and pathological characteristics of vascular endothelial injury in diabetes and the regulatory mechanism of autophagy.Front. Endocrinol.202314119142610.3389/fendo.2023.119142637441493
    [Google Scholar]
  5. ZhaoM. WangS. ZuoA. ZhangJ. WenW. JiangW. ChenH. LiangD. SunJ. WangM. HIF-1α/JMJD1A signaling regulates inflammation and oxidative stress following hyperglycemia and hypoxia-induced vascular cell injury.Cell. Mol. Biol. Lett.20212614010.1186/s11658‑021‑00283‑834479471
    [Google Scholar]
  6. LiG. HouN. LiuH. LiJ. DengH. LanH. XiongS. Dapagliflozin alleviates high glucose-induced injury of endothelial cells via inducing autophagy.Clin. Exp. Pharmacol. Physiol.2024514e1384610.1111/1440‑1681.1384638382536
    [Google Scholar]
  7. WangK. GeY. YangY. LiZ. LiuJ. XueY. ZhangY. PangX. NganA.H.W. TangB. Vascular endothelial cellular mechanics under hyperglycemia and its role in tissue regeneration.Regen. Biomater.202411rbae00410.1093/rb/rbae00438343879
    [Google Scholar]
  8. ZhangX. LengS. LiuX. HuX. LiuY. LiX. FengQ. GuoW. LiN. ShengZ. WangS. PengJ. Ion channel Piezo1 activation aggravates the endothelial dysfunction under a high glucose environment.Cardiovasc. Diabetol.202423115010.1186/s12933‑024‑02238‑738702777
    [Google Scholar]
  9. GaoJ. WangC. ZhangJ. ShawutiZ. WangS. MaC. WangJ. CircZNF609 inhibits miR-150-5p to promote high glucose-induced damage to retinal microvascular endothelial cells.Mol. Cell. Endocrinol.202459011226110.1016/j.mce.2024.11226138679361
    [Google Scholar]
  10. ZhaoZ. WangX. LuM. GaoY. Rosuvastatin improves endothelial dysfunction in diabetes by normalizing endoplasmic reticulum stress via calpain-1 inhibition.Curr. Pharm. Des.202329322579259010.2174/011381612825049423101606543837881071
    [Google Scholar]
  11. Di PietroP. AbateA.C. PreteV. DamatoA. VenturiniE. RuscianoM.R. IzzoC. ViscoV. CiccarelliM. VecchioneC. CarrizzoA. C2CD4B evokes oxidative stress and vascular dysfunction via a PI3K/Akt/PKCα–signaling pathway.Antioxidants202413110110.3390/antiox1301010138247525
    [Google Scholar]
  12. AnY. XuB. WanS. MaX. LongY. XuY. JiangZ. The role of oxidative stress in diabetes mellitus-induced vascular endothelial dysfunction.Cardiovasc. Diabetol.202322123710.1186/s12933‑023‑01965‑737660030
    [Google Scholar]
  13. PengR. LiuX. WangC. LiF. LiT. LiL. ZhangH. GaoY. YuX. ZhangS. ZhangJ. Iron overload enhances TBI-induced cardiac dysfunction by promoting ferroptosis and cardiac inflammation.Biochem. Biophys. Res. Commun.2023682465510.1016/j.bbrc.2023.09.08837801989
    [Google Scholar]
  14. StancicA. VelickovicK. MarkelicM. GrigorovI. SaksidaT. SavicN. VuceticM. MartinovicV. IvanovicA. OtasevicV. Involvement of ferroptosis in diabetes-induced liver pathology.Int. J. Mol. Sci.20222316930910.3390/ijms2316930936012572
    [Google Scholar]
  15. XuX. XuX.D. MaM.Q. LiangY. CaiY.B. ZhuZ.X. XuT. ZhuL. RenK. The mechanisms of ferroptosis and its role in atherosclerosis.Biomed. Pharmacother.202417111611210.1016/j.biopha.2023.11611238171246
    [Google Scholar]
  16. ChenY. LiS. YinM. LiY. ChenC. ZhangJ. SunK. KongX. ChenZ. QianJ. Isorhapontigenin attenuates cardiac microvascular injury in diabetes via the inhibition of mitochondria-associated ferroptosis through PRDX2-MFN2-ACSL4 pathways.Diabetes202372338940410.2337/db22‑055336367849
