Skip to content
2000
Volume 31, Issue 14
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

The pyrimidine nucleus is a fundamental component of human DNA and RNA, as well as the backbone of many therapeutic agents. Its significance in medicinal chemistry is well-established, with pyrimidine derivatives receiving considerable attention due to their potent anticancer properties across various cancer cell lines. Numerous derivatives have been synthesized, drawing structural inspiration from known anticancer agents like dihydropyrimidine compounds, which include the active cores of drugs such as 5-fluorouracil and monastrol, both of which have demonstrated strong anticancer efficacy. Additionally, various pyrimidine derivatives have been developed through different synthetic pathways, exhibiting promising anticancer potential. In response to the growing need for effective cancer treatments, recent efforts have focused on synthesizing and exploring novel pyrimidine derivatives with improved efficacy and specificity. This review aims to highlight the versatility of pyrimidine-based compounds in cancer therapy, emphasizing not only their potency and binding affinity but also their optimal interaction with diverse biological targets. The goal is to facilitate the design of new pyrimidine derivatives with enhanced anticancer potential, providing effective solutions for the treatment of various cancer types.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128346900241111115125
2025-01-03
2025-04-22
Loading full text...

Full text loading...

References

  1. RumgayH. ShieldK. CharvatH. Global burden of cancer in 2020 attributable to alcohol consumption: A population-based study.Lancet Oncol.20212281071108010.1016/S1470‑2045(21)00279‑5 34270924
    [Google Scholar]
  2. BalleriniP. ContursiA. BrunoA. MucciM. TacconelliS. PatrignaniP. Inflammation and cancer: From the development of personalized indicators to novel therapeutic strategies.Front. Pharmacol.20221383807983809610.3389/fphar.2022.838079 35308229
    [Google Scholar]
  3. HibinoS. KawazoeT. KasaharaH. Inflammation-induced tumorigenesis and metastasis.Int. J. Mol. Sci.202122115421545810.3390/ijms22115421 34063828
    [Google Scholar]
  4. TangY.Y. WangD.C. WangY.Q. HuangA.F. XuW.D. Emerging role of hypoxia-inducible factor-1α in inflammatory autoimmune diseases: A comprehensive review.Front. Immunol.2023131073971107398610.3389/fimmu.2022.1073971 36761171
    [Google Scholar]
  5. DvornikovaK.A. PlatonovaO.N. BystrovaE.Y. Hypoxia and intestinal inflammation: Common molecular mechanisms and signaling pathways.Int. J. Mol. Sci.20232432425244710.3390/ijms24032425 36768744
    [Google Scholar]
  6. WitteC.P. HerdeM. Nucleotide metabolism in plants.Plant Physiol.20201821637810.1104/pp.19.00955 31641078
    [Google Scholar]
  7. YadavM. KumarR. KrishnamurthyR. Chemistry of abiotic nucleotide synthesis.Chem. Rev.2020120114766480510.1021/acs.chemrev.9b00546 31916751
    [Google Scholar]
  8. AlavalaR.R. KulandaiveluU. BonagiriP. BoyapatiS. JayaprakashV. SubramaniamA.T. Synthesis and antiviral activity of dihydropyrimidines - Ciprofloxacin mannich bases against various viral strains.Antiinfect. Agents20151315416510.2174/221135251302151029111113
    [Google Scholar]
  9. BoyerZ.W. KesslerH. BrosmanH. Synthesis and characterization of functionalized amino dihydropyrimidines toward the analysis of their antibacterial structure-activity relationships and mechanism of action.ACS Omega2022742379073791610.1021/acsomega.2c05071 36312355
    [Google Scholar]
  10. Ishwar BhatK. KumarA. TharaP.V. KumarP. Synthesis, characterization and biological activity studies of some substituted pyrimidine derivatives.Indian J. Heterocycl. Chem.2014427127610.1044/1980‑iajpr.14369
    [Google Scholar]
  11. El-MalahA. MahmoudZ. Hamed SalemH. AbdouA.M. SolimanM.M.H. HassanR.A. Design, ecofriendly synthesis, anticancer and antimicrobial screening of innovative Biginelli dihydropyrimidines using β-aroylpyruvates as synthons.Green Chem. Lett. Rev.202114222123310.1080/17518253.2021.1896789
    [Google Scholar]
  12. HuangJ.X. HouK.Q. HuQ.L. Organocatalytic asymmetric three-component povarov reactions of anilines and aldehydes.Org. Lett.20202251858186210.1021/acs.orglett.0c00206 32083880
    [Google Scholar]
  13. JacobsonK. CostanziS. OhnoM. Molecular recognition at purine and pyrimidine nucleotide (P2) receptors.Curr. Top. Med. Chem.20044880581910.2174/1568026043450961 15078212
    [Google Scholar]
  14. ZhongL. LiY. XiongL. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives.Signal Transduct. Target. Ther.20216120110.1038/s41392‑021‑00572‑w 34054126
    [Google Scholar]
  15. ElkaeedE.B. El SalamH.A.A. SabtA. Al-AnsaryG.H. EldehnaW.M. Recent advancements in the development of anti-breast cancer synthetic small molecules.Molecules202126761110.3390/molecules26247611
    [Google Scholar]
  16. MollickT. LaínS. Modulating pyrimidine ribonucleotide levels for the treatment of cancer.Cancer Metab.2020811210.1186/s40170‑020‑00218‑5 33020720
    [Google Scholar]
  17. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics, 2022.CA Cancer J. Clin.202272173310.3322/caac.21708 35020204
    [Google Scholar]
  18. DhingraK. Industry corner: Early drug development.Ann. Oncol.2016271161116410.1093/annonc/mdw140 27045101
    [Google Scholar]
