Skip to content
2000
Volume 31, Issue 2
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Nowadays, the usage of probiotics in the food industry has become common. It has been proven that probiotics have many health benefits, such as adjusting the intestinal microbiome, boosting the immune system, and enhancing anti-inflammatory and anti-cancer activities. However, in recent years, some concerns have arisen about the consumption of probiotics, especially in vulnerable populations such as elderly, infants, and people with underlying diseases. As a result, finding a new alternative to probiotics that has the same function as probiotics and is safer has been prioritized. In recent years, postbiotics have been introduced as a great replacement for probiotics. However, the safety of these compounds is not exactly confirmed due to the limited research. In this review, the definition, classification, activities, limitations, and some advantages of postbiotics over probiotics are discussed. Finally, the limited published data about the safety of postbiotics is summarized.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128335414240828105229
2024-09-18
2025-01-06
Loading full text...

Full text loading...

References

  1. SoccolCR VandenbergheLP de S SpierMR MedeirosABP YamaguishiCT The potential of probiotics: A review.Food Technol. Biotechnol.2010484413434
    [Google Scholar]
  2. HillC. GuarnerF. ReidG. GibsonG.R. MerensteinD.J. PotB. MorelliL. CananiR.B. FlintH.J. SalminenS. CalderP.C. SandersM.E. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic.Nat. Rev. Gastroenterol. Hepatol.201411850651410.1038/nrgastro.2014.6624912386
    [Google Scholar]
  3. HowY.H. YeoS.K. Oral probiotic and its delivery carriers to improve oral health: A review.Microbiology2021167800107610.1099/mic.0.001076
    [Google Scholar]
  4. MeghaS. ShaliniG. VarshaS.A. AbhishekD. NeetuJ. Effect of short-term placebo-controlled consumption of probiotic yoghurt and Indian curd on the Streptococcus mutans level in children undergoing fixed interceptive orthodontic therapy.Turk. J. Orthod.2019321162110.5152/TurkJOrthod.2019.1801630944895
    [Google Scholar]
  5. de PaulaB.P. ChávezD.W.H. Lemos JuniorW.J.F. GuerraA.F. CorrêaM.F.D. PereiraK.S. CoelhoM.A.Z. Growth parameters and survivability of Saccharomyces boulardii for probiotic alcoholic beverages development.Front. Microbiol.201910September209210.3389/fmicb.2019.0209231552002
    [Google Scholar]
  6. HossainM.N. RanadheeraC.S. FangZ. AjlouniS. Interaction between chocolate polyphenols and encapsulated probiotics during in vitro digestion and colonic fermentation.Fermentation20228625310.3390/fermentation8060253
    [Google Scholar]
  7. NourizadehR. SepehriB. AbbasiA. SayyedR.Z. KhaliliL. Impact of probiotics in modulation of gut microbiome. In: Microbiome-gut-brain axis.Nat. Singap.2022401409
    [Google Scholar]
  8. Maldonado GaldeanoC. CazorlaS.I. Lemme DumitJ.M. VélezE. PerdigónG. Beneficial effects of probiotic consumption on the immune system.Ann. Nutr. Metab.201974211512410.1159/00049642630673668
    [Google Scholar]
  9. MarottaA. SarnoE. Del CasaleA. PaneM. MognaL. AmorusoA. FelisG.E. FiorioM. Effects of probiotics on cognitive reactivity, mood, and sleep quality.Front. Psychiatry201910MAR16410.3389/fpsyt.2019.0016430971965
    [Google Scholar]
  10. ZhangX. Ali EsmailG. Fahad AlzeerA. Valan ArasuM. VijayaraghavanP. Choon ChoiK. Abdullah Al-DhabiN. Probiotic characteristics of Lactobacillus strains isolated from cheese and their antibacterial properties against gastrointestinal tract pathogens.Saudi J. Biol. Sci.202027123505351310.1016/j.sjbs.2020.10.02233304162
    [Google Scholar]
  11. NorouziS. PourjafarH. AnsariF. HomayouniA. A survey on the survival of Lactobacillus paracasei in fermented and non-fermented frozen soy dessert.Biocatal. Agric. Biotechnol.201921August10129710.1016/j.bcab.2019.101297
    [Google Scholar]
  12. GibsonG.R. RoberfroidM.B. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics.J. Nutr.199512561401141210.1093/jn/125.6.14017782892
    [Google Scholar]
  13. AbbasiA. RadA.H. GhasempourZ. SabahiS. KafilH.S. HasannezhadP. Rahbar SaadatY. ShahbaziN. The biological activities of postbiotics in gastrointestinal disorders.Crit. Rev. Food Sci. Nutr.202262225983600410.1080/10408398.2021.189506133715539
