Skip to content
2000
image of Exploring The Therapeutic Potential of Natural Plants in Modulating Molecular and Cellular Pathways Involved in Diabetic Neuropathy: Mechanism and Biochemical Evaluation

Abstract

Diabetic Neuropathy (DN) is a widespread and severely debilitating consequence of diabetes mellitus that impairs function, causes discomfort, and damages peripheral nerves. Numerous molecular pathways are involved in the pathogenesis of DN, including cyclooxygenase, polyol, protein kinase C, and inflammatory pathways. These molecular pathways may be responsible for the mechanism behind the onset and development of DN. The metabolic profile can be evaluated by examining the molecular mechanisms that connect diabetes to certain biochemical indicators. Historically, the use of plants and herbs as medicine has been highly valued in many populations. These traditional sources, either alone or in combination with contemporary drugs, are being studied by modern medicine for their potential applications in managing and treating diabetic neuropathy. The efficacy and potential negative effects of an herb are largely dependent on its purity and provenance. Rich supplies of bioactive chemicals with particular pharmacological qualities that don't have negative side effects can be found in many plants. Some phytoconstituents with antidiabetic properties are found in medicinal plants, including terpenoids, saponins, flavonoids or carotenoids, alkaloids, and glycosides. We conclude with the statement that developing novel therapeutic procedures for the therapy of DN would be aided by the effective manipulation of common molecular pathways.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128335400241101115928
2025-01-01
2025-01-30
Loading full text...

Full text loading...