    [Google Scholar]
  17. di MasiA. LeboffeL. De MarinisE. PaganoF. CicconiL. Rochette-EglyC. Lo-CocoF. AscenziP. NerviC. Retinoic acid receptors: From molecular mechanisms to cancer therapy.Mol. Aspects Med.201541111510.1016/j.mam.2014.12.00325543955
    [Google Scholar]
  18. PolczM.E. BarbulA. The role of vitamin A in wound healing.Nutr. Clin. Pract.201934569570010.1002/ncp.1037631389093
    [Google Scholar]
  19. SzymańskiŁ. SkopekR. PalusińskaM. SchenkT. StengelS. LewickiS. KrajL. KamińskiP. ZelentA. Retinoic acid and its derivatives in skin.Cells2020912266010.3390/cells912266033322246
    [Google Scholar]
  20. ChakrabortyS. BhattacharyyaR. SayalK. BanerjeeD. Retinoic acid and iron metabolism: A step towards design of a novel antitubercular drug.Curr. Pharm. Biotechnol.201415121166117210.2174/138920101566614112612163925429653
    [Google Scholar]
  21. GermainP. ChambonP. EicheleG. EvansR.M. LazarM.A. LeidM. De LeraA.R. LotanR. MangelsdorfD.J. GronemeyerH. International union of pharmacology. LXIII. retinoid X receptors.Pharmacol. Rev.200658476077210.1124/pr.58.4.717132853
    [Google Scholar]
  22. LaiX. WuA. BingY. LiuY. LuoJ. YanH. ZhengP. YuJ. ChenD. Retinoic acid protects against lipopolysaccharide-induced ferroptotic liver injury and iron disorders by regulating Nrf2/HO-1 and RARβ signaling.Free Radic. Biol. Med.202320520221310.1016/j.freeradbiomed.2023.06.00337302616
    [Google Scholar]
  23. JakariaM. BelaidiA.A. BushA.I. AytonS. Vitamin A metabolites inhibit ferroptosis.Biomed. Pharmacother.202316411493010.1016/j.biopha.2023.11493037236031
    [Google Scholar]
  24. DuY. BaoJ. ZhangM. LiL. XuX.L. ChenH. FengY. PengX. ChenF. Targeting ferroptosis contributes to ATPR-induced AML differentiation via ROS-autophagy-lysosomal pathway.Gene202075514488910.1016/j.gene.2020.14488932534056
    [Google Scholar]
  25. BlanerW.S. Vitamin A signaling and homeostasis in obesity, diabetes, and metabolic disorders.Pharmacol. Ther.201919715317810.1016/j.pharmthera.2019.01.00630703416
    [Google Scholar]
  26. Di CaroV. PhillipsB. EngmanC. HarnahaJ. TruccoM. GiannoukakisN. Involvement of suppressive B-lymphocytes in the mechanism of tolerogenic dendritic cell reversal of type 1 diabetes in NOD mice.PLoS One201491e8357510.1371/journal.pone.008357524465383
    [Google Scholar]
  27. ObrochtaK.M. KroisC.R. CamposB. NapoliJ.L. Insulin regulates retinol dehydrogenase expression and all-trans-retinoic acid biosynthesis through FOXO1.J. Biol. Chem.2015290117259726810.1074/jbc.M114.60931325627686
    [Google Scholar]
  28. LinY.W. ParkS.W. LinY.L. BurtonF.H. WeiL.N. Cellular retinoic acid binding protein 1 protects mice from high-fat diet-induced obesity by decreasing adipocyte hypertrophy.Int. J. Obes.202044246647410.1038/s41366‑019‑0379‑z31164723
    [Google Scholar]
  29. WuY. HuangT. LiX. ShenC. RenH. WangH. WuT. FuX. DengS. FengZ. XiongS. LiH. GaoS. YangZ. GaoF. DongL. ChengJ. CaiW. Retinol dehydrogenase 10 reduction mediated retinol metabolism disorder promotes diabetic cardiomyopathy in male mice.Nat. Commun.2023141118110.1038/s41467‑023‑36837‑x36864033
    [Google Scholar]
  30. UrunoA. SugawaraA. KanatsukaH. KagechikaH. SaitoA. SatoK. KudoM. TakeuchiK. ItoS. Upregulation of nitric oxide production in vascular endothelial cells by all-trans retinoic acid through the phosphoinositide 3-kinase/Akt pathway.Circulation2005112572773610.1161/CIRCULATIONAHA.104.50095916043647