    [Google Scholar]
  14. VinderolaG. SandersM.E. SalminenS. The concept of postbiotics.Foods2022118107710.3390/foods1108107735454664
    [Google Scholar]
  15. Davani-DavariD. NegahdaripourM. KarimzadehI. SeifanM. MohkamM. MasoumiS. BerenjianA. GhasemiY. Prebiotics: Definition, types, sources, mechanisms, and clinical applications.Foods2019839210.3390/foods803009230857316
    [Google Scholar]
  16. EverardA. LazarevicV. GaïaN. JohanssonM. StåhlmanM. BackhedF. DelzenneN.M. SchrenzelJ. FrançoisP. CaniP.D. Microbiome of prebiotic-treated mice reveals novel targets involved in host response during obesity.ISME J.20148102116213010.1038/ismej.2014.4524694712
    [Google Scholar]
  17. VitaliB. NdagijimanaM. CrucianiF. CarnevaliP. CandelaM. GuerzoniM.E. BrigidiP. Impact of a synbiotic food on the gut microbial ecology and metabolic profiles.BMC Microbiol.2010101410.1186/1471‑2180‑10‑420055983
    [Google Scholar]
  18. XiaoL. ZhangC. ZhangX. ZhaoX. Chaeipeima MahsaG. MaK. JiF. AzarpazhoohE. AjamiM. RuiX. LiW. Effects of Lacticaseibacillus paracasei SNB-derived postbiotic components on intestinal barrier dysfunction and composition of gut microbiota.Food Res. Int.202417511377310.1016/j.foodres.2023.11377338129062
    [Google Scholar]
  19. DinuL.D. AvramI. PelinescuD.R. VamanuE. Mineral-enriched postbiotics: A new perspective for microbial therapy to prevent and treat gut dysbiosis.Biomedicines20221010239210.3390/biomedicines1010239236289654
    [Google Scholar]
  20. Aghebati-MalekiL. HasannezhadP. AbbasiA. KhaniN. Antibacterial, antiviral, antioxidant, and anticancer activities of postbiotics: A review of mechanisms and therapeutic perspectives.Biointerface Res. Appl. Chem.202212226292645
    [Google Scholar]
  21. RadA.H. Aghebati-MalekiL. KafilH.S. GilaniN. AbbasiA. KhaniN. Postbiotics, as dynamic biomolecules, and their promising role in promoting food safety.Biointerface Res. Appl. Chem.2021116145291454410.33263/BRIAC116.1452914544
    [Google Scholar]
  22. SicilianoR.A. RealeA. MazzeoM.F. MorandiS. SilvettiT. BrascaM. Paraprobiotics: A new perspective for functional foods and nutraceuticals.Nutrients2021134122510.3390/nu1304122533917707
    [Google Scholar]
  23. BajpaiV.K. ChandraV. KimN.H. RaiR. KumarP. KimK. AeronA. KangS.C. MaheshwariD.K. NaM. RatherI.A. ParkY.H. Ghost probiotics with a combined regimen: A novel therapeutic approach against the Zika virus, an emerging world threat.Crit. Rev. Biotechnol.201838343845410.1080/07388551.2017.136844528877637
    [Google Scholar]
  24. SalminenS. ColladoM.C. EndoA. HillC. LebeerS. QuigleyE.M.M. SandersM.E. ShamirR. SwannJ.R. SzajewskaH. VinderolaG. The international scientific association of probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics.Nat. Rev. Gastroenterol. Hepatol.202118964966710.1038/s41575‑021‑00440‑633948025
    [Google Scholar]
  25. ColladoM.C. VinderolaG. SalminenS. Postbiotics: Facts and open questions. A position paper on the need for a consensus definition.Benef. Microbes201910771172010.3920/BM2019.001531965850
    [Google Scholar]
  26. Aguilar-ToaláJ.E. Garcia-VarelaR. GarciaH.S. Mata-HaroV. González-CórdovaA.F. Vallejo-CordobaB. Hernández-MendozaA. Postbiotics: An evolving term within the functional foods field.Trends Food Sci. Technol.20187510511410.1016/j.tifs.2018.03.009
    [Google Scholar]
  27. Cuevas-GonzálezP.F. LiceagaA.M. Aguilar-ToaláJ.E. Postbiotics and paraprobiotics: From concepts to applications.Food Res. Int.202013610950210.1016/j.foodres.2020.10950232846581
    [Google Scholar]
  28. TeameT. WangA. XieM. ZhangZ. YangY. DingQ. GaoC. OlsenR.E. RanC. ZhouZ. Paraprobiotics and postbiotics of probiotic Lactobacilli, their positive effects on the host and action mechanisms: A review.Front. Nutr.20207October57034410.3389/fnut.2020.57034433195367
    [Google Scholar]
  29. BarrosC.P. GuimarãesJ.T. EsmerinoE.A. DuarteM.C.K.H. SilvaM.C. SilvaR. FerreiraB.M. Sant’AnaA.S. FreitasM.Q. CruzA.G. Paraprobiotics and postbiotics: Concepts and potential applications in dairy products.Curr. Opin. Food Sci.2020321810.1016/j.cofs.2019.12.003
    [Google Scholar]
  30. RadA.H. HosseiniS. PourjafarH. Postbiotics as dynamic biological molecules for antimicrobial activity: A mini-review.Biointerface Res. Appl. Chem.202212565436556