References

  1. Zaino B. Goel R. Devaragudi S. Prakash A. Vaghamashi Y. Sethi Y. Patel N. Kaka N. Diabetic neuropathy: Pathogenesis and evolving principles of management. Dis. Mon. 2023 69 9 101582 10.1016/j.disamonth.2023.101582 37164794
    [Google Scholar]
  2. Aragaw TJ Afework DT Getahun KA Assessment of knowledge, attitude, and utilization of traditional medicine among the communities of Debre Tabor Town, Amhara Regional State, North Central Ethiopia: A cross-sectional study. Evidence-Based Complemt. Alternat. Med. 2020 2020 6565131
    [Google Scholar]
  3. Jaacks L.M. Siegel K.R. Gujral U.P. Narayan K.M.V. Type 2 diabetes: A 21st century epidemic. Best Pract. Res. Clin. Endocrinol. Metab. 2016 30 3 331 343 10.1016/j.beem.2016.05.003 27432069
    [Google Scholar]
  4. Oser T.K. Litchman M.L. Allen N.A. Kwan B.M. Fisher L. Jortberg B.T. Polonsky W.H. Oser S.M. Personal continuous glucose monitoring use among adults with type 2 diabetes: Clinical efficacy and economic impacts. Curr. Diab. Rep. 2021 21 11 49 10.1007/s11892‑021‑01408‑1 34882273
    [Google Scholar]
  5. Harikrishnan R Balasundaram C. Potential of herbal extracts and bioactive compounds for human healthcare. The Role of Phytoconstitutents in Health Care London, United Kingdom Routledge 2020 10.4324/9780429284267‑2
    [Google Scholar]
  6. Galiero R. Caturano A. Vetrano E. Beccia D. Brin C. Alfano M. Di Salvo J. Epifani R. Piacevole A. Tagliaferri G. Rocco M. Iadicicco I. Docimo G. Rinaldi L. Sardu C. Salvatore T. Marfella R. Sasso F.C. Peripheral neuropathy in diabetes mellitus: Pathogenetic mechanisms and diagnostic options. Int. J. Mol. Sci. 2023 24 4 3554 10.3390/ijms24043554 36834971
    [Google Scholar]
  7. Sibal L. Law H.N. Gebbie J. Home P. Cardiovascular risk factors predicting the development of distal symmetrical polyneuropathy in people with type 1 diabetes: A 9-year follow-up study. Ann. N. Y. Acad. Sci. 2006 1084 1 304 318 10.1196/annals.1372.036 17151310
    [Google Scholar]
  8. Arokiasamy P Salvi S Selvamani Y Global burden of diabetes mellitus. Handbook of Global Health. Cham Springer 2020
    [Google Scholar]
  9. Sempere-Bigorra M. Julián-Rochina I. Cauli O. Differences and similarities in neuropathy in type 1 and 2 diabetes: A systematic review. J. Pers. Med. 2021 11 3 230 10.3390/jpm11030230 33810048
    [Google Scholar]
  10. Morley-Forster P. Prevalence of neuropathic pain and the need for treatment. Pain Res. Manag. 2006 11 A 5A 10A 10.1155/2006/718098
    [Google Scholar]
  11. Sasaki H. Kawamura N. Dyck P.J. Dyck P.J.B. Kihara M. Low P.A. Spectrum of diabetic neuropathies. Diabetol. Int. 2020 11 2 87 96 10.1007/s13340‑019‑00424‑7 32206478
    [Google Scholar]
  12. Castelli G. Desai K.M. Cantone R.E. Peripheral neuropathy: Evaluation and differential diagnosis. Am. Fam. Physician 2020 102 12 732 739 33320513
    [Google Scholar]
  13. Singh R. Farooq S.A. Mannan A. Singh T.G. Najda A. Grażyna Z. Albadrani G.M. Sayed A.A. Abdel-Daim M.M. Animal models of diabetic microvascular complications: Relevance to clinical features. Biomed. Pharmacother. 2022 145 112305 10.1016/j.biopha.2021.112305 34872802
    [Google Scholar]
  14. Parveen A. Sultana R. Lee S.M. Kim T.H. Kim S.Y. Phytochemicals against anti‐diabetic complications: Targeting the advanced glycation end product signaling pathway. Arch. Pharm. Res. 2021 44 4 378 401 10.1007/s12272‑021‑01323‑9 33837513
    [Google Scholar]
  15. Ansari P. Hannan J.M.A. Azam S. Jakaria M. Challenges in diabetic micro-complication management: Focus on diabetic neuropathy. Int. J. Transl. Med. 2021 1 3 175 186 10.3390/ijtm1030013
    [Google Scholar]
  16. Mota R.I. Morgan S.E. Bahnson E.M. Diabetic vasculopathy: Macro and microvascular injury. Curr. Pathobiol. Rep. 2020 8 1 1 14 10.1007/s40139‑020‑00205‑x 32655983
    [Google Scholar]
  17. Yuan S.Y. Breslin J.W. Perrin R. Gaudreault N. Guo M. Kargozaran H. Wu M.H. Microvascular permeability in diabetes and insulin resistance. Microcirculation 2007 14 4-5 363 373 10.1080/10739680701283091 17613808
    [Google Scholar]
  18. Münch G. Westcott B. Menini T. Gugliucci A. Advanced glycation endproducts and their pathogenic roles in neurological disorders. Amino Acids 2012 42 4 1221 1236 10.1007/s00726‑010‑0777‑y 20949363
    [Google Scholar]
  19. Singer P. Shapiro H. Theilla M. Anbar R. Singer J. Cohen J. Anti-inflammatory properties of omega-3 fatty acids in critical illness: Novel mechanisms and an integrative perspective. Intensive Care Med. 2008 34 9 1580 1592 10.1007/s00134‑008‑1142‑4 18461305