    [Google Scholar]
  31. WuY. WangX. ZhouQ. WangY. ZhouJ. JiangQ. WangY. ZhuH. ATRA improves endothelial dysfunction in atherosclerotic rabbits by decreasing CAV-1 expression and enhancing eNOS activity.Mol. Med. Rep.20181756796680210.3892/mmr.2018.864729488619
    [Google Scholar]
  32. MageshS. CaiD. Roles of YAP/TAZ in ferroptosis.Trends Cell Biol.202232972973210.1016/j.tcb.2022.05.00535701310
    [Google Scholar]
  33. SunT. ChiJ.T. Regulation of ferroptosis in cancer cells by YAP/TAZ and Hippo pathways: The therapeutic implications.Genes Dis.20218324124910.1016/j.gendis.2020.05.00433997171
    [Google Scholar]
  34. SunX. SunP. ZhenD. XuX. YangL. FuD. WeiC. NiuX. TianJ. LiH. Melatonin alleviates doxorubicin-induced mitochondrial oxidative damage and ferroptosis in cardiomyocytes by regulating YAP expression.Toxicol. Appl. Pharmacol.202243711590210.1016/j.taap.2022.11590235093381
    [Google Scholar]
  35. LinZ. ZhouP. von GiseA. GuF. MaQ. ChenJ. GuoH. van GorpP.R.R. WangD.Z. PuW.T. Pi3kcb links Hippo-YAP and PI3K-AKT signaling pathways to promote cardiomyocyte proliferation and survival.Circ. Res.20151161354510.1161/CIRCRESAHA.115.30445725249570
    [Google Scholar]
  36. LiuY. JiangB. LiY. ZhangX. WangL. YaoY. ZhuB. ShiH. ChaiX. HuX. ZhangB. LiH. Effect of traditional Chinese medicine in osteosarcoma: Cross-interference of signaling pathways and potential therapeutic targets.Medicine20241033e3646710.1097/MD.000000000003646738241548
    [Google Scholar]
  37. PourhanifehM.H. HosseinzadehA. KooshaF. ReiterR.J. MehrzadiS. Therapeutic effects of melatonin in the regulation of ferroptosis: A review of current evidence.Curr. Drug Targets20242510.2174/011389450128411024042607474638706348
    [Google Scholar]
  38. GuiL. WangF. HuX. LiuX. YangH. CaiZ. QiM. DaiC. Epigallocatechin gallate protects diabetes mellitus rats complicated with cardiomyopathy through TGF-β1/JNK signaling pathway.Curr. Pharm. Des.202228332758277010.2174/138161282866622090211543736173051
    [Google Scholar]
  39. WangX. GuH. HuangW. PengJ. LiY. YangL. QinD. EssandohK. WangY. PengT. FanG.C. Hsp20-mediated activation of exosome biogenesis in cardiomyocytes improves cardiac function and angiogenesis in diabetic mice.Diabetes201665103111312810.2337/db15‑156327284111
    [Google Scholar]
  40. YuL. LiangQ. ZhangW. LiaoM. WenM. ZhanB. BaoH. ChengX. HSP22 suppresses diabetes-induced endothelial injury by inhibiting mitochondrial reactive oxygen species formation.Redox Biol.20192110109510.1016/j.redox.2018.10109530640127
    [Google Scholar]
  41. PriyamvadaS. AnbazhaganA.N. GujralT. BorthakurA. SaksenaS. GillR.K. AlrefaiW.A. DudejaP.K. All-trans-retinoic acid increases SLC26A3 DRA (down-regulated in adenoma) expression in intestinal epithelial cells via HNF-1β.J. Biol. Chem.201529024150661507710.1074/jbc.M114.56635625887398
    [Google Scholar]
  42. WuZ. GrafF.E. HirschH.H. Acitretin and retinoic acid derivatives inhibit BK polyomavirus replication in primary human proximal renal tubular epithelial and urothelial cells.J. Virol.20219515e00127-2110.1128/JVI.00127‑2134011542
    [Google Scholar]