  19. BediS. KhanS.A. AbuKhaderM.M. AlamP. SiddiquiN.A. HusainA. A comprehensive review on Brigatinib – A wonder drug for targeted cancer therapy in non-small cell lung cancer.Saudi Pharm. J.201826675576310.1016/j.jsps.2018.04.010 30202213
    [Google Scholar]
  20. IrfanR. MousaviS. AlazmiM. SaleemR.S.Z. A comprehensive review of Aminochalcones.Molecules20202522538110.3390/molecules25225381 33213087
    [Google Scholar]
  21. ElrefayM. ElfikyA. SayedR. ZakiH. Snake venom, bee venom and their components exert an anti-cancer effect by triggering apoptosis and cell cycle arrest in prostate cancer.Bull. Fac. Pharm. Cairo Univ.201957214815610.21608/bfpc.2019.101875
    [Google Scholar]
  22. SarkarN. SinghA. KumarP. KaushikM. Protein kinases: Role of their dysregulation in carcinogenesis, identification and inhibition.Drug Res. (Stuttg.)202373418919910.1055/a‑1989‑1856 36822216
    [Google Scholar]
  23. UbersaxJ.A. FerrellJ.E.Jr Mechanisms of specificity in protein phosphorylation.Nat. Rev. Mol. Cell Biol.20078753054110.1038/nrm2203 17585314
    [Google Scholar]
  24. TurdoA. D’AccardoC. GlavianoA. Targeting phosphatases and kinases: How to checkmate cancer.Front. Cell Dev. Biol.2021969030610.3389/fcell.2021.690306 34778245
    [Google Scholar]
  25. AnE. BrognardJ. Orange is the new black: Kinases are the new master regulators of tumor suppression.IUBMB Life201971673874810.1002/iub.1981 30548122
    [Google Scholar]
  26. PanL. LiJ. XuQ. HER2/PI3K/AKT pathway in HER2-positive breast cancer: A review.Medicine (Baltimore)202410324e3850810.1097/MD.0000000000038508 38875362
    [Google Scholar]
  27. SeverR. BruggeJ.S. Genetic and epigenetic mechanisms of cancer progression.Cold Spring Harb. Perspect. Med.20155a00609810.1101/cshperspect.a006098 25833940
    [Google Scholar]
  28. DelouJ.M.A. SouzaA.S.O. SouzaL.C.M. BorgesH.L. Highlights in resistance mechanism pathways for combination therapy.Cells2019891013104210.3390/cells8091013 31480389
    [Google Scholar]
  29. ArditoF. GiulianiM. PerroneD. TroianoG. MuzioL.L. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review).Int. J. Mol. Med.201740227128010.3892/ijmm.2017.3036 28656226
    [Google Scholar]
  30. ForceT. KuidaK. NamchukM. ParangK. KyriakisJ.M. Inhibitors of protein kinase signaling pathways: Emerging therapies for cardiovascular disease.Circulation2004109101196120510.1161/01.CIR.0000118538.21306.A9 15023894
    [Google Scholar]
  31. MasbuchinA.N. WidodoM.S. RohmanM.S. LiuP.Y. The two facets of receptor tyrosine kinase in cardiovascular calcification-can tyrosine kinase inhibitors benefit cardiovascular system?Front. Cardiovasc. Med.2022998657010.3389/fcvm.2022.986570 36237897
    [Google Scholar]
  32. MahmoudM.E. AhmedE.M. RagabH.M. EltelbanyR.F.A. HassanR.A. Design, synthesis, biological evaluation, and docking studies of novel triazolo[4,3-b]pyridazine derivatives as dual c-Met/Pim-1 potential inhibitors with antitumor activity.RSC Advances20241441303463036310.1039/D4RA04036H 39318461
    [Google Scholar]
  33. VijayanR. BabyB. AntonyP. Al HalabiW. Al HomediZ. Structural insights into the polypharmacological activity of quercetin on serine/threonine kinases.Drug Des. Devel. Ther.2016103109312310.2147/DDDT.S118423 27729770
    [Google Scholar]
  34. Correa-SáezA. Jiménez-IzquierdoR. Garrido-RodríguezM. MorrugaresR. MuñozE. CalzadoM.A. Updating dual-specificity tyrosine-phosphorylation-regulated kinase 2 (DYRK2): Molecular basis, functions and role in diseases.Cell. Mol. Life Sci.202077234747476310.1007/s00018‑020‑03556‑1 32462403
    [Google Scholar]
  35. YoshidaS. YoshidaK. New insights into the roles for DYRK family in mammalian development and congenital diseases.Genes Dis.202310375877010.1016/j.gendis.2021.12.004 37396550
    [Google Scholar]
  36. WolaninPM ThomasonPA StockJB Histidine protein kinases: Key signal transducers outside the animal kingdom.Genome Biol.2002310reviews3013.1.10.1186/gb‑2002‑3‑10‑reviews301312372152
    [Google Scholar]
  37. de ClaroR.A. McGinnK.M. VerdunN. FDA approval: Ibrutinib for patients with previously treated mantle cell lymphoma and previously treated chronic lymphocytic leukemia.Clin. Cancer Res.201521163586359010.1158/1078‑0432.CCR‑14‑2225 26275952
    [Google Scholar]
  38. AluA. LeiH. HanX. WeiY. WeiX. BTK inhibitors in the treatment of hematological malignancies and inflammatory diseases: Mechanisms and clinical studies.J. Hematol. Oncol.202215113817310.1186/s13045‑022‑01353‑w 36183125
    [Google Scholar]
  39. DailahH.G. HommdiA.A. KoririM.D. AlgathlanE.M. MohanS. Potential role of immunotherapy and targeted therapy in the treatment of cancer: A contemporary nursing practice.Heliyon2024102e2455910.1016/j.heliyon.2024.e24559 38298714
    [Google Scholar]
  40. LiauwJ. BrunaultR. QuesenberryM. BakowB. Split and reduced-dose imatinib in chronic myeloid leukemia: Case report.JHOP2024143121123
    [Google Scholar]
  41. IqbalN. IqbalN. Imatinib: A breakthrough of targeted therapy in cancer.Chemother. Res. Pract.201420141910.1155/2014/357027 24963404
    [Google Scholar]
  42. UzerE. ÜnalA. Yavuz KökerM. Ali DoğanS. The side effects of imatinib.Turk. J. Haematol.2013303341110.4274/TJH‑2011.0018 24385822
    [Google Scholar]
  43. HazarikaM. JiangX. LiuQ. Tasigna for chronic and accelerated phase Philadelphia chromosome-positive chronic myelogenous leukemia resistant to or intolerant of imatinib.Clin. Cancer Res.200814175325533110.1158/1078‑0432.CCR‑08‑0308 18765523
    [Google Scholar]