    [Google Scholar]
  31. JastrząbR. GraczykD. SiedleckiP. Molecular and cellular mechanisms influenced by postbiotics.Int. J. Mol. Sci.202122241347510.3390/ijms22241347534948270
    [Google Scholar]
  32. ThorakkattuP. KhanashyamA.C. ShahK. BabuK.S. MundanatA.S. DeliephanA. DeokarG.S. SantivarangknaC. NirmalN.P. Postbiotics: Current trends in food and pharmaceutical industry.Foods20221119309410.3390/foods1119309436230169
    [Google Scholar]
  33. JosM ElenaF Postbiotics in human health: Possible new functional ingredients?Food Res Int2020137109660
    [Google Scholar]
  34. PourjafarH. AnsariF. SadeghiA. SamakkhahS.A. JafariS.M. Functional and health-promoting properties of probiotics’ exopolysaccharides; Isolation, characterization, and applications in the food industry.Crit. Rev. Food Sci. Nutr.202363268194822510.1080/10408398.2022.204788335266799
    [Google Scholar]
  35. RafiqueN JanSY DarAH DashKK SarkarA ShamsR Promising bioactivities of postbiotics: A comprehensive review.J Agric Food Res20231410070810.1016/j.jafr.2023.100708
    [Google Scholar]
  36. Mert AŞİTMS. Classification and antitumor activities of postbiotics from the biotic family.J. Ankara Health Sci.2023122212221
    [Google Scholar]
  37. Mani-LópezE. Arrioja-BretónD. López-MaloA. The impacts of antimicrobial and antifungal activity of cell-free supernatants from lactic acid bacteria in vitro and foods.Compr. Rev. Food Sci. Food Saf.202221160464110.1111/1541‑4337.1287234907656
    [Google Scholar]
  38. SiedlerS. BaltiR. NevesA.R. Bioprotective mechanisms of lactic acid bacteria against fungal spoilage of food.Curr. Opin. Biotechnol.20195613814610.1016/j.copbio.2018.11.01530504082
    [Google Scholar]
  39. LeeJ.Y. KimY. KimJ.I. LeeH.Y. MoonG.S. KangC.H. Improvements in human Keratinocytes and antimicrobial effect mediated by cell-free supernatants derived from probiotics.Fermentation20228733210.3390/fermentation8070332
    [Google Scholar]
  40. Bermudez-BritoM. Muñoz-QuezadaS. Gomez-LlorenteC. MatencioE. BernalM.J. RomeroF. GilA. Cell-free culture supernatant of Bifidobacterium breve CNCM I-4035 decreases pro-inflammatory cytokines in human dendritic cells challenged with Salmonella typhi through TLR activation.PLoS One201383e5937010.1371/journal.pone.005937023555025
    [Google Scholar]
  41. SalemiR. VivarelliS. RicciD. ScillatoM. SantagatiM. GattusoG. FalzoneL. LibraM. Lactobacillus rhamnosus GG cell-free supernatant as a novel anti-cancer adjuvant.J. Transl. Med.202321119510.1186/s12967‑023‑04036‑336918929
    [Google Scholar]
  42. KimJ.K. ParkK.J. ChoK.S. NamS.W. ParkT.J. BajpaiR. Aerobic nitrification–denitrification by heterotrophic Bacillus strains.Bioresour. Technol.200596171897190610.1016/j.biortech.2005.01.04016084369
    [Google Scholar]
  43. ContesiniF.J. MeloR.R. SatoH.H. An overview of Bacillus proteases: From production to application.Crit. Rev. Biotechnol.201838332133410.1080/07388551.2017.135435428789570
    [Google Scholar]
  44. de Moreno de LeBlancA. LeBlancJ.G. PerdigónG. MiyoshiA. LangellaP. AzevedoV. SesmaF. Oral administration of a catalase-producing Lactococcus lactis can prevent a chemically induced colon cancer in mice.J. Med. Microbiol.200857110010510.1099/jmm.0.47403‑018065674
    [Google Scholar]
  45. CaggianielloG. KleerebezemM. SpanoG. Exopolysaccharides produced by lactic acid bacteria: From health-promoting benefits to stress tolerance mechanisms.Appl. Microbiol. Biotechnol.201610093877388610.1007/s00253‑016‑7471‑227020288
    [Google Scholar]
  46. AngelinJ. KavithaM. Exopolysaccharides from probiotic bacteria and their health potential.Int. J. Biol. Macromol.202016285386510.1016/j.ijbiomac.2020.06.19032585269
    [Google Scholar]
  47. MoscoviciM. Present and future medical applications of microbial exopolysaccharides.Front. Microbiol.20156SEP101210.3389/fmicb.2015.0101226483763
    [Google Scholar]
  48. Gezgi̇nçY. Karabekmez-ErdemT. TatarH.D. AymanS. Gani̇yusufoğluE. DayisoyluK.S. Health promoting benefits of postbiotics produced by lactic acid bacteria: Exopolysaccharide.Biotech Stud2022312617010.38042/biotechstudies.1159166
    [Google Scholar]