  43. LiJ. LiY. WangD. LiaoR. WuZ. PLAG1 interacts with GPX4 to conquer vulnerability to sorafenib induced ferroptosis through a PVT1/miR-195-5p axis-dependent manner in hepatocellular carcinoma.J. Exp. Clin. Cancer Res.202443114310.1186/s13046‑024‑03061‑438745179
    [Google Scholar]
  44. SanzR.L. MenéndezS.G. InserraF. FerderL. ManuchaW. Cellular and mitochondrial pathways contribute to SGLT2 inhibitors- mediated tissue protection: Experimental and clinical data.Curr. Pharm. Des.2024301396997410.2174/011381612828935024032006304538551044
    [Google Scholar]
  45. OikonomouE. XenouM. ZakynthinosG.E. TsaplarisP. LampsasS. BletsaE. GialamasI. KalogerasK. GoliopoulouA. GounaridiM.I. PesiridisT. TsatsaragkouA. VavouranakisM. SiasosG. TousoulisD. Novel approaches to the management of diabetes mellitus in patients with coronary artery disease.Curr. Pharm. Des.202329231844186210.2174/138161282966623070316105837403390
    [Google Scholar]
  46. HosomiY. UshigomeE. KitagawaN. KitagawaN. TanakaT. HasegawaG. OhnishiM. TsunodaS. UshigomeH. NakamuraN. AsanoM. HamaguchiM. YamazakiM. FukuiM. Predictive power of isolated high home systolic blood pressure for cardiovascular outcomes in individuals with type 2 diabetes mellitus: KAMOGAWA-HBP study.Diab. Vasc. Dis. Res.20232061479164123122126410.1177/1479164123122126438063417
    [Google Scholar]
  47. ZhongW. DongY. HongC. LiY. XiaoC. LiuX. ChangJ. ASH2L upregulation contributes to diabetic endothelial dysfunction in mice through STEAP4-mediated copper uptake.Acta Pharmacol. Sin.202345355856910.1038/s41401‑023‑01174‑837903897
    [Google Scholar]
  48. IncalzaM.A. D’OriaR. NatalicchioA. PerriniS. LaviolaL. GiorginoF. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases.Vascul. Pharmacol.201810011910.1016/j.vph.2017.05.00528579545
    [Google Scholar]
  49. XiangJ. ZhangC. DiT. ChenL. ZhaoW. WeiL. ZhouS. WuX. WangG. ZhangY. Salvianolic acid B alleviates diabetic endothelial and mitochondrial dysfunction by down-regulating apoptosis and mitophagy of endothelial cells.Bioengineered20221323486350210.1080/21655979.2022.202655235068334
    [Google Scholar]
  50. NizamutdinovaI.T. GuleriaR.S. SinghA.B. KendallJ.A.Jr BakerK.M. PanJ. Retinoic acid protects cardiomyocytes from high glucose-induced apoptosis through inhibition of NF-κB signaling Pathway.J. Cell. Physiol.2013228238039210.1002/jcp.2414222718360
    [Google Scholar]
  51. ManolescuD.C. JankowskiM. DanalacheB.A. WangD. BroderickT.L. ChiassonJ.L. GutkowskaJ. All-trans retinoic acid stimulates gene expression of the cardioprotective natriuretic peptide system and prevents fibrosis and apoptosis in cardiomyocytes of obese ob/ob mice.Appl. Physiol. Nutr. Metab.201439101127113610.1139/apnm‑2014‑000525017112
    [Google Scholar]
  52. GengH. ZhangH. ChengL. DongS. Sivelestat ameliorates sepsis-induced myocardial dysfunction by activating the PI3K/AKT/mTOR signaling pathway.Int. Immunopharmacol.202412811146610.1016/j.intimp.2023.11146638176345
    [Google Scholar]
  53. PangP.P. SunH. YuP. YangW. ZhengY.T. LiX. ZhengC.B. The hydroxamic acid derivative YPX-C-05 alleviates hypertension and vascular dysfunction through the PI3K/Akt/eNOS pathway.Vascul. Pharmacol.202415410725110.1016/j.vph.2023.10725138052330
    [Google Scholar]