  44. JabbourE. KantarjianH. CortesJ. JabbourE. Development and targeted use of nilotinib in chronic myeloid leukemia.Drug Des. Devel. Ther.2008223324310.2147/DDDT.S3181 19920910
    [Google Scholar]
  45. WeisbergE. ManleyP. MestanJ. Cowan-JacobS. RayA. GriffinJ.D. AMN107 (nilotinib): A novel and selective inhibitor of BCR-ABL.Br. J. Cancer200694121765176910.1038/sj.bjc.6603170 16721371
    [Google Scholar]
  46. WasekarN. MohiteA. ChandrakalaS. Nilotinib-induced skin rash in chronic myeloid leukemia patients: A case series.Int. J. Med. Sci. Public Health201763110.5455/ijmsph.2017.1058601112016
    [Google Scholar]
  47. DeisserothA. KaminskasE. GrilloJ. U.S. Food and Drug Administration approval: Ruxolitinib for the treatment of patients with intermediate and high-risk myelofibrosis.Clin. Cancer Res.201218123212321710.1158/1078‑0432.CCR‑12‑0653 22544377
    [Google Scholar]
  48. OstojicA. VrhovacR. VerstovsekS. Ruxolitinib: A new JAK1/2 inhibitor that offers promising options for treatment of myelofibrosis.Future Oncol.2011791035104310.2217/fon.11.81 21919691
    [Google Scholar]
  49. FuriaF. CaneviniM.P. FedericiA.B. CarraroM.C. Unexpected neurological symptoms of ruxolitinib: A case report.J. Hematol.202094137139
    [Google Scholar]
  50. FDA fast track designation for narmafotinib in advanced pancreatic cancer.2024Available from: https://www.prnewswire.com/news-releases/fda-fast-track-designation-for-narmafotinib-in-advanced-pancreatic-cancer-302253755.html (accessed on 23-10-2024)
  51. Tagrisso (osimertinib) receives US FDA full approval.2017Available from: https://www.astrazeneca.com/media-centre/press-releases/2017/tagrisso-osimertinib-receives-us-fda-full-approval-31032017.html# (accessed on 23-10-2024)
  52. LiamC.K. Osimertinib as first-line treatment of EGFR mutant advanced non-small-cell lung cancer.Transl. Lung Cancer Res.20176S1S62S6610.21037/tlcr.2017.10.10 29299414
    [Google Scholar]
  53. GomatouG. SyrigosN. KotteasE. Osimertinib resistance: Molecular mechanisms and emerging treatment options.Cancers (Basel)202315384186110.3390/cancers15030841 36765799
    [Google Scholar]
  54. ShalataW. Abu JamaA. DudnikY. Adverse events in osimertinib treatment for EGFR-mutated non-small-cell lung cancer: Unveiling rare life-threatening myelosuppression.Medicina (Kaunas)20246081270127910.3390/medicina60081270 39202551
    [Google Scholar]
  55. KelleyR.K. Erlotinib in the treatment of advanced pancreatic cancer.Biologics200821839510.2147/btt.s1832
    [Google Scholar]
  56. LingY.H. LiT. YuanZ. HaigentzM. WeberT.K. Perez-SolerR. Erlotinib, an effective epidermal growth factor receptor tyrosine kinase inhibitor, induces p27KIP1 up-regulation and nuclear translocation in association with cell growth inhibition and G1/S phase arrest in human non-small-cell lung cancer cell lines.Mol. Pharmacol.200772224825810.1124/mol.115.08er15a
    [Google Scholar]
  57. BeckerA. van WijkA. SmitE.F. PostmusP.E. HistoryC. Side-effects of long-term administration of erlotinib in patients with non-small cell lung cancer.J. Thorac. Oncol.2010591477148010.1097/JTO.0b013e3181e981d9 20736807
    [Google Scholar]
  58. RyanQ. IbrahimA. CohenM.H. FDA drug approval summary: lapatinib in combination with capecitabine for previously treated metastatic breast cancer that overexpresses HER-2.Oncologist200813101114111910.1634/theoncologist.2008‑0816 18849320
    [Google Scholar]
  59. Cadena GarcíaJ.M. Giraldo MurilloC.E. Ramos JaramilloM. EGFR and HER2 small molecules inhibitors as potential therapeutics in veterinary oncology.Revista Colombiana de Ciencias Químico-Farmacéuticas202049245247110.15446/rcciquifa.v49n2.89898
    [Google Scholar]
  60. ChanA. Lapatinib - Overview and current role in metastatic breast cancer.Cancer Res. Treat.200638419820010.4143/crt.2006.38.4.198 19771242
    [Google Scholar]
  61. SangY.B. KimJ.H. KimC.G. The development of AXL inhibitors in lung cancer: Recent progress and challenges.Front. Oncol.20221281124781125710.3389/fonc.2022.811247 35311091
    [Google Scholar]
  62. ChenF. SongQ. YuQ. Axl inhibitor R428 induces apoptosis of cancer cells by blocking lysosomal acidification and recycling independent of Axl inhibition.Am. J. Cancer Res.20188814661482 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC6129480 30210917
    [Google Scholar]
  63. CellaD. BeaumontJ.L. Pazopanib in the treatment of advanced renal cell carcinoma.Ther. Adv. Urol.201681616910.1177/1756287215614236 26834841
    [Google Scholar]
  64. KasperB. HohenbergerP. Pazopanib: A promising new agent in the treatment of soft tissue sarcomas.Future Oncol.20117121373138310.2217/fon.11.116 22112314
    [Google Scholar]
  65. QueY. LiangY. ZhaoJ. Treatment-related adverse effects with pazopanib, sorafenib and sunitinib in patients with advanced soft tissue sarcoma: A pooled analysis.Cancer Manag. Res.2018102141215010.2147/CMAR.S164535 30050324
    [Google Scholar]
  66. LinghuX. WongN. BlakeJ.F. GaudinoJ.J. MoffatJ.G. Discovery and development of gdc-0994: A selective and efficacious small molecule inhibitor of ERK1/2. InComplete Accounts of Integrated Drug Discovery and Development: Recent Examples from the Pharmaceutical Industry.American Chemical Society2018Vol. 112810.1021/bk‑2018‑1307.ch001
    [Google Scholar]
  67. YangM. SunS. LvH. Ravoxertinib improves long-term neurologic deficits after experimental subarachnoid hemorrhage through early inhibition of Erk1/2.ACS Omega2023822196921970410.1021/acsomega.3c01296 37305289
