Skip to content
2000
Volume 31, Issue 13
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Intrauterine Adhesions (IUA) are a significant cause of infertility and miscarriage, often resulting from trauma to the endometrium. While hysteroscopic adhesiolysis is the primary treatment, the use of hydrogels as anti-adhesion barriers and drug delivery systems is gaining traction for improving patient outcomes. This review aims to explore various hydrogel types, their role in tissue repair, and the integration of stem cell therapy. Recent advancements in biomaterial scaffolds have demonstrated potential in preventing adhesion recurrence and promoting endometrial regeneration. These emerging treatments provide promising avenues for enhancing the efficacy of traditional therapies in IUA management.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128348746241030110806
2025-01-01
2025-03-30
Loading full text...

Full text loading...

References

  1. LvH. WuB. SongJ. WuW. CaiW. XuJ. Hydrogel, a novel therapeutic and delivery strategy, in the treatment of intrauterine adhesions.J. Mater. Chem. B Mater. Biol. Med.20219336536655210.1039/D1TB01005K34324619
    [Google Scholar]
  2. KouL. JiangX. XiaoS. ZhaoY.Z. YaoQ. ChenR. Therapeutic options and drug delivery strategies for the prevention of intrauterine adhesions.J. Control. Release2020318253710.1016/j.jconrel.2019.12.00731830539
    [Google Scholar]
  3. DreislerE. KjerJ.J. Asherman’s syndrome: Current perspectives on diagnosis and management.Int. J. Womens Health20191119119810.2147/IJWH.S16547430936754
    [Google Scholar]
  4. WeiC. PanY. ZhangY. DaiY. JiangL. ShiL. YangW. XuS. ZhangY. XuW. ZhangY. LinX. ZhangS. Overactivated sonic hedgehog signaling aggravates intrauterine adhesion via inhibiting autophagy in endometrial stromal cells.Cell Death Dis.202011975510.1038/s41419‑020‑02956‑232934215
    [Google Scholar]
  5. HanX. MaY. LuX. LiW. XiaE. LiT.C. ZhangH. HuangX. Transplantation of human adipose stem cells using acellular human amniotic membrane improves angiogenesis in injured endometrial tissue in a rat intrauterine adhesion model.Cell Transplant.202029096368972095205510.1177/096368972095205532838542
    [Google Scholar]
  6. HuangX.W. LinM.M. ZhaoH.Q. PowellM. WangY.Q. ZhengR.R. EllisL.B. XiaW.T. LinF. A prospective randomized controlled trial comparing two different treatments of intrauterine adhesions.Reprod. Biomed. Online202040683584110.1016/j.rbmo.2020.02.01332376313
    [Google Scholar]
  7. ChenY. LiuL. LuoY. ChenM. HuanY. FangR. Prevalence and impact of chronic endometritis in patients with intrauterine adhesions: A prospective cohort study.J. Minim. Invasive Gynecol.2017241747910.1016/j.jmig.2016.09.02227773811
    [Google Scholar]
  8. ChenL. ZhangH. WangQ. XieF. GaoS. SongY. DongJ. FengH. XieK. SuiL. Reproductive outcomes in patients with intrauterine adhesions following hysteroscopic adhesiolysis: Experience from the largest women’s hospital in China.J. Minim. Invasive Gynecol.201724229930410.1016/j.jmig.2016.10.01827856386
    [Google Scholar]
  9. YuanX. DingL. DengD.Y. Research progress of hydrogel combined with mesenchymal stem cells in the treatment of spinal cord injury.J. Biomed. Engin.2021384805811