  49. KaracaB. HaliscelikO. GursoyM. KiranF. LoimarantaV. SöderlingE. GursoyU.K. Analysis of chemical structure and antibiofilm properties of exopolysaccharides from Lactiplantibacillus plantarum EIR/IF-1 postbiotics.Microorganisms20221011220010.3390/microorganisms1011220036363792
    [Google Scholar]
  50. ShengS. FuY. PanN. ZhangH. XiuL. LiangY. LiuY. LiuB. MaC. DuR. WangX. Novel exopolysaccharide derived from probiotic Lactobacillus pantheris TCP102 strain with immune-enhancing and anticancer activities.Front. Microbiol.202213September101527010.3389/fmicb.2022.101527036225355
    [Google Scholar]
  51. KimM. FriesenL. ParkJ. KimH.M. KimC.H. Microbial metabolites, short-chain fatty acids, restrain tissue bacterial load, chronic inflammation, and associated cancer in the colon of mice.Eur. J. Immunol.20184871235124710.1002/eji.20174712229644622
    [Google Scholar]
  52. TakagiR. SasakiK. SasakiD. FukudaI. TanakaK. YoshidaK. KondoA. OsawaR. A single-batch fermentation system to simulate human colonic microbiota for high-throughput evaluation of prebiotics.PLoS One2016118e016053310.1371/journal.pone.016053327483470
    [Google Scholar]
  53. Markowiak-KopećP. ŚliżewskaK. The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome.Nutrients2020124110710.3390/nu1204110732316181
    [Google Scholar]
  54. HigashiB. MarianoT.B. de Abreu FilhoB.A. GonçalvesR.A.C. de OliveiraA.J.B. Effects of fructans and probiotics on the inhibition of Klebsiella oxytoca and the production of short-chain fatty acids assessed by NMR spectroscopy.Carbohydr. Polym.2020248April11683210.1016/j.carbpol.2020.11683232919546
    [Google Scholar]
  55. BirdA. ConlonM. ChristophersenC. ToppingD. Resistant starch, large bowel fermentation and a broader perspective of prebiotics and probiotics.Benef. Microbes20101442343210.3920/BM2010.004121831780
    [Google Scholar]
  56. SaeuiC. MathewM. LiuL. UriasE. YaremaK. Cell surface and membrane engineering: Emerging technologies and applications.J. Funct. Biomater.20156245448510.3390/jfb602045426096148
    [Google Scholar]
  57. LebeerS. ClaesI.J.J. VanderleydenJ. Anti-inflammatory potential of probiotics: Lipoteichoic acid makes a difference.Trends Microbiol.201220151010.1016/j.tim.2011.09.00422030243
    [Google Scholar]
  58. JungB.J. KimH. ChungD.K. Differential immunostimulatory effects of lipoteichoic acids isolated from four strains of Lactiplantibacillus plantarum.Appl Sci202212395410.3390/app12030954
    [Google Scholar]
  59. PattersonA.D. TurnbaughP.J. Microbial determinants of biochemical individuality and their impact on toxicology and pharmacology.Cell Metab.201420576176810.1016/j.cmet.2014.07.00225156450
    [Google Scholar]
  60. BadiS.A. MoshiriA. FatehA. JamnaniF.R. SarsharM. VaziriF. Microbiota-derived extracellular vesicles as new systemic regulators.Front. Microbiol.2017814
    [Google Scholar]
  61. LiuY. HouY. WangG. ZhengX. HaoH. Gut microbial metabolites of aromatic amino acids as signals in host–microbe interplay.Trends Endocrinol. Metab.2020311181883410.1016/j.tem.2020.02.01232284282
    [Google Scholar]
  62. PerezR.H. ZendoT. SonomotoK. Novel bacteriocins from lactic acid bacteria (LAB): Various structures and applications.Microb. Cell Fact.201413S1Suppl. 1S310.1186/1475‑2859‑13‑S1‑S325186038
    [Google Scholar]
  63. BelguesmiaY. BendjeddouK. KempfI. BoukherroubR. DriderD. Heterologous biosynthesis of five new class II bacteriocins from Lactobacillus paracasei CNCM I-5369 with antagonistic activity against pathogenic Escherichia coli strains.Front. Microbiol.202011June119810.3389/fmicb.2020.0119832636812
    [Google Scholar]
  64. KimS.W. KangS.I. ShinD.H. OhS.Y. LeeC.W. YangY. SonY.K. YangH.S. LeeB.H. AnH.J. JeongI.S. BangW.Y. Potential of cell-free supernatant from Lactobacillus plantarum nibr97, including novel bacteriocins, as a natural alternative to chemical disinfectants.Pharmaceuticals2020131026610.3390/ph1310026632977547
    [Google Scholar]
  65. SounderrajanV. RaoS.S. Antiviral activity of postbiotics.Postbiotics. Methods and Protocols in Food Science.HumanaNew York, NY2024201205
    [Google Scholar]
  66. Vilhelmova-IlievaN. AtanasovG. SimeonovaL. DobrevaL. ManchevaK. TrepechovaM. DanovaS. Anti-herpes virus activity of Lactobacillus’ postbiotics.Biomedicine2022121212910.37796/2211‑8039.127735836913
    [Google Scholar]