    [Google Scholar]
  68. BensonC. WhiteJ. BonoJ.D. A phase I trial of the selective oral cyclin-dependent kinase inhibitor seliciclib (CYC202; R-Roscovitine), administered twice daily for 7 days every 21 days.Br. J. Cancer2007961293710.1038/sj.bjc.6603509 17179992
    [Google Scholar]
  69. MeijerL. RaymondE. Roscovitine and other purines as kinase inhibitors. From starfish oocytes to clinical trials.ACC. Chem. Res.200336641742510.1021/ar0201198 12809528
    [Google Scholar]
  70. JacksonR.C. BarnettA.L. McClueS.J. GreenS.R. Seliciclib, a cell-cycle modulator that acts through the inhibition of cyclin-dependent kinases.Expert Opin. Drug Discov.20083113114310.1517/17460441.3.1.131 23480144
    [Google Scholar]
  71. PangK. WangW. QinJ.X. Role of protein phosphorylation in cell signaling, disease, and the intervention therapy.MedComm202234e17510.1002/mco2.175 36349142
    [Google Scholar]
  72. DaiX.J. XueL.P. JiS.K. Triazole-fused pyrimidines in target-based anticancer drug discovery.Eur. J. Med. Chem.202324911510110.1016/j.ejmech.2023.115101 36724635
    [Google Scholar]
  73. K Bhanumathy K, Balagopal A, Vizeacoumar FS, Vizeacoumar FJ, Freywald A, Giambra V. Protein tyrosine kinases: Their roles and their targeting in leukemia.Cancers (Basel)202113218420410.3390/cancers13020184 33430292
    [Google Scholar]
  74. KimM. BaekM. KimD.J. Protein tyrosine signaling and its potential therapeutic implications in carcinogenesis.Curr. Pharm. Des.201723294226424610.2174/1381612823666170616082125 28625132
    [Google Scholar]
  75. YamaokaT. KusumotoS. AndoK. OhbaM. OhmoriT. Receptor tyrosine kinase-targeted cancer therapy.Int. J. Mol. Sci.201819113491352510.3390/ijms19113491 30404198
    [Google Scholar]
  76. HassanpourS.H. DehghaniM. Review of cancer from perspective of molecular.J. Cancer Res. Pract.20174412712910.1016/j.jcrpr.2017.07.001
    [Google Scholar]
  77. StefaniC. MiricescuD. Stanescu-SpinuI.I. Growth Factors, PI3K/Akt/mTOR and MAPK signaling pathways in colorectal cancer pathogenesis: Where are we now?Int. J. Mol. Sci.20212219102601028310.3390/ijms221910260 34638601
    [Google Scholar]
  78. HuangY. ZhangY. GeL. LinY. KwokH. The roles of protein tyrosine phosphatases in hepatocellular carcinoma.Cancers2018108210210.3390/cancers10030082
    [Google Scholar]
  79. YuanK. ShenH. ZhengM. Discovery of potent DYRK2 inhibitors with high selectivity, great solubility, and excellent safety properties for the treatment of prostate cancer.J. Med. Chem.20236664215423010.1021/acs.jmedchem.3c00106 36800260
    [Google Scholar]
  80. SiveenK.S. PrabhuK.S. AchkarI.W. Role of non-receptor tyrosine kinases in hematological malignances and its targeting by natural products.Mol. Cancer20181713110.1186/s12943‑018‑0788‑y 29455667
    [Google Scholar]
  81. CordoverE. MindenA. Signaling pathways downstream to receptor tyrosine kinases: Targets for cancer treatment.J. Cancer Metastasis Treat.202064510.20517/2394‑4722.2020.101
    [Google Scholar]
  82. MetibemuD.S. AkinloyeO.A. AkamoA.J. OjoD.A. OkeowoO.T. OmotuyiI.O. Exploring receptor tyrosine kinases-inhibitors in cancer treatments.Egypt. J. Med. Hum. Genet.20192013510.1186/s43042‑019‑0035‑0
    [Google Scholar]
  83. Shyam SunderS. SharmaU.C. PokharelS. Adverse effects of tyrosine kinase inhibitors in cancer therapy: Pathophysiology, mechanisms and clinical management.Signal Transduct. Target. Ther.20238126210.1038/s41392‑023‑01469‑6 37414756
    [Google Scholar]
  84. SantorsolaM. CapuozzoM. NastiG. Exploring the spectrum of vegf inhibitors’ toxicities from systemic to intra-vitreal usage in medical practice.Cancers20241635037810.3390/cancers16020350
    [Google Scholar]
  85. SoveriniS. RostiG. IacobucciI. BaccaraniM. MartinelliG. Choosing the best second-line tyrosine kinase inhibitor in imatinib-resistant chronic myeloid leukemia patients harboring Bcr-Abl kinase domain mutations: How reliable is the IC50?Oncologist201116686887610.1634/theoncologist.2010‑0388 21632458
    [Google Scholar]
  86. RoskoskiR.Jr Cost in the United States of FDA-approved small molecule protein kinase inhibitors used in the treatment of neoplastic and non-neoplastic diseases.Pharmacol. Res.202419910703610.1016/j.phrs.2023.107036 38096958
    [Google Scholar]
  87. NaufalM. HermawatiE. SyahY.M. HidayatA.T. HidayatI.W. Al-AnshoriJ. Structure-activity relationship study and design strategies of hydantoin, thiazolidinedione, and rhodanine-based kinase inhibitors: A two-decade review.ACS Omega2024944186420910.1021/acsomega.3c04749 38313530
    [Google Scholar]
  88. AzevedoA. SilvaS. RueffJ. Non-receptor tyrosine kinases role and significance in hematological malignancies tyrosine kinases as druggable targets cancer.IntechOpen2019577210.5772/intechopen.84873
    [Google Scholar]
  89. JerinS. HarveyA.J. LewisA. Therapeutic potential of protein tyrosine kinase 6 in colorectal cancer.Cancers202315143703
    [Google Scholar]
  90. LoweJ. JosephR.E. AndreottiA.H. Conformational switches that control the TEC kinase - PLCγ signaling axis.J. Struct. Biol. X2022610006110.1016/j.yjsbx.2022.100061 35128378
    [Google Scholar]
  91. BedadaT. Tyrosine kinase as target for cancer treatment.Int. J. Pharm. Sci. Res.20145111510.13040/IJPSR.0975‑8232.5(1).1‑15
    [Google Scholar]