    [Google Scholar]
  10. ZhangX. ZhangW. YangM. Application of hydrogels in cartilage tissue engineering.Curr. Stem Cell Res. Ther.201813749751610.2174/1574888X1266617101716032329046163
    [Google Scholar]
  11. GuZ. HuangK. LuoY. ZhangL. KuangT. ChenZ. LiaoG. Double network hydrogel for tissue engineering.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2018106e152010.1002/wnan.152029664220
    [Google Scholar]
  12. DimatteoR. DarlingN.J. SeguraT. In situ forming injectable hydrogels for drug delivery and wound repair.Adv. Drug Deliv. Rev.201812716718410.1016/j.addr.2018.03.00729567395
    [Google Scholar]
  13. QiL. ZhangC. WangB. YinJ. YanS. Progress in hydrogels for skin wound repair.Macromol. Biosci.2022227210047510.1002/mabi.20210047535388605
    [Google Scholar]
  14. ZhangS.S. XuX.X. XiangW.W. ZhangH.H. LinH.L. ShenL.E. LinQ. LinF. ZhouZ.Y. Using 17β-estradiol heparin-poloxamer thermosensitive hydrogel to enhance the endometrial regeneration and functional recovery of intrauterine adhesions in a rat model.FASEB J.202034144645710.1096/fj.201901603RR31914682
    [Google Scholar]
  15. TangJ. ChenJ. GuoJ. WeiQ. FanH. Construction and evaluation of fibrillar composite hydrogel of collagen/konjac glucomannan for potential biomedical applications.Regen. Biomater.20185423925010.1093/rb/rby01830094063
    [Google Scholar]
  16. HuangC. DingD.C. Outcomes of adhesion barriers in gynecologic surgeries.Medicine (Baltimore)20199850e1839110.1097/MD.000000000001839131852155
    [Google Scholar]
  17. KhanN.U. ChengfengX. JiangM.Q. AkramW. KhanZ.U. RazzaqA. GuohuaM. RuiZ. NiJ. UllahA. IqbalH. JinZ.M. α-Lactalbumin based scaffolds for infected wound healing and tissue regeneration.Int. J. Pharm.202466312457810.1016/j.ijpharm.2024.12457839153643
    [Google Scholar]
  18. WangJ. YangC. XieY. ChenX. JiangT. TianJ. HuS. LuY. Application of bioactive hydrogels for functional treatment of intrauterine adhesion.Front. Bioeng. Biotechnol.2021976094310.3389/fbioe.2021.76094334621732
    [Google Scholar]
  19. LiuF. LinQ. ShenS. LiZ. XieX. ChengQ. WangL. LongY. WangJ. LiuL. Secretion of WNT7A by UC-MSCs assist in promoting the endometrial epithelial regeneration.iScience202427610988810.1016/j.isci.2024.10988838947517
    [Google Scholar]
  20. XinL. LinX. ZhouF. LiC. WangX. YuH. PanY. FeiH. MaL. ZhangS. A scaffold laden with mesenchymal stem cell-derived exosomes for promoting endometrium regeneration and fertility restoration through macrophage immunomodulation.Acta Biomater.202011325226610.1016/j.actbio.2020.06.02932574858
    [Google Scholar]
  21. PadhiA. NainA.S. ECM in differentiation: A review of matrix structure, composition and mechanical properties.Ann. Biomed. Eng.20204831071108910.1007/s10439‑019‑02337‑731485876
    [Google Scholar]
  22. JinP. LiuL. ChenX. ChengL. ZhangW. ZhongG. Applications and prospects of different functional hydrogels in meniscus repair.Front. Bioeng. Biotechnol.202210108249910.3389/fbioe.2022.108249936568293
    [Google Scholar]
  23. WangX. WangQ. Enzyme-laden bioactive hydrogel for biocatalytic monitoring and regulation.Acc. Chem. Res.20215451274128710.1021/acs.accounts.0c0083233570397
    [Google Scholar]