  67. MoradiM. TajikH. MardaniK. EzatiP. Efficacy of lyophilized cell-free supernatant of Lactobacillus salivarius (Ls-BU2) on Escherichia coli and shelf life of ground beef.Vet. Res. Forum201910319319831737227
    [Google Scholar]
  68. ChuahL.O. FooH.L. LohT.C. Mohammed AlitheenN.B. YeapS.K. Abdul MutalibN.E. Abdul RahimR. YusoffK. Postbiotic metabolites produced by Lactobacillus plantarum strains exert selective cytotoxicity effects on cancer cells.BMC Complement. Altern. Med.201919111410.1186/s12906‑019‑2528‑231159791
    [Google Scholar]
  69. IzuddinW.I. HumamA.M. LohT.C. FooH.L. SamsudinA.A. Dietary postbiotic Lactobacillus plantarum improves serum and ruminal antioxidant activity and upregulates hepatic antioxidant enzymes and ruminal barrier function in post-weaning lambs.Antioxidants20209325010.3390/antiox903025032204511
    [Google Scholar]
  70. ParkS.J. SharmaA. LeeH.J. Postbiotics against obesity: Perception and overview based on pre-clinical and clinical studies.Int. J. Mol. Sci.2023247641410.3390/ijms2407641437047387
    [Google Scholar]
  71. CavallariJ.F. BarraN.G. FoleyK.P. LeeA. DugganB.M. HenriksboB.D. AnhêF.F. AshkarA.A. SchertzerJ.D. Postbiotics for NOD2 require nonhematopoietic RIPK2 to improve blood glucose and metabolic inflammation in mice.Am. J. Physiol. Endocrinol. Metab.20203184E579E58510.1152/ajpendo.00033.202032101030
    [Google Scholar]
  72. LiuQ. LiuY. LiF. GuZ. LiuM. ShaoT. ZhangL. ZhouG. PanC. HeL. CaiJ. ZhangX. BarveS. McClainC.J. ChenY. FengW. Probiotic culture supernatant improves metabolic function through FGF21-adiponectin pathway in mice.J. Nutr. Biochem.20207510825610.1016/j.jnutbio.2019.10825631760308
    [Google Scholar]
  73. YeşilyurtN. YılmazB. AğagündüzD. CapassoR. Involvement of probiotics and postbiotics in the immune system modulation.Biologics2021128911010.3390/biologics1020006
    [Google Scholar]
  74. WangY. XieJ. WangN. LiY. SunX. ZhangY. ZhangH. Lactobacillus casei Zhang modulate cytokine and Toll-like receptor expression and beneficially regulate poly I:C-induced immune responses in RAW264.7 macrophages.Microbiol. Immunol.2013571546210.1111/j.1348‑0421.516.x23350674
    [Google Scholar]
  75. RossoniR.D. VellosoM.S. de BarrosP.P. de AlvarengaJ.A. SantosJ.D. Santos PradoA.C.C. RibeiroF.C. AnbinderA.L. JunqueiraJ.C. Inhibitory effect of probiotic Lactobacillus supernatants from the oral cavity on Streptococcus mutans biofilms.Microb. Pathog.2018123April36136710.1016/j.micpath.2018.07.03230053602
    [Google Scholar]
  76. BanakarM. PourhajibagherM. Etemad-MoghadamS. MehranM. YazdiM.H. HaghgooR. AlaeddiniM. FrankenbergerR. Antimicrobial effects of postbiotic mediators derived from Lactobacillus rhamnosus gg and Lactobacillus reuteri on Streptococcus mutans. Front Biosci Landmark20232858810.31083/j.fbl280508837258481
    [Google Scholar]
  77. LinC.W. ChenY.T. HoH.H. KuoY.W. LinW.Y. ChenJ.F. LinJ.H. LiuC.R. LinC.H. YehY.T. ChenC.W. HuangY.F. HsuC.H. HsiehP.S. YangS.F. Impact of the food grade heat-killed probiotic and postbiotic oral lozenges in oral hygiene.Aging20221452221223810.18632/aging.20392335236778
    [Google Scholar]
  78. ChuangS.Y. LinC.H. HuangT.H. FangJ.Y. Lipid-based nanoparticles as a potential delivery approach in the treatment of rheumatoid arthritis.Nanomaterials2018814210.3390/nano801004229342965
    [Google Scholar]
  79. KhanI. SaeedK. KhanI. Nanoparticles: Properties, applications and toxicities.Arab. J. Chem.201912790893110.1016/j.arabjc.2017.05.011
    [Google Scholar]
  80. HuangHL LaiCH TsaiWH ChenKW PengSL LinJH Nanoparticle-enhanced postbiotics: Revolutionizing cancer therapy through effective delivery.Life Sci202433712237910.1016/j.lfs.2023.122379
    [Google Scholar]
  81. NieG. HanB. Colon-targeted engineered postbiotics nanoparticles alleviating osteoporosis through gut-bone axis.Nature Portfolio2024127
    [Google Scholar]
  82. BravoJ.A. Julio-PieperM. ForsytheP. KunzeW. DinanT.G. BienenstockJ. CryanJ.F. Communication between gastrointestinal bacteria and the nervous system.Curr. Opin. Pharmacol.201212666767210.1016/j.coph.2012.09.01023041079
    [Google Scholar]
  83. BravoJ.A. ForsytheP. ChewM.V. EscaravageE. SavignacH.M. DinanT.G. BienenstockJ. CryanJ.F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve.Proc. Natl. Acad. Sci. USA201110838160501605510.1073/pnas.110299910821876150