  92. PollardD.J. BergerC.N. SoE.C. Broad-spectrum regulation of nonreceptor tyrosine kinases by the bacterial ADP-Ribosyltransferase EspJ.MBio201892e00170e1810.1128/mBio.00170‑18 29636436
    [Google Scholar]
  93. SerdaM. MalarzK. Mrozek-WilczkiewiczA. WojtyniakM. MusiołR. CurleyS.A. Glycofullerenes as non-receptor tyrosine kinase inhibitors- towards better nanotherapeutics for pancreatic cancer treatment.Sci. Rep.202010126010.1038/s41598‑019‑57155‑7 31937861
    [Google Scholar]
  94. MalnassyG. KeatingC.R. GadS. Inhibition of abelson tyrosine-protein kinase 2 suppresses the development of alcohol-associated liver disease by decreasing PPARgamma expression.Cell. Mol. Gastroenterol. Hepatol.202316568570910.1016/j.jcmgh.2023.07.006 37460041
    [Google Scholar]
  95. Abernathy-CarverK.J. LiuA. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X- linked agammaglobulinemia.Pediatrics1994942280010.1542/peds.94.2.280
    [Google Scholar]
  96. UckunF.M. VenkatachalamT. Targeting solid tumors with BTK inhibitors.Front. Cell Dev. Biol.2021965041410.3389/fcell.2021.650414 33937249
    [Google Scholar]
  97. DarwicheW. GublerB. MarolleauJ.P. GhamlouchH. Chronic lymphocytic leukemia B-cell normal cellular counterpart: Clues from a functional perspective.Front. Immunol.2018968310.3389/fimmu.2018.00683 29670635
    [Google Scholar]
  98. GargN. PadronE.J. RammohanK.W. GoodmanC.F. Bruton’s tyrosine kinase inhibitors: The next frontier of B-cell-targeted therapies for cancer, autoimmune disorders, and multiple sclerosis.J. Clin. Med.20221120613910.3390/jcm11206139 36294458
    [Google Scholar]
  99. PalmaM. MulderT.A. ÖsterborgA. BTK inhibitors in chronic lymphocytic leukemia: Biological activity and immune effects.Front. Immunol.20211268676810.3389/fimmu.2021.686768 34276674
    [Google Scholar]
  100. LiuH. QuM. XuL. Design and synthesis of sulfonamide-substituted diphenylpyrimidines (SFA-DPPYs) as potent Bruton’s tyrosine kinase (BTK) inhibitors with improved activity toward] B-cell lymphoblastic leukemia.Eur. J. Med. Chem.2017135606910.1016/j.ejmech.2017.04.037 28432946
    [Google Scholar]
  101. ZhangQ. ZhangL. YuJ. Discovery of new BTK inhibitors with B cell suppression activity bearing a 4,6-substituted thieno[3,2-d]pyrimidine scaffold.RSC Advances2017742260602606910.1039/C7RA04261B
    [Google Scholar]
  102. NormanP. Investigational Bruton’s tyrosine kinase inhibitors for the treatment of rheumatoid arthritis.Expert Opin. Investig. Drugs201625889189910.1080/13543784.2016.1182499 27148767
    [Google Scholar]
  103. LiX. ShiB. TengY. Design, synthesis and biological evaluation of novel 2-phenyl pyrimidine derivatives as potent Bruton’s tyrosine kinase (BTK) inhibitors.MedChemComm201910229429910.1039/C8MD00413G 30881616
    [Google Scholar]
  104. KabirovaM. ReichensteinM. BorovokN. SheininA. GorobetsD. MichaelevskiI. Abl2 kinase differentially regulates iGluRs current activity and synaptic localization.Cell. Mol. Neurobiol.20234362785279910.1007/s10571‑023‑01317‑9 36689065
    [Google Scholar]
  105. LuttmanJ.H. ColemonA. MayroB. PendergastA.M. Role of the ABL tyrosine kinases in the epithelial-mesenchymal transition and the metastatic cascade.Cell Commun. Signal.20211915910.1186/s12964‑021‑00739‑6 34022881
    [Google Scholar]
  106. WangJ. PendergastA.M. The emerging role of ABL kinases in solid tumors.Trend Cancer2015111012310.1016/j.trecan.2015.07.004
    [Google Scholar]
  107. LiR. LiQ. JiQ. Molecular targeted study in tumors: From western medicine to active ingredients of traditional Chinese medicine.Biomed. Pharmacother.202012110962410.1016/j.biopha.2019.109624 31733579
    [Google Scholar]
  108. CuellarS. VozniakM. RhodesJ. ForcelloN. OlsztaD. BCR-ABL1 tyrosine kinase inhibitors for the treatment of chronic myeloid leukemia.J. Oncol. Pharm. Pract.201824643345210.1177/1078155217710553 28580869
    [Google Scholar]
  109. PimentelL.C.F. HoelzL.V.B. CanzianH.F. (Phenylamino)pyrimidine-1,2,3-triazole derivatives as analogs of imatinib: Searching for novel compounds against chronic myeloid leukemia.Beilstein J. Org. Chem.2021172260226910.3762/bjoc.17.144 34621389
    [Google Scholar]
  110. KantankarA. Jayaprakash RaoY. MallikarjunG. HemasriY. KethiriR.R. Rational design, synthesis, biological evaluation and molecular docking studies of chromone-pyrimidine derivatives as potent anti-cancer agents.J. Mol. Struct.2021123913050210.1016/j.molstruc.2021.130502
    [Google Scholar]
  111. WangD.P. WuL.H. LiR. A novel aldisine derivative exhibits potential antitumor effects by targeting JAK/STAT3 signaling.Mar. Drugs202321421810.3390/md21040218 37103357
    [Google Scholar]
  112. O’SullivanJ.M. MeadA.J. PsailaB. Single-cell methods in myeloproliferative neoplasms: Old questions, new technologies.Blood2023141438039010.1182/blood.2021014668 36322938
    [Google Scholar]
  113. BoseS. BanerjeeS. MondalA. Targeting the JAK/STAT signaling pathway using phytocompounds for cancer prevention and therapy.Cells20209145110.3390/cells9061451
    [Google Scholar]
  114. YangT. HuM. ChenY. N-(Pyrimidin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-amine derivatives as selective janus kinase 2 inhibitors for the treatment of myeloproliferative neoplasms.J. Med. Chem.20206323149211493610.1021/acs.jmedchem.0c01488 33256400
    [Google Scholar]
  115. ElmongyE. HenidiH. In silico evaluation of a promising key intermediate thieno[2,3-d]pyrimidine derivative with expected JAK2 kinase inhibitory activity.Molbank202220221M1352M136110.3390/M1352