  24. ChengF. ChenH. LiH. Recent progress on hydrogel actuators.J. Mater. Chem. B Mater. Biol. Med.2021971762178010.1039/D0TB02524K33527974
    [Google Scholar]
  25. Minxuan J, Jiamin W, Chubing L, et al. Hydrogel strategies for female reproduction dysfunction. ACS Nano 2024; 18(44): 30132-52.10.1021/acsnano.4c0563439437800
  26. López-MartínezS. Rodríguez-EgurenA. de Miguel-GómezL. Francés-HerreroE. FausA. DíazA. PellicerA. FerreroH. CervellóI. Bioengineered endometrial hydrogels with growth factors promote tissue regeneration and restore fertility in murine models.Acta Biomater.202113511312510.1016/j.actbio.2021.08.02534428563
    [Google Scholar]
  27. WangL. ZhangD. RenY. GuoS. LiJ. MaS. YaoM. GuanF. Injectable hyaluronic acid hydrogel loaded with BMSC and NGF for traumatic brain injury treatment.Mater. Today Bio20221310020110.1016/j.mtbio.2021.10020135024600
    [Google Scholar]
  28. WangL. WangJ. ZhouX. SunJ. ZhuB. DuanC. ChenP. GuoX. ZhangT. GuoH. A new self-healing hydrogel containing hucMSC-derived exosomes promotes bone regeneration.Front. Bioeng. Biotechnol.2020856473110.3389/fbioe.2020.56473133042966
    [Google Scholar]
  29. Ávila-SalasF. MaricanA. PinochetS. CarreñoG. ValdésO. VenegasB. DonosoW. Cabrera-BarjasG. VijayakumarS. Durán-LaraE.F. Film dressings based on hydrogels: Simultaneous and sustained-release of bioactive compounds with wound healing properties.Pharmaceutics201911944710.3390/pharmaceutics1109044731480682
    [Google Scholar]
  30. LiuY.R. LiuB. YangB.P. LanY. ChiY.G. Efficacy of hyaluronic acid on the prevention of intrauterine adhesion and the improvement of fertility: A meta-analysis of randomized trials.Complement. Ther. Clin. Pract.20224710157510.1016/j.ctcp.2022.10157535349823
    [Google Scholar]
  31. GuoY. ShiX. SongD. LiuY. HuangX. XiaoY. YangL. XiaE. LiT.C. The efficacy of auto-cross-linked hyaluronic acid gel in addition to oestradiol and intrauterine balloon insertion in the prevention of adhesion reformation after hysteroscopic adhesiolysis.Reprod. Biomed. Online202245350150710.1016/j.rbmo.2022.04.01735760666
    [Google Scholar]
  32. ZhouQ. ShiX. SaravelosS. HuangX. ZhaoY. HuangR. XiaE. LiT.C. Auto–cross-linked hyaluronic acid gel for prevention of intrauterine adhesions after hysteroscopic adhesiolysis: A randomized controlled trial.J. Minim. Invasive Gynecol.202128230731310.1016/j.jmig.2020.06.03032681996
    [Google Scholar]
  33. ChaG.D. LeeW.H. SunwooS.H. KangD. KangT. ChoK.W. KimM. ParkO.K. JungD. LeeJ. ChoiS.H. HyeonT. KimD.H. Multifunctional injectable hydrogel for in vivo diagnostic and therapeutic applications.ACS Nano202216155456710.1021/acsnano.1c0764935014797
    [Google Scholar]
  34. CaoH. DuanL. ZhangY. CaoJ. ZhangK. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity.Signal Transduct. Target. Ther.20216142610.1038/s41392‑021‑00830‑x34916490
    [Google Scholar]
  35. WangB. FengC. DangJ. ZhuY. YangX. ZhangT. ZhangR. LiJ. TangJ. ShenC. ShenL. DongJ. ZhangX. Preparation of fibroblast suppressive poly(ethylene glycol)-b-poly(L-phenylalanine)/poly(ethylene glycol) hydrogel and its application in intrauterine fibrosis prevention.ACS Biomater. Sci. Eng.20217131132110.1021/acsbiomaterials.0c0139033455202
    [Google Scholar]