  54. ChenG. LuoS. GuoH. LinJ. XuS. Licochalcone A alleviates ferroptosis in doxorubicin-induced cardiotoxicity via the PI3K/AKT/MDM2/p53 pathway.Naunyn Schmiedebergs Arch. Pharmacol.202439764247426210.1007/s00210‑023‑02863‑138078919
    [Google Scholar]
  55. LiY.Z. ChaoR. QuS.L. HuangL. ZhangC. ZNF667 suppressed LPS-induced macrophages inflammation through mTOR-dependent aerobic glycolysis regulation.Curr. Pharm. Des.202329171361136910.2174/138161282966623053014312937259213
    [Google Scholar]
  56. WangF. WangJ. LiangX. WuZ. XueJ. YinL. WeiL. ZhangX. Ghrelin inhibits myocardial pyroptosis in diabetic cardiomyopathy by regulating ERS and NLRP3 inflammasome crosstalk through the PI3K/AKT pathway.J. Drug Target.202432214815810.1080/1061186X.2023.229526838088811
    [Google Scholar]
  57. HuangW. HutabaratR.P. ChaiZ. ZhengT. ZhangW. LiD. Antioxidant blueberry anthocyanins induce vasodilation via PI3K/Akt signaling pathway in high-glucose-induced human umbilical vein endothelial cells.Int. J. Mol. Sci.2020215157510.3390/ijms2105157532106617
    [Google Scholar]
  58. IqbalS. JabeenF. KahwaI. OmaraT. Suberosin alleviates thiazolidinedione-induced cardiomyopathy in diabetic rats by inhibiting ferroptosis via modulation of ACSL4-LPCAT3 and PI3K-AKT signaling pathways.Cardiovasc. Toxicol.2023239-1029530410.1007/s12012‑023‑09804‑737676618
    [Google Scholar]
  59. LiL. XiH.M. LuH. CaiX. Combination of ethacrynic acid and ATRA triggers differentiation and/or apoptosis of acute myeloid leukemia cells through ROS.Anticancer. Agents Med. Chem.202424641242210.2174/011871520627300023121109274338204257
    [Google Scholar]
  60. WangK. OuZ. DengG. LiS. SuJ. XuY. ZhouR. HuW. ChenF. The translational landscape revealed the sequential treatment containing ATRA plus PI3K/AKT inhibitors as an efficient strategy for AML therapy.Pharmaceutics20221411232910.3390/pharmaceutics1411232936365147
    [Google Scholar]
  61. LiuY. LiuQ. ChenS. LiuY. HuangY. ChenP. LiX. GaoG. XuK. FanS. ZengZ. XiongW. TanM. LiG. ZhangW. APLNR is involved in ATRA-induced growth inhibition of nasopharyngeal carcinoma and may suppress EMT through PI3K-Akt-mTOR signaling.FASEB J.20193311119591197210.1096/fj.201802416RR31408612
    [Google Scholar]
  62. LiangL. WangX. ZhengY. LiuY. All-trans-retinoic acid modulates TGF-β-induced apoptosis, proliferation, migration and extracellular matrix synthesis of conjunctival fibroblasts by inhibiting PI3K/AKT signaling.Mol. Med. Rep.20192032929293510.3892/mmr.2019.1050731322252
    [Google Scholar]
  63. WeiS. ZhangJ. HanB. LiuJ. XiangX. ZhangM. XiaS. ZhangW. ZhangX. Novel zinc finger transcription factor ZFP580 facilitates all-trans retinoic acid-induced vascular smooth muscle cells differentiation by rarα-mediated PI3K/Akt and ERK signaling.Cell. Physiol. Biochem.20185062390240510.1159/00049509830423583
    [Google Scholar]
  64. CuiJ. WangY. TianX. MiaoY. MaL. ZhangC. XuX. WangJ. FangW. ZhangX. LPCAT3 is transcriptionally regulated by YAP/ZEB/EP300 and collaborates with ACSL4 and YAP to determine ferroptosis sensitivity.Antioxid. Redox Signal.2023397-949151110.1089/ars.2023.023737166352
    [Google Scholar]
  65. NiuX. HanP. LiuJ. ChenZ. MaX. ZhangT. LiB. MaX. Regulation of Hippo/YAP signaling pathway ameliorates cochlear hair cell injury by regulating ferroptosis.Tissue Cell20238210205110.1016/j.tice.2023.10205136889225
    [Google Scholar]