    [Google Scholar]
  116. ChuangH.H. ZhenY.Y. TsaiY.C. FAK in cancer: From mechanisms to therapeutic strategies.Int. J. Mol. Sci.2022233172610.3390/ijms23031726 35163650
    [Google Scholar]
  117. LimS.T. ChenX.L. LimY. Nuclear FAK promotes cell proliferation and survival through FERM-enhanced p53 degradation.Mol. Cell200829192210.1016/j.molcel.2007.11.031 18206965
    [Google Scholar]
  118. Bullard DunnK. HefflerM. GolubovskayaV.M. Evolving therapies and FAK inhibitors for the treatment of cancer.Anticancer. Agents Med. Chem.2010101072273410.2174/187152010794728657
    [Google Scholar]
  119. WangR. ChenY. ZhaoX. Design, synthesis and biological evaluation of novel 7H-pyrrolo[2,3-d]pyrimidine derivatives as potential FAK inhibitors and anticancer agents.Eur. J. Med. Chem.201918311171610.1016/j.ejmech.2019.111716 31550660
    [Google Scholar]
  120. WangS. ZhangR.H. ZhangH. Design, synthesis, and biological evaluation of 2,4-diamino pyrimidine derivatives as potent FAK inhibitors with anti-cancer and anti-angiogenesis activities.Eur. J. Med. Chem.202122211357310.1016/j.ejmech.2021.113573 34091209
    [Google Scholar]
  121. DuZ. LovlyC.M. Mechanisms of receptor tyrosine kinase activation in cancer.Mol. Cancer20181715810.1186/s12943‑018‑0782‑4 29455648
    [Google Scholar]
  122. MahatoA.K. SidorovaY.A. RET receptor tyrosine kinase: Role in neurodegeneration, obesity, and cancer.Int. J. Mol. Sci.20202119710810.3390/ijms21197108 32993133
    [Google Scholar]
  123. UlloM.F. CaseL.B. How cells sense and integrate information from different sources.WIREs Mech. Dis.2023154e160410.1002/wsbm.1604 36781396
    [Google Scholar]
  124. GligorijevićN. DobrijevićZ. ŠunderićM. The insulin-like growth factor system and colorectal cancer.Life202212127410.3390/life12081274
    [Google Scholar]
  125. VasilogianniA.M. Al-MajdoubZ.M. AchourB. PetersS.A. Rostami-HodjeganA. BarberJ. Proteomic quantification of receptor tyrosine kinases involved in the development and progression of colorectal cancer liver metastasis.Front. Oncol.202313101056310.3389/fonc.2023.1010563 36890818
    [Google Scholar]
  126. ZhaoM. JungY. JiangZ. SvenssonK.J. Regulation of energy metabolism by receptor tyrosine kinase ligands.Front. Physiol.20201135410.3389/fphys.2020.00354 32372975
    [Google Scholar]
  127. SégalinyA.I. Tellez-GabrielM. HeymannM.F. HeymannD. Receptor tyrosine kinases: Characterisation, mechanism of action and therapeutic interests for bone cancers.J. Bone Oncol.20154111210.1016/j.jbo.2015.01.001 26579483
    [Google Scholar]
  128. GuoG. GongK. WohlfeldB. HatanpaaK.J. ZhaoD. HabibA.A. Ligand-independent EGFR signaling.Cancer Res.201575173436344110.1158/0008‑5472.CAN‑15‑0989 26282175
    [Google Scholar]
  129. SigismundS. AvanzatoD. LanzettiL. Emerging functions of the EGFR in cancer.Mol. Oncol.201812132010.1002/1878‑0261.12155 29124875
    [Google Scholar]
  130. RaymondE. FaivreS. ArmandJ.P. Epidermal growth factor receptor tyrosine kinase as a target for anticancer therapy.Drugs200060Suppl. 1152310.2165/00003495‑200060001‑00002 11129168
    [Google Scholar]
  131. WeeP. WangZ. Epidermal growth factor receptor cell proliferation signaling pathways.Cancers (Basel)2017955210.3390/cancers9050052 28513565
    [Google Scholar]
  132. Hopper-BorgeE.A. NastoR.E. RatushnyV. WeinerL.M. GolemisE.A. AstsaturovI. Mechanisms of tumor resistance to EGFR-targeted therapies.Expert Opin. Ther. Targets200913333936210.1517/14712590902735795 19236156
    [Google Scholar]
  133. LindseyS. LanghansS.A. Epidermal growth factor signaling in transformed cells.Int. Rev. Cell Mol. Biol.201531414110.1016/bs.ircmb.2014.10.001
    [Google Scholar]
  134. Al-AnaziM. KhairuddeanM. Al-NajjarB.O. AlidmatM.M. KamalN.N.S.N.K. MuhamadM. Synthesis, anticancer activity and docking studies of pyrazoline and pyrimidine derivatives as potential epidermal growth factor receptor (EGFR) inhibitors.Arab. J. Chem.20221510386410.1016/j.arabjc.2022.103864
    [Google Scholar]
  135. DevS.S. AbidinZ.S.A. FarghadaniR. OthmanI. NaiduR. Receptor tyrosine kinases and their signaling pathways as therapeutic targets of curcumin in cancer.Front. Pharmacol.20211277251010.3389/fphar.2021.772510 34867402
    [Google Scholar]
  136. Drugs@FDA: FDA-Approved Drugs. 2010. Available from: https://www.fda.gov/drugsatfda (accessed on 23-10-2024)
  137. AhmedN.M. YounsM.M. SoltanM.K. SaidA.M. Design, synthesis, molecular modeling and antitumor evaluation of novel indolyl-pyrimidine derivatives with EGFR inhibitory activity.Molecules20212671838185610.3390/molecules26071838 33805918
    [Google Scholar]
  138. OsmanI.A. AyyadR.R. MahdyH.A. New pyrimidine-5-carbonitrile derivatives as EGFR inhibitors with anticancer and apoptotic activities: Design, molecular modeling and synthesis.New J. Chem.20224624118121182710.1039/D2NJ01451C
    [Google Scholar]
  139. SobhE.A. DahabM.A. ElkaeedE.B. Computer aided drug discovery (CADD) of a thieno[2,3-d]pyrimidine derivative as a new EGFR inhibitor targeting the ribose pocket.J. Biomol. Struct. Dyn.20244252369239110.1080/07391102.2023.2204500 37129193
    [Google Scholar]
  140. SobhE.A. DahabM.A. ElkaeedE.B. Design, synthesis, docking, MD simulations, and anti-proliferative evaluation of thieno[2,3-d]pyrimidine derivatives as new EGFR inhibitors.J. Enzyme Inhib. Med. Chem.2023381222057910.1080/14756366.2023.2220579 37288786