    [Google Scholar]
  84. MarcobalA. KashyapP.C. NelsonT.A. AronovP.A. DoniaM.S. SpormannA. FischbachM.A. SonnenburgJ.L. A metabolomic view of how the human gut microbiota impacts the host metabolome using humanized and gnotobiotic mice.ISME J.20137101933194310.1038/ismej.2013.8923739052
    [Google Scholar]
  85. WuY. WangY. HuA. ShuX. HuangW. LiuJ. WangB. ZhangR. YueM. YangC. Lactobacillus plantarum-derived postbiotics prevent Salmonella-induced neurological dysfunctions by modulating gut–brain axis in mice.Front. Nutr.2022994609610.3389/fnut.2022.94609635967771
    [Google Scholar]
  86. NishidaK. SawadaD. KuwanoY. TanakaH. RokutanK. Health benefits of Lactobacillus gasseri cp2305 tablets in young adults exposed to chronic stress: A randomized, double-blind, placebo- controlled study.Nutrients2019118185910.3390/nu1108185931405122
    [Google Scholar]
  87. SeoB.J. RatherI.A. KumarV.J.R. ChoiU.H. MoonM.R. LimJ.H. ParkY.H. Evaluation of Leuconostoc mesenteroides YML003 as a probiotic against low-pathogenic avian influenza (H9N2) virus in chickens.J. Appl. Microbiol.2012113116317110.1111/j.1365‑2672.2012.05326.x22548634
    [Google Scholar]
  88. RatherI.A. SeoB.J. KumarV.J.R. ChoiU.H. ChoiK.H. LimJ. ParkY-H. Biopreservative potential of Lactobacillus plantarum YML007 and efficacy as a replacement for chemical preservatives in animal feed.Food Sci. Biotechnol.201423119520010.1007/s10068‑014‑0026‑3
    [Google Scholar]
  89. CuiY. QiS. ZhangW. MaoJ. TangR. WangC. LiuJ. LuoX.M. WangH. Lactobacillus reuteri ZJ617 culture supernatant attenuates acute liver injury induced in mice by lipopolysaccharide.J. Nutr.2019149112046205510.1093/jn/nxz08831152671
    [Google Scholar]
  90. KimS.G. LeeY.D. ParkJ.H. MoonG.S. Synergistic inhibition by bacteriocin and bacteriophage against Staphylococcus aureus.Food Sci. Anim. Resour.20193961015102010.5851/kosfa.2019.e9531950117
    [Google Scholar]
  91. MoroiM. UchiS. NakamuraK. SatoS. ShimizuN. FujiiM. KumagaiT. SaitoM. UchiyamaK. WatanabeT. YamaguchiH. YamamotoT. TakeuchiS. FurueM. Beneficial effect of a diet containing heat-killed Lactobacillus paracasei K71 on adult type atopic dermatitis.J. Dermatol.201138213113910.1111/j.1346‑8138.2010.00939.x21269308
    [Google Scholar]
  92. VitaleI. SpanoM. PucaV. CarradoriS. CesaS. MarinacciB. SistoF. RoosS. GromponeG. GrandeR. Antibiofilm activity and NMR-based metabolomic characterization of cell-free supernatant of Limosilactobacillus reuteri DSM 17938.Front. Microbiol.202314February112827510.3389/fmicb.2023.112827536891385
    [Google Scholar]
  93. WangY. WuY. WangY. XuH. MeiX. YuD. WangY. LiW. Antioxidant properties of probiotic bacteria.Nutrients20179552110.3390/nu905052128534820
    [Google Scholar]
  94. JungY KimH JaygalG ChoH LeeK SongI Postbiotics enhance NK cell activation in stress-induced mice through gut microbiome regulation. J Microbiol Biotechnol.202232561262010.4014/jmb.2111.11027
    [Google Scholar]
  95. HumamA.M. LohT.C. FooH.L. IzuddinW.I. ZulkifliI. SamsudinA.A. MustaphaN.M. Supplementation of postbiotic RI11 improves antioxidant enzyme activity, upregulated gut barrier genes, and reduced cytokine, acute phase protein, and heat shock protein 70 gene expression levels in heat-stressed broilers.Poult. Sci.2021100310090810.1016/j.psj.2020.12.01133518339
    [Google Scholar]
  96. GeirnaertA. CalatayudM. GrootaertC. LaukensD. DevrieseS. SmaggheG. De VosM. BoonN. Van de WieleT. Butyrate-producing bacteria supplemented in vitro to Crohn’s disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity.Sci. Rep.2017711145010.1038/s41598‑017‑11734‑828904372
    [Google Scholar]
  97. CavallariJ.F. FullertonM.D. DugganB.M. FoleyK.P. DenouE. SmithB.K. DesjardinsE.M. HenriksboB.D. KimK.J. TuinemaB.R. StearnsJ.C. PrescottD. RosenstielP. CoombesB.K. SteinbergG.R. SchertzerJ.D. Muramyl dipeptide-based postbiotics mitigate obesity-induced insulin resistance via IRF4.Cell Metab.201725510631074.e310.1016/j.cmet.2017.03.02128434881
    [Google Scholar]
  98. HuangY. ZhaoS. YaoK. LiuD. PengX. HuangJ. HuangY. LiL. Physicochemical, microbiological, rheological, and sensory properties of yoghurts with new polysaccharide extracts from Lactarius volemus Fr. using three probiotics.Int. J. Dairy Technol.202073116818110.1111/1471‑0307.12653