  36. LinJ. WangZ. HuangJ. TangS. SaidingQ. ZhuQ. CuiW. Microenvironment-protected exosome-hydrogel for facilitating endometrial regeneration, fertility restoration, and live birth of offspring.Small20211711200723510.1002/smll.20200723533590681
    [Google Scholar]
  37. XiaoY. GuY. QinL. ChenL. ChenX. CuiW. LiF. XiangN. HeX. Injectable thermosensitive hydrogel-based drug delivery system for local cancer therapy.Colloids Surf. B Biointerfaces202120011158110.1016/j.colsurfb.2021.11158133524696
    [Google Scholar]
  38. YangJ. ChenZ. PanD. LiH. ShenJ. Umbilical cord-derived mesenchymal stem cell-derived exosomes combined pluronic F127 hydrogel promote chronic diabetic wound healing and complete skin regeneration.Int. J. Nanomedicine2020155911592610.2147/IJN.S24912932848396
    [Google Scholar]
  39. JiX. YuanX. MaL. BiB. ZhuH. LeiZ. LiuW. PuH. JiangJ. JiangX. ZhangY. XiaoJ. Mesenchymal stem cell-loaded thermosensitive hydroxypropyl chitin hydrogel combined with a three-dimensional-printed poly(ε-caprolactone)/nano-hydroxyapatite scaffold to repair bone defects via osteogenesis, angiogenesis and immunomodulation.Theranostics202010272574010.7150/thno.3916731903147
    [Google Scholar]
  40. DongL. WangS.J. ZhaoX.R. ZhuY.F. YuJ.K. 3D-printed poly (ε- caprolactone) scaffold integrated with cell-laden chitosan hydrogels for bone tissue engineering.Sci. Rep.2017711341210.1038/s41598‑017‑13838‑729042614
    [Google Scholar]
  41. UgboajaJ.O. OguejioforC.B. IgwegbeA.O. Clinico-hysteroscopic analysis of severe intrauterine adhesions among nigerian infertile women.Pan Afr. Med. J.201728122610.11604/pamj.2017.28.226.1383829629012
    [Google Scholar]
  42. SunX. XueM. DengX. LinY. TanY. WeiX. Clinical characteristic and intraoperative findings of uterine perforation patients in using of intrauterine devices (IUDs).Gynecol. Surg.2018151310.1186/s10397‑017‑1032‑229386988
    [Google Scholar]
  43. ChiY. HeP. LeiL. LanY. HuJ. MengY. HuL. Transdermal estrogen gel and oral aspirin combination therapy improves fertility prognosis via the promotion of endometrial receptivity in moderate to severe intrauterine adhesion.Mol. Med. Rep.20181756337634410.3892/mmr.2018.868529512784
    [Google Scholar]
  44. CaiH. QiaoL. SongK. HeY. Oxidized, regenerated cellulose adhesion barrier plus intrauterine device prevents recurrence after adhesiolysis for moderate to severe intrauterine adhesions.J. Minim. Invasive Gynecol.2017241808810.1016/j.jmig.2016.09.02127742483
    [Google Scholar]
  45. XiongQ. ZhangT. SuS. A network meta-analysis of efficacy of different interventions in the prevention of postoperative intrauterine adhesions.Clin. Transl. Sci.202013237238010.1111/cts.1272131692267
    [Google Scholar]
  46. LiX. WuL. ZhouY. FanX. HuangJ. WuJ. YuR. LouJ. YangM. YaoZ. XueM. New crosslinked hyaluronan gel for the prevention of intrauterine adhesions after dilation and curettage in patients with delayed miscarriage: A prospective, multicenter, randomized, controlled trial.J. Minim. Invasive Gynecol.2019261949910.1016/j.jmig.2018.03.03229678756
    [Google Scholar]
  47. CanS. KirpinarG. DuralO. KaramustafaogluB.B. TasI.S. YasaC. UgurlucanF.G. Efficacy of a new crosslinked hyaluronan gel in the prevention of intrauterine adhesions.JSLS2018224e2018.0003610.4293/JSLS.2018.0003630524185