    [Google Scholar]
  141. MohammadzadehP. AmbergG.C. AXL/Gas6 signaling mechanisms in the hypothalamic-pituitary-gonadal axis.Front. Endocrinol. (Lausanne)202314121210410.3389/fendo.2023.1212104 37396176
    [Google Scholar]
  142. ZhongF. CaiH. FuJ. TYRO3 agonist as therapy for glomerular disease.JCI Insight202381e16520710.1172/jci.insight.165207 36454644
    [Google Scholar]
  143. TutusausA. MaríM. Ortiz-PérezJ.T. NicolaesG.A.F. MoralesA. García de FrutosP. Role of vitamin K-dependent factors protein S and GAS6 and TAM receptors in SARS-CoV-2 infection and COVID-19-associated immunothrombosis.Cells2020910218610.3390/cells9102186 32998369
    [Google Scholar]
  144. VagoJ.P. AmaralF.A. van de LooF.A.J. Resolving inflammation by TAM receptor activation.Pharmacol. Ther.202122710789310.1016/j.pharmthera.2021.107893 33992683
    [Google Scholar]
  145. AehnlichP. PowellR.M. PeetersM.J.W. RahbechA. thor Straten P. TAM receptor inhibition-implications for cancer and the immune system.Cancers (Basel)2021136119510.3390/cancers13061195 33801886
    [Google Scholar]
  146. AntonyJ. HuangR.Y.J. AXL-driven EMT state as a targetable conduit in cancer.Cancer Res.201777143725373210.1158/0008‑5472.CAN‑17‑0392 28667075
    [Google Scholar]
  147. AkaluY.T. RothlinC.V. GhoshS. TAM receptor tyrosine kinases as emerging targets of innate immune checkpoint blockade for cancer therapy.Immunol. Rev.2017276116517710.1111/imr.12522 28258690
    [Google Scholar]
  148. KimD. LeeK.W. JungH. Design and synthesis of novel 2,4‐diamino‐5‐pyrazol‐4‐yl pyrimidine derivatives as selective tyro3 kinase inhibitors.Bull. Korean Chem. Soc.20183991101110410.1002/bkcs.11541
    [Google Scholar]
  149. KimY. LeeK.W. YeomH. Design and synthesis of 5‐aryl‐substituted phenylpyrimidine‐2,4‐diamine derivatives as novel mer and tyro3 kinase inhibitors.Bull. Korean Chem. Soc.202142220621110.1002/bkcs.12167
    [Google Scholar]
  150. XuD. SunD. WangW. Discovery of pyrrolo[2,3-d]pyrimidine derivatives as potent Axl inhibitors: Design, synthesis and biological evaluation.Eur. J. Med. Chem.202122011349710.1016/j.ejmech.2021.113497 33957388
    [Google Scholar]
  151. StuttfeldE. Ballmer-HoferK. Structure and function of VEGF receptors.IUBMB Life200961991592210.1002/iub.234 19658168
    [Google Scholar]
  152. WangX. BoveA.M. SimoneG. MaB. Molecular bases of VEGFR-2-mediated physiological function and pathological role.Front. Cell Dev. Biol.2020859928110.3389/fcell.2020.599281 33304904
    [Google Scholar]
  153. ZhengQ. HouW. Regulation of angiogenesis by microRNAs in cancer.Mol. Med. Rep.202124258310.3892/mmr.2021.12222 34132365
    [Google Scholar]
  154. SayedM.T.M. HalimP.A. El-AnsaryA.K. HassanR.A. Design, synthesis, anticancer evaluation, and in silico studies of some thieno[2,3‐d]pyrimidine derivatives as EGFR inhibitors.Drug Dev. Res.20238461299131910.1002/ddr.22088 37357422
    [Google Scholar]
  155. InaiT. MancusoM. HashizumeH. Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts.Am. J. Pathol.20041651355210.1016/S0002‑9440(10)63273‑7 15215160
    [Google Scholar]
  156. RuziZ. BozorovK. NieL. ZhaoJ. AisaH.A. Novel pyrazolo[3,4-d]pyrimidines as potential anticancer agents: Synthesis, VEGFR-2 inhibition, and mechanisms of action.Biomed. Pharmacother.202215611394810.1016/j.biopha.2022.113948 36411633
    [Google Scholar]
  157. HassanR.A. HamedM.I.A. AbdouA.M. El-DashY. Novel antiproliferative agents bearing substituted thieno[2,3-d]pyrimidine scaffold as dual VEGFR-2 and BRAF kinases inhibitors and apoptosis inducers; design, synthesis and molecular docking.Bioorg. Chem.202212510586110.1016/j.bioorg.2022.105861 35569190
    [Google Scholar]
  158. SeifS.E. MahmoudZ. WardakhanW.W. AbdouA.M. HassanR.A. Design and synthesis of novel hexahydrobenzo[4,5]thieno[2,3‐d]pyrimidine derivatives as potential anticancer agents with antiangiogenic activity via VEGFR‐2 inhibition, and down‐regulation of PI3K/Akt/mTOR signaling pathway.Drug Dev. Res.202384583986010.1002/ddr.22058 37016480
    [Google Scholar]
  159. KarimM. SaulS. GhitaL. Numb-associated kinases are required for SARS-CoV-2 infection and are cellular targets for antiviral strategies.Antiviral Res.202220410536710.1016/j.antiviral.2022.105367 35738348
    [Google Scholar]
  160. WangJ. JiX. LiuJ. ZhangX. Serine/threonine protein kinase STK16.Int. J. Mol. Sci.2019207176010.3390/ijms20071760 30974739
    [Google Scholar]
  161. MeiL. ZhangJ. HeK. ZhangJ. Ataxia telangiectasia and Rad3-related inhibitors and cancer therapy: Where we stand.J. Hematol. Oncol.20191214310.1186/s13045‑019‑0733‑6 31018854
    [Google Scholar]
  162. ŁukasikP. ZałuskiM. GutowskaI. Cyclin-dependent kinases (CDK) and their role in diseases development-review.Int. J. Mol. Sci.2021226293510.3390/ijms22062935 33805800
    [Google Scholar]
  163. KohnoM. PouyssegurJ. Targeting the ERK signaling pathway in cancer therapy.Ann. Med.200638320021110.1080/07853890600551037 16720434
    [Google Scholar]
  164. ElgammalW.E. ShabanS.S. EliwaE.M. Thiazolation of phenylthiosemicarbazone to access new thiazoles: Anticancer activity and molecular docking.Future Med. Chem.202416121219123710.1080/17568919.2024.2342668 38989988
    [Google Scholar]
  165. FaggalS.I. El-DashY. SonousiA. AbdouA.M. HassanR.A. Design, synthesis, and biological evaluation of novel thiazole derivatives as PI3K/mTOR dual inhibitors.RSC Med. Chem.2024Advance online publication10.1039/D4MD00462K 39345714