  66. WuJ. MinikesA.M. GaoM. BianH. LiY. StockwellB.R. ChenZ.N. JiangX. Intercellular interaction dictates cancer cell ferroptosis via NF2–YAP signalling.Nature2019572776940240610.1038/s41586‑019‑1426‑631341276
    [Google Scholar]
  67. ZhaoM.Y. LiuP. SunC. PeiL.J. HuangY.G. Propofol Augments paclitaxel-induced cervical cancer cell ferroptosis in vitro. Front. Pharmacol.20221381643210.3389/fphar.2022.81643235517791
    [Google Scholar]
  68. ZhuG. MurshedA. LiH. MaJ. ZhenN. DingM. ZhuJ. MaoS. TangX. LiuL. SunF. JinL. PanQ. O-GlcNAcylation enhances sensitivity to RSL3-induced ferroptosis via the YAP/TFRC pathway in liver cancer.Cell Death Discov.2021718310.1038/s41420‑021‑00468‑233863873
    [Google Scholar]
  69. KeW. LiaoZ. LiangH. TongB. SongY. LiG. MaL. WangK. FengX. LiS. HuaW. WangB. YangC. Stiff substrate induces nucleus pulposus cell ferroptosis via YAP and N-Cadherin mediated mechanotransduction.Adv. Healthc. Mater.20231223230045810.1002/adhm.20230045837022980
    [Google Scholar]
  70. QianX. HeL. HaoM. LiY. LiX. LiuY. JiangH. XuL. LiC. WuW. DuL. YinX. LuQ. YAP mediates the interaction between the Hippo and PI3K/Akt pathways in mesangial cell proliferation in diabetic nephropathy.Acta Diabetol.2021581476210.1007/s00592‑020‑01582‑w32816106
    [Google Scholar]
  71. MondalA. DasS. SamantaJ. ChakrabortyS. senguptaA. YAP1 induces hyperglycemic stress-mediated cardiac hypertrophy and fibrosis in an AKT-FOXM1 dependent signaling pathway.Arch. Biochem. Biophys.202272210919810.1016/j.abb.2022.10919835358489
    [Google Scholar]
  72. ChenJ. HarrisR.C. Interaction of the EGF receptor and the Hippo pathway in the diabetic kidney.J. Am. Soc. Nephrol.20162761689170010.1681/ASN.201504041526453611
    [Google Scholar]
  73. HanY. YangY. KimM. JeeS.H. YooH.J. LeeJ.H. Serum retinal and retinoic acid predict the development of type 2 diabetes mellitus in korean subjects with impaired fasting glucose from the KCPS-II cohort.Metabolites202111851010.3390/metabo1108051034436451
    [Google Scholar]
  74. SharifzadehM. Esmaeili-BandboniA. EmamiM.R. NaeiniF. ZarezadehM. JavanbakhtM.H. The effects of all trans retinoic acid, vitamin D3 and their combination on plasma levels of miRNA-125a-5p, miRNA-34a, and miRNA-126 in an experimental model of diabetes.Avicenna J. Phytomed.2022121677610.22038/AJP.2021.1859835145896
    [Google Scholar]
  75. LiuY. ZhaoJ. LuM. WangH. TangF. Retinoic acid attenuates cardiac injury induced by hyperglycemia in pre- and post-delivery mice.Can. J. Physiol. Pharmacol.202098161410.1139/cjpp‑2019‑000931518508
    [Google Scholar]
  76. KoprivicaI. GajicD. SaksidaT. CavalliE. AuciD. DespotovicS. PejnovicN. Stosic-GrujicicS. NicolettiF. StojanovicI. Orally delivered all-trans-retinoic acid- and transforming growth factor-β-loaded microparticles ameliorate type 1 diabetes in mice.Eur. J. Pharmacol.201986417272110.1016/j.ejphar.2019.17272131586630
    [Google Scholar]
  77. TrasinoS.E. TangX.H. JessurunJ. GudasL.J. Retinoic acid receptor β2 agonists restore glycaemic control in diabetes and reduce steatosis.Diabetes Obes. Metab.201618214215110.1111/dom.1259026462866
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128313964240728155100
Loading
/content/journals/cpd/10.2174/0113816128313964240728155100
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test