    [Google Scholar]
  48. LinX. WeiM. LiT.C. HuangQ. HuangD. ZhouF. ZhangS. A comparison of intrauterine balloon, intrauterine contraceptive device and hyaluronic acid gel in the prevention of adhesion reformation following hysteroscopic surgery for Asherman syndrome: A cohort study.Eur. J. Obstet. Gynecol. Reprod. Biol.2013170251251610.1016/j.ejogrb.2013.07.01823932377
    [Google Scholar]
  49. PabuçcuE.G. KovanciE. ŞahinÖ. ArslanoğluE. YıldızY. PabuçcuR. New crosslinked hyaluronan gel, intrauterine device, or both for the prevention of intrauterine adhesions.JSLS2019231e2018.0010810.4293/JSLS.2018.0010830846896
    [Google Scholar]
  50. HuangH. ZouL. ZhangA. ZhaoX. XuD. XueM. A preliminary study on a patented intrauterine stent in the treatment of recurrent intrauterine adhesions with poor prognosis.Ann. Transl. Med.2020845710.21037/atm.2020.01.7732175351
    [Google Scholar]
  51. ZhengF. XinX. HeF. LiuJ. CuiY. Meta-analysis on the use of hyaluronic acid gel to prevent intrauterine adhesion after intrauterine operations.Exp. Ther. Med.20201942672267810.3892/etm.2020.848332256748
    [Google Scholar]
  52. FeiZ. XinX. FeiH. YuechongC. Meta-analysis of the use of hyaluronic acid gel to prevent intrauterine adhesions after miscarriage.Eur. J. Obstet. Gynecol. Reprod. Biol.20202441410.1016/j.ejogrb.2019.10.01831731019
    [Google Scholar]
  53. LeeD.Y. LeeS.R. KimS.K. JooJ.K. LeeW.S. ShinJ.H. ChoS. ParkJ.C. KimS.H. A new thermo-responsive hyaluronic acid sol-gel to prevent intrauterine adhesions after hysteroscopic surgery: A randomized, non-inferiority trial.Yonsei Med. J.2020611086887410.3349/ymj.2020.61.10.86832975061
    [Google Scholar]
  54. XiaoS. WanY. ZouF. YeM. DengH. MaJ. WeiY. TanC. XueM. Prevention of intrauterine adhesion with auto-crosslinked hyaluronic acid gel: A prospective, randomized, controlled clinical study.Zhonghua Fu Chan Ke Za Zhi2015501323625877422
    [Google Scholar]
  55. FeiZ. BinZ. XinX. FeiH. YuechongC. Meta-analysis on the use of hyaluronic acid gel to prevent recurrence of intrauterine adhesion after hysteroscopic adhesiolysis.Taiwan. J. Obstet. Gynecol.201958673173610.1016/j.tjog.2019.09.00231759520
    [Google Scholar]
  56. YanY. XuD. The effect of adjuvant treatment to prevent and treat intrauterine adhesions: A network meta-analysis of randomized controlled trials.J. Minim. Invasive Gynecol.201825458959910.1016/j.jmig.2017.09.00628893657
    [Google Scholar]
  57. KowalskiG. KijowskaK. WitczakM. KuterasińskiŁ. ŁukasiewiczM. Synthesis and effect of structure on swelling properties of hydrogels based on high methylated pectin and acrylic polymers.Polymers (Basel)201911111410.3390/polym1101011430960098
    [Google Scholar]
  58. XiongY. ChenL. LiuP. YuT. LinC. YanC. HuY. ZhouW. SunY. PanayiA.C. CaoF. XueH. HuL. LinZ. XieX. XiaoX. FengQ. MiB. LiuG. All-in-one: Multifunctional hydrogel accelerates oxidative diabetic wound healing through timed-release of exosome and fibroblast growth factor.Small2022181210422910.1002/smll.20210422934791802
    [Google Scholar]