    [Google Scholar]
  99. ButrungrodW. ChaiyasutC. MakhamrueangN. PeerajanS. ChaiyanaW. SirilunS. Postbiotic metabolite of Lactiplantibacillus plantarum PD18 against periodontal pathogens and their virulence markers in biofilm formation.Pharmaceutics2023155141910.3390/pharmaceutics1505141937242661
    [Google Scholar]
  100. BhatB. BajajB.K. Hypocholesterolemic and bioactive potential of exopolysaccharide from a probiotic Enterococcus faecium K1 isolated from kalarei.Bioresour. Technol.201825425426426710.1016/j.biortech.2018.01.07829413932
    [Google Scholar]
  101. XiaoS.D. De ZhangZ. LuH. JiangS.H. LiuH.Y. WangG.S. XuG.M. ZhangZ.B. LinG.J. WangG.L. Multicenter, randomized, controlled trial of heat-killed Lactobacillus acidophilus LB in patients with chronic diarrhea.Adv. Ther.200320525326010.1007/BF0284985414964345
    [Google Scholar]
  102. da Silva SaboS. Pérez-RodríguezN. DomínguezJ.M. de Souza OliveiraR.P. Inhibitory substances production by Lactobacillus plantarum ST16Pa cultured in hydrolyzed cheese whey supplemented with soybean flour and their antimicrobial efficiency as biopreservatives on fresh chicken meat.Food Res. Int.201799Pt 176276910.1016/j.foodres.2017.05.02628784542
    [Google Scholar]
  103. AbdelazezA. AbdelmotaalH. EvivieS.E. BikheetM. SamiR. MohamedH. MengX. Verification of Lactobacillus brevis tolerance to simulated gastric juice and the potential effects of postbiotic gamma-aminobutyric acid in streptozotocin-induced diabetic mice.Food Sci. Hum. Wellness202211116517610.1016/j.fshw.2021.07.017
    [Google Scholar]
  104. AbdelazezA. AlshehryG. AlgarniE. Al JumayiH. Abdel-MotaalH. MengX.C. Postbiotic gamma-aminobutyric acid and camel milk intervention as innovative trends against hyperglycemia and hyperlipidemia in Streptozotocin-induced C57BL/6J diabetic mice.Front. Microbiol.202213July94393010.3389/fmicb.2022.94393035898909
    [Google Scholar]
  105. BalaguerF. EnriqueM. LlopisS. BarrenaM. NavarroV. ÁlvarezB. ChenollE. RamónD. TortajadaM. MartorellP. Lipoteichoic acid from Bifidobacterium animalis subsp. Lactis BPL1: A novel postbiotic that reduces fat deposition via IGF-1 pathway.Microb. Biotechnol.202215380581610.1111/1751‑7915.1376933620143
    [Google Scholar]
  106. KimJ.H. KwakW. NamY. BaekJ. LeeY. YoonS. KimW. Effect of postbiotic Lactiplantibacillus plantarum LRCC5314 supplemented in powdered milk on type 2 diabetes in mice.J. Dairy Sci.202410785301531510.3168/jds.2023‑2410338554828
    [Google Scholar]
  107. MelnychukI. Gut microbiota modulation by postbiotics in patients with coronary artery disease and atrial fibrillation. ScienceRise.Med. Sci.202411 (58)412
    [Google Scholar]
  108. DinuL.D. GateaF. Roaming IsraelF. LakicevicM. DedovićN. VamanuE. The modulation effect of a fermented bee pollen postbiotic on cardiovascular microbiota and therapeutic perspectives.Biomedicines20231110271210.3390/biomedicines1110271237893086
    [Google Scholar]
  109. TainY.L. HouC.Y. Chang-ChienG.P. LinS. TzengH.T. LeeW.C. WuK.L.H. YuH.R. ChanJ.Y.H. HsuC.N. Reprogramming effects of postbiotic butyrate and propionate on maternal high-fructose diet-induced offspring hypertension.Nutrients2023157168210.3390/nu1507168237049522
    [Google Scholar]
  110. PanebiancoC. VillaniA. PisatiF. OrsenigoF. UlaszewskaM. LatianoT.P. PotenzaA. AndolfoA. TerraccianoF. TripodoC. PerriF. PazienzaV. Butyrate, a postbiotic of intestinal bacteria, affects pancreatic cancer and gemcitabine response in in vitro and in vivo models.Biomed. Pharmacother.202215111316310.1016/j.biopha.2022.11316335617803
    [Google Scholar]
  111. WalheR. AlimH. KumariS. From probiotics to postbiotics: Key to microbiome and health.Microbiome-Gut-Brain Axis.SpringerSingapore2022C1C1
    [Google Scholar]
  112. PengM. TabashsumZ. AndersonM. TruongA. HouserA.K. PadillaJ. AkmelA. BhattiJ. RahamanS.O. BiswasD. Effectiveness of probiotics, prebiotics, and prebiotic-like components in common functional foods.Compr. Rev. Food Sci. Food Saf.20201941908193310.1111/1541‑4337.1256533337097
    [Google Scholar]
  113. TomasikP. TomasikP. Probiotics, non-dairy prebiotics and postbiotics in nutrition.Appl. Sci.2020104147010.3390/app10041470
    [Google Scholar]