    [Google Scholar]
  166. XiaY. SchneyerA.L. The biology of activin: Recent advances in structure, regulation and function.J. Endocrinol.2009202111210.1677/JOE‑08‑0549 19273500
    [Google Scholar]
  167. WińskaP. WielechowskaM. KoronkiewiczM. BorowieckiP. Synthesis and anticancer activity of novel dual inhibitors of human protein kinases CK2 and PIM-1.Pharmaceutics2023157199110.3390/pharmaceutics15071991 37514177
    [Google Scholar]
  168. LiuJ. YangX. LiB. STK16 regulates actin dynamics to control golgi organization and cell cycle.Sci. Rep.2017714460710.1038/srep44607 28294156
    [Google Scholar]
  169. HalawaA.H. EskandraniA.A. ElgammalW.E. Rational design and synthesis of diverse pyrimidine molecules bearing sulfonamide moiety as novel ERK inhibitors.Int. J. Mol. Sci.201920225592561810.3390/ijms20225592
    [Google Scholar]
  170. CherukupalliS. ChandrasekaranB. AletiR.R. Synthesis of 4,6-disubstituted pyrazolo[3,4-d]pyrimidine analogues: Cyclin-dependent kinase 2 (CDK2) inhibition, molecular docking and anticancer evaluation.J. Mol. Struct.2019117653855110.1016/j.molstruc.2018.08.104
    [Google Scholar]
  171. KovalováM. HavlíčekL. DjukicS. Characterization of new highly selective pyrazolo[4,3-d]pyrimidine inhibitor of CDK7.Biomed. Pharmacother.202316111449210.1016/j.biopha.2023.114492 36931035
    [Google Scholar]
  172. AbdulrahmanF.G. SabourR. El-GililS.M.A. MehanyA.B.M. TahaE.A. Design, synthesis, biological evaluation and molecular docking study of new pyrazolo[1,5-a]pyrimidines as PIM kinase inhibitors and apoptosis inducers.J. Mol. Struct.2024129513681110.1016/j.molstruc.2023.136811
    [Google Scholar]
  173. GaoX. ZhaoF. WangY. Discovery of novel hybrids of mTOR inhibitor and NO donor as potential anti-tumor therapeutics.Bioorg. Med. Chem.20239111740210.1016/j.bmc.2023.117402 37421709
    [Google Scholar]
  174. YuanK. LiZ. KuangW. Targeting dual-specificity tyrosine phosphorylation-regulated kinase 2 with a highly selective inhibitor for the treatment of prostate cancer.Nat. Commun.2022131290310.1038/s41467‑022‑30581‑4 35614066
    [Google Scholar]
  175. BoniJ. Rubio-PerezC. López-BigasN. FillatC. de la LunaS. The DYRK family of kinases in cancer: Molecular functions and therapeutic opportunities.Cancers (Basel)2020128210610.3390/cancers12082106 32751160
    [Google Scholar]
  176. LindbergM.F. MeijerL. Dual-specificity, tyrosine phosphorylation-regulated kinases (DYRKs) and CDC2-like kinases (CLKs) in human disease, an overview.Int. J. Mol. Sci.20212211604710.3390/ijms22116047 34205123
    [Google Scholar]
  177. KamiokaH. YogosawaS. OikawaT. Dyrk2 gene transfer suppresses hepatocarcinogenesis by promoting the degradation of Myc and Hras.JHEP Rep. Innov. Hepatol.20235710075910.1016/j.jhepr.2023.100759 37333975
    [Google Scholar]
  178. HainerS.J. MartensJ.A. Identification of histone mutants that are defective for transcription-coupled nucleosome occupancy.Mol. Cell. Biol.201131173557356810.1128/MCB.05195‑11 21730290
    [Google Scholar]
  179. SehrawatP. ShobhawatR. KumarA. Catching nucleosome by its decorated tails determines its functional states.Front. Genet.20221390392310.3389/fgene.2022.903923 35910215
    [Google Scholar]
  180. Santos-RosaH. Millán-ZambranoG. HanN. Methylation of histone H3 at lysine 37 by Set1 and Set2 prevents spurious DNA replication.Mol. Cell2021811327932807.e810.1016/j.molcel.2021.04.021 33979575
    [Google Scholar]
  181. LiG. TianY. ZhuW.G. The roles of histone deacetylases and their inhibitors in cancer therapy.Front. Cell Dev. Biol.2020857694610.3389/fcell.2020.576946 33117804
    [Google Scholar]
  182. LiY. SetoE. HDACs and HDAC inhibitors in cancer development and therapy.Cold Spring Harb. Perspect. Med.2016610a02683110.1101/cshperspect.a026831 27599530
    [Google Scholar]
  183. ChoiM.A. ParkS.Y. ChaeH.Y. SongY. SharmaC. SeoY.H. Design, synthesis and biological evaluation of a series of CNS penetrant HDAC inhibitors structurally derived from amyloid-β probes.Sci. Rep.2019911318710.1038/s41598‑019‑49784‑9 31515509
    [Google Scholar]
  184. MehmoodS.A. SahuK.K. SenguptaS. Recent advancement of HDAC inhibitors against breast cancer.Med. Oncol.202340720110.1007/s12032‑023‑02058‑x 37294406
    [Google Scholar]
  185. Moya-GarcíaA.A. Pino-ÁngelesA. Gil-RedondoR. MorrealeA. JiménezF. Structural features of mammalian histidine decarboxylase reveal the basis for specific inhibition.Br. J. Pharmacol.2009157141310.1111/j.1476‑5381.2009.00219.x 19413567
    [Google Scholar]
  186. AroraS. YangJ-M. UtsumiR. OkamotoT. KitayamaT. HaitW.N. P-glycoprotein mediates resistance to histidine kinase inhibitors.Mol. Pharmacol.200466346046710.1124/mol.66.3 15322237
    [Google Scholar]
  187. ChenD. SohC.K. GohW.H. WangH. Design, synthesis, and preclinical evaluation of fused pyrimidine-based hydroxamates for the treatment of hepatocellular carcinoma.J. Med. Chem.20186141552157510.1021/acs.jmedchem.7b01465 29360358
    [Google Scholar]
  188. XingK. ZhangJ. HanY. TongT. LiuD. ZhaoL. Design, synthesis and bioactivity evaluation of 4,6-disubstituted pyrido[3,2-d]pyrimidine derivatives as Mnk and HDAC inhibitors.Molecules20202518431810.3390/molecules25184318 32967084
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128346900241111115125
Loading
/content/journals/cpd/10.2174/0113816128346900241111115125
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test