  59. FerroniL. GardinC. D’AmoraU. CalzàL. RoncaA. TremoliE. AmbrosioL. ZavanB. Exosomes of mesenchymal stem cells delivered from methacrylated hyaluronic acid patch improve the regenerative properties of endothelial and dermal cells.Biomater. Adv.202213921300010.1016/j.bioadv.2022.21300035891601
    [Google Scholar]
  60. WuF. LeiN. YangS. ZhouJ. ChenM. ChenC. QiuL. GuoR. LiY. ChangL. Treatment strategies for intrauterine adhesion: Focus on the exosomes and hydrogels.Front. Bioeng. Biotechnol.202311126400610.3389/fbioe.2023.126400637720318
    [Google Scholar]
  61. RainaN. PahwaR. BhattacharyaJ. PaulA.K. NissapatornV. de Lourdes PereiraM. OliveiraS.M.R. DolmaK.G. RahmatullahM. WilairatanaP. GuptaM. Drug delivery strategies and biomedical significance of hydrogels: Translational considerations.Pharmaceutics202214357410.3390/pharmaceutics1403057435335950
    [Google Scholar]
  62. ChenL. GuoL. ChenF. XieY. ZhangH. QuanP. SuiL. Transplantation of menstrual blood- derived mesenchymal stem cells (MbMSCs) promotes the regeneration of mechanical injuried endometrium.Am. J. Transl. Res.20201294941495433042399
    [Google Scholar]
  63. CaoY. SunH. ZhuH. ZhuX. TangX. YanG. WangJ. BaiD. WangJ. WangL. ZhouQ. WangH. DaiC. DingL. XuB. ZhouY. HaoJ. DaiJ. HuY. Allogeneic cell therapy using umbilical cord MSCs on collagen scaffolds for patients with recurrent uterine adhesion: A phase I clinical trial.Stem Cell Res. Ther.20189119210.1186/s13287‑018‑0904‑329996892
    [Google Scholar]
  64. MartinoS. D’AngeloF. ArmentanoI. KennyJ.M. OrlacchioA. Stem cell-biomaterial interactions for regenerative medicine.Biotechnol. Adv.201230133835110.1016/j.biotechadv.2011.06.01521740963
    [Google Scholar]
  65. GalleuA. Riffo-VasquezY. TrentoC. LomasC. DolcettiL. CheungT.S. von BoninM. BarbieriL. HalaiK. WardS. WengL. ChakravertyR. LombardiG. WattF.M. OrchardK. MarksD.I. ApperleyJ. BornhauserM. WalczakH. BennettC. DazziF. Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation.Sci. Transl. Med.20179416eaam782810.1126/scitranslmed.aam782829141887
    [Google Scholar]
  66. BergmanR.A. Uterine smooth muscle fibers in castrate and estrogen-treated rats.J. Cell Biol.196836363964810.1083/jcb.36.3.6395645552
    [Google Scholar]
  67. StrattonS. ShelkeN.B. HoshinoK. RudraiahS. KumbarS.G. Bioactive polymeric scaffolds for tissue engineering.Bioact. Mater.2016129310810.1016/j.bioactmat.2016.11.00128653043
    [Google Scholar]
  68. JungY. ParkW. ParkH. LeeD.K. NaK. Thermo-sensitive injectable hydrogel based on the physical mixing of hyaluronic acid and Pluronic F-127 for sustained NSAID delivery.Carbohydr. Polym.201715640340810.1016/j.carbpol.2016.08.06827842839
    [Google Scholar]
  69. YangH. WuS. FengR. HuangJ. LiuL. LiuF. ChenY. Vitamin C plus hydrogel facilitates bone marrow stromal cell-mediated endometrium regeneration in rats.Stem Cell Res. Ther.20178126710.1186/s13287‑017‑0718‑829157289
    [Google Scholar]
  70. YaoQ. ZhengY.W. LanQ.H. WangL.F. HuangZ.W. ChenR. YangY. XuH.L. KouL. ZhaoY.Z. Aloe/poloxamer hydrogel as an injectable β-estradiol delivery scaffold with multi-therapeutic effects to promote endometrial regeneration for intrauterine adhesion treatment.Eur. J. Pharm. Sci.202014810531610.1016/j.ejps.2020.10531632201342
    [Google Scholar]