  114. ShenderovB.A. Metabiotics: Novel idea or natural development of probiotic conception.Microb. Ecol. Health Dis.20132412039923990841
    [Google Scholar]
  115. ShigwedhaN. SichelL. JiaL. ZhangL. Probiotical cell fragments (PCFs) as “Novel nutraceutical ingredients”.J. Biosci. Med.201423435510.4236/jbm.2014.23007
    [Google Scholar]
  116. Homayouni RadA. Aghebati MalekiL. Samadi KafilH. Fathi ZavoshtiH. AbbasiA. Postbiotics as novel health-promoting ingredients in functional foods.Health Promot. Perspect.20201013410.15171/hpp.2020.0232104650
    [Google Scholar]
  117. RadA.H. AbbasiA. KafilH.S. GanbarovK. Potential pharmaceutical and food applications of postbiotics: A review.Curr. Pharm. Biotechnol.202021151576158710.2174/138920102166620051615483332416671
    [Google Scholar]
  118. OzmaM.A. MoaddabS.R. HosseiniH. KhodadadiE. GhotaslouR. AsgharzadehM. AbbasiA. KamounahF.S. Aghebati MalekiL. GanbarovK. Samadi KafilH. A critical review of novel antibiotic resistance prevention approaches with a focus on postbiotics.Crit. Rev. Food Sci. Nutr.202311910.1080/10408398.2023.221481837203933
    [Google Scholar]
  119. LiangB. XingD. The current and future perspectives of postbiotics.Probiotics Antimicrob. Proteins20231561626164310.1007/s12602‑023‑10045‑x36763279
    [Google Scholar]
  120. RadA.H. Aghebati-MalekiL. KafilH.S. AbbasiA. Molecular mechanisms of postbiotics in colorectal cancer prevention and treatment.Crit. Rev. Food Sci. Nutr.202161111787180310.1080/10408398.2020.176531032410512
    [Google Scholar]
  121. VandenplasY. de HalleuxV. ArciszewskaM. LachP. PokhylkoV. KlymenkoV. SchoenS. Abrahamse-BerkeveldM. MulderK. Porcel RubioR. On Behalf Of The Voyage Study Group A partly fermented infant formula with postbiotics including 3′-GL, specific oligosaccharides, 2′-FL, and milk fat supports adequate growth, is safe and well-tolerated in healthy term infants: A double-blind, randomised, controlled, multi-country trial.Nutrients20201211356010.3390/nu1211356033233658
    [Google Scholar]
  122. SalminenS. SzajewskaH. Postbiotics and their potential applications in early life nutrition and beyond.Textbook of Pediatric Gastroenterology.Hepatol Nutr2022733736
    [Google Scholar]
  123. GingerichE. FranaT. LogueC.M. SmithD.P. PavlidisH.O. ChaneyW.E. Effect of feeding a postbiotic derived from Saccharomyces cerevisiae fermentation as a preharvest food safety hurdle for reducing Salmonella enteritidis in the ceca of layer pullets.J. Food Prot.202184227528010.4315/JFP‑20‑33032977331
    [Google Scholar]
  124. KimJ. LeeY.I. MunS. JeongJ. LeeD.G. KimM. JoH. LeeS. HanK. LeeJ.H. Efficacy and safety of Epidermidibacterium keratini EPI-7 derived postbiotics in skin aging: A prospective clinical study.Int. J. Mol. Sci.2023245463410.3390/ijms2405463436902064
    [Google Scholar]
  125. MajeedM. MajeedS. NagabhushanamK. MundkurL. RajalakshmiH. ShahK. BeedeK. Novel topical application of a postbiotic, lactosporin®, in mild to moderate acne: A randomized, comparative clinical study to evaluate its efficacy, tolerability and safety.Cosmetics2020737010.3390/cosmetics7030070
    [Google Scholar]
  126. Malagón-RojasJ.N. MantziariA. SalminenS. SzajewskaH. Postbiotics for preventing and treating common infectious diseases in children: A systematic review.Nutrients202012238910.3390/nu1202038932024037
    [Google Scholar]
  127. ZhangT ZhangW FengC KwokLY HeQ SunZ Stronger gut microbiome modulatory effects by postbiotics than probiotics in a mouse colitis model.NPJ Sci Food202261110
    [Google Scholar]
  128. MoscaA. Abreu Y AbreuA.T. GweeK.A. IaniroG. TackJ. NguyenT.V.H. HillC. The clinical evidence for postbiotics as microbial therapeutics.Gut Microbes2022141211750810.1080/19490976.2022.211750836184735
    [Google Scholar]
  129. VallianouN.S.T. Probiotics, prebiotics, synbiotics, postbiotics, and obesity: Current evidence, controversies, and perspectives.Curr Obes Rep20209317919210.1007/s13679‑020‑00379‑w
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128335414240828105229
Loading
/content/journals/cpd/10.2174/0113816128335414240828105229
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anti-cancer; immune system; lactobacillus; Postbiotics; prebiotic; probiotics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test