  71. XuH.L. XuJ. ZhangS.S. ZhuQ.Y. JinB.H. ZhuGeD.L. ShenB.X. WuX.Q. XiaoJ. ZhaoY.Z. Temperature-sensitive heparin-modified poloxamer hydrogel with affinity to KGF facilitate the morphologic and functional recovery of the injured rat uterus.Drug Deliv.201724186788110.1080/10717544.2017.133317328574291
    [Google Scholar]
  72. BaggishM.S. PauersteinC.J. WoodruffJ.D. Role of stroma in regeneration of endometrial epithelium.Am. J. Obstet. Gynecol.196799445946510.1016/0002‑9378(67)90291‑86069261
    [Google Scholar]
  73. GargettC.E. SchwabK.E. DeaneJ.A. Endometrial stem/progenitor cells: The first 10 years.Hum. Reprod. Update201622213716326552890
    [Google Scholar]
  74. XiaoB. YangW. LeiD. HuangJ. YinY. ZhuY. YouZ. WangF. SunS. PGS scaffolds promote the in vivo survival and directional differentiation of bone marrow mesenchymal stem cells restoring the morphology and function of wounded rat uterus.Adv. Healthc. Mater.201985180145510.1002/adhm.20180145530734535
    [Google Scholar]
  75. HanY. LiuS. MaoH. TianL. NingW. Synthesis of novel temperature- and pH-sensitive ABA triblock copolymers P(DEAEMA- co-MEO2MA-co-OEGMA)-b-PEG-b-P(DEAEMA-co-MEO2MA-co-OEGMA): Micellization, sol–gel transitions, and sustained BSA release.Polymers (Basel)201681136710.3390/polym811036730974672
    [Google Scholar]
  76. WuY. XiangY. FangJ. LiX. LinZ. DaiG. YinJ. WeiP. ZhangD. The influence of the stiffness of GelMA substrate on the outgrowth of PC12 cells.Biosci. Rep.2019391BSR2018174810.1042/BSR2018174830606743
    [Google Scholar]
  77. FengM. HuS. QinW. TangY. GuoR. HanL. Bioprinting of a blue light-cross-linked biodegradable hydrogel encapsulating amniotic mesenchymal stem cells for intrauterine adhesion prevention.ACS Omega2021636230672307510.1021/acsomega.1c0211734549107
    [Google Scholar]
  78. AAGL Elevating Gynecologic Surgery. AAGL practice report: Practice guidelines on intrauterine adhesions developed in collaboration with the European Society of Gynaecological Endoscopy (ESGE).Gynecol. Surg.2017141610.1186/s10397‑017‑1007‑328603474
    [Google Scholar]
  79. WangL. YuC. ChangT. ZhangM. SongS. XiongC. SuP. XiangW. In situ repair abilities of human umbilical cord–derived mesenchymal stem cells and autocrosslinked hyaluronic acid gel complex in rhesus monkeys with intrauterine adhesion.Sci. Adv.2020621eaba635710.1126/sciadv.aba635732494750
    [Google Scholar]
  80. MovahediM. AsefnejadA. RafieniaM. KhorasaniM.T. Potential of novel electrospun core-shell structured polyurethane/starch (hyaluronic acid) nanofibers for skin tissue engineering: In vitro and in vivo evaluation.Int. J. Biol. Macromol.202014662763710.1016/j.ijbiomac.2019.11.23331805327
    [Google Scholar]
  81. ChenZ.G. WangP.W. WeiB. MoX.M. CuiF.Z. Electrospun collagen–chitosan nanofiber: A biomimetic extracellular matrix for endothelial cell and smooth muscle cell.Acta Biomater.20106237238210.1016/j.actbio.2009.07.02419632361
    [Google Scholar]
  82. KongM. ChenX.G. XingK. ParkH.J. Antimicrobial properties of chitosan and mode of action: A state of the art review.Int. J. Food Microbiol.20101441516310.1016/j.ijfoodmicro.2010.09.01220951455
    [Google Scholar]
  83. ShamosiA. MehrabaniD. AzamiM. Ebrahimi-BaroughS. SiavashiV. GhanbariH. SharifiE. RoozafzoonR. AiJ. Differentiation of human endometrial stem cells into endothelial-like cells on gelatin/ chitosan/bioglass nanofibrous scaffolds.Artif. Cells Nanomed. Biotechnol.201745116317310.3109/21691401.2016.113849326878747
    [Google Scholar]
  84. ZhangE. GuoQ. JiF. TianX. CuiJ. SongY. SunH. LiJ. YaoF. Thermoresponsive polysaccharide-based composite hydrogel with antibacterial and healing-promoting activities for preventing recurrent adhesion after adhesiolysis.Acta Biomater.20187443945310.1016/j.actbio.2018.05.03729803006
    [Google Scholar]
  85. TanQ. XiaD. YingX. miR-29a in exosomes from bone marrow mesenchymal stem cells inhibit fibrosis during endometrial repair of intrauterine adhesion.Int. J. Stem Cells202013341442310.15283/ijsc2004933250449
    [Google Scholar]
  86. GuptaA. SinghS. Potential role of growth factors controlled release in achieving enhanced neuronal trans-differentiation from mesenchymal stem cells for neural tissue repair and regeneration.Mol. Neurobiol.2022592983100110.1007/s12035‑021‑02646‑w34816381
    [Google Scholar]
  87. LeeA.S. InayathullahM. LijkwanM.A. ZhaoX. SunW. ParkS. HongW.X. ParekhM.B. MalkovskiyA.V. LauE. QinX. PothineniV.R. Sanchez-FreireV. ZhangW.Y. KooremanN.G. EbertA.D. ChanC.K.F. NguyenP.K. RajadasJ. WuJ.C. Prolonged survival of transplanted stem cells after ischaemic injury via the slow release of pro-survival peptides from a collagen matrix.Nat. Biomed. Eng.20182210411310.1038/s41551‑018‑0191‑429721363
    [Google Scholar]
  88. Sato-NishiuchiR. LiS. EbisuF. SekiguchiK. Recombinant laminin fragments endowed with collagen-binding activity: A tool for conferring laminin-like cell-adhesive activity to collagen matrices.Matrix Biol.201865759010.1016/j.matbio.2017.08.001
    [Google Scholar]
  89. FengG. ZhangJ. LiY. NieY. ZhuD. WangR. LiuJ. GaoJ. LiuN. HeN. DuW. TaoH. CheY. XuY. KongD. ZhaoQ. LiZ. IGF-1 C Domain–modified hydrogel enhances cell therapy for AKI.J. Am. Soc. Nephrol.20162782357236910.1681/ASN.201505057826869006
    [Google Scholar]
  90. MengQ. ManZ. DaiL. HuangH. ZhangX. HuX. ShaoZ. ZhuJ. ZhangJ. FuX. DuanX. AoY. A composite scaffold of MSC affinity peptide-modified demineralized bone matrix particles and chitosan hydrogel for cartilage regeneration.Sci. Rep.2015511780210.1038/srep1780226632447
    [Google Scholar]
  91. ZhangC. ShangY. ChenX. MidgleyA.C. WangZ. ZhuD. WuJ. ChenP. WuL. WangX. ZhangK. WangH. KongD. YangZ. LiZ. ChenX. Supramolecular nanofibers containing arginine-glycine-aspartate (RGD) peptides boost therapeutic efficacy of extracellular vesicles in kidney repair.ACS Nano2020149121331214710.1021/acsnano.0c0568132790341
    [Google Scholar]
  92. LiuX. WangX. WangX. RenH. HeJ. QiaoL. CuiF.Z. Functionalized self-assembling peptide nanofiber hydrogels mimic stem cell niche to control human adipose stem cell behavior in vitro.Acta Biomater.2013966798680510.1016/j.actbio.2013.01.02723380207
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128348746241030110806
Loading
/content/journals/cpd/10.2174/0113816128348746241030110806
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): endometrium; Hydrogel; infertility; intrauterine adhesion; scaffold; uterine injury
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test