    [Google Scholar]
  20. Sifuentes-Franco S Pacheco-Moisés FP Rodríguez-Carrizalez AD The role of oxidative stress, mitochondrial function, and autophagy in diabetic polyneuropathy. J. Diabetes Res. 2017 2017 9 1673081 10.1155/2017/1673081
    [Google Scholar]
  21. Skaper S.D. Facci L. Zusso M. Giusti P. An inflammation-centric view of neurological disease: Beyond the neuron. Front. Cell. Neurosci. 2018 12 72 10.3389/fncel.2018.00072 29618972
    [Google Scholar]
  22. Ardeleanu V. Toma A. Pafili K. Papanas N. Motofei I. Diaconu C.C. Rizzo M. Pantea Stoian A. Current pharmacological treatment of painful diabetic neuropathy: A narrative review. Medicina (Kaunas) 2020 56 1 25 10.3390/medicina56010025 31936646
    [Google Scholar]
  23. Khdour M.R. Treatment of diabetic peripheral neuropathy: A review. J. Pharm. Pharmacol. 2020 72 7 863 872 10.1111/jphp.13241 32067247
    [Google Scholar]
  24. Alam U. Sloan G. Tesfaye S. Treating pain in diabetic neuropathy: Current and developmental drugs. Drugs 2020 80 4 363 384 10.1007/s40265‑020‑01259‑2 32040849
    [Google Scholar]
  25. Amer M.S. Alsadany M.A. Tolba M.F. Omar O.H. Quality of life in elderly diabetic patients with peripheral arterial disease. Geriatr. Gerontol. Int. 2013 13 2 443 450 10.1111/j.1447‑0594.2012.00928.x 22934536
    [Google Scholar]
  26. Watterworth B Wright TB Diabetic peripheral neuropathy. Pain Cham Springer 2019 10.1007/978‑3‑319‑99124‑5_194
    [Google Scholar]
  27. Balogh M. Zádor F. Zádori Z.S. Shaqura M. Király K. Mohammadzadeh A. Varga B. Lázár B. Mousa S.A. Hosztafi S. Riba P. Benyhe S. Gyires K. Schäfer M. Fürst S. Al-Khrasani M. Efficacy-based perspective to overcome reduced opioid analgesia of advanced painful diabetic neuropathy in rats. Front. Pharmacol. 2019 10 347 10.3389/fphar.2019.00347 31024314
    [Google Scholar]
  28. Hussain N. Said A.S.A. Javaid F.A. Al Haddad A.H.I. Anwar M. Khan Z. Abu-Mellal A. The efficacy and safety profile of capsaicin 8% patch versus 5% Lidocaine patch in patients with diabetic peripheral neuropathic pain: A randomized, placebo-controlled study of south Asian male patients. J. Diabetes Metab. Disord. 2021 20 1 271 278 10.1007/s40200‑021‑00741‑2 34178837
    [Google Scholar]
  29. Jahantigh Akbari N. Hosseinifar M. Naimi S.S. Mikaili S. Rahbar S. The efficacy of physiotherapy interventions in mitigating the symptoms and complications of diabetic peripheral neuropathy: A systematic review. J. Diabetes Metab. Disord. 2020 19 2 1995 2004 10.1007/s40200‑020‑00652‑8 33553048
    [Google Scholar]
  30. Asif M. The prevention and control the type-2 diabetes by changing lifestyle and dietary pattern. J. Educ. Health Promot. 2014 3 1 1 10.4103/2277‑9531.127541 24741641
    [Google Scholar]
  31. van Maurik J.F.M.M. van Hal M. van Eijk R.P.A. Kon M. Peters E.J.G. Value of surgical decompression of compressed nerves in the lower extremity in patients with painful diabetic neuropathy: A randomized controlled trial. Plast. Reconstr. Surg. 2014 134 2 325 332 10.1097/PRS.0000000000000369 24732651
    [Google Scholar]
  32. Nasim N. Sandeep I.S. Mohanty S. Plant-derived natural products for drug discovery: Current approaches and prospects. Nucleus 2022 65 3 399 411 10.1007/s13237‑022‑00405‑3 36276225
    [Google Scholar]
  33. Przeor M. Some common medicinal plants with antidiabetic activity, known and available in Europe (A Mini-Review). Pharmaceuticals (Basel) 2022 15 1 65 10.3390/ph15010065 35056122
    [Google Scholar]
  34. Malik ZA Tabassum N Sharma PL Attenuation of experimentally induced diabetic neuropathy in association with reduced oxidative-nitrosative stress by chronic administration of Momordica charantia. Adv. Biosci. Biotechnol. 2013 04 03 43047 10.4236/abb.2013.43047
    [Google Scholar]
  35. Jain V. Pareek A. Paliwal N. Ratan Y. Jaggi A.S. Singh N. Antinociceptive and antiallodynic effects of Momordica charantia L. in tibial and sural nerve transection-induced neuropathic pain in rats. Nutr. Neurosci. 2014 17 2 88 96 10.1179/1476830513Y.0000000069 23692809
    [Google Scholar]
  36. Joseph B. Jini D. Antidiabetic effects of Momordica charantia (bitter melon) and its medicinal potency. Asian Pac. J. Trop. Dis. 2013 3 2 93 102 10.1016/S2222‑1808(13)60052‑3
    [Google Scholar]
  37. Singh J. Cumming E. Manoharan G. Kalasz H. Adeghate E. Medicinal chemistry of the anti-diabetic effects of momordica charantia: Active constituents and modes of actions. Open Med. Chem. J. 2011 5 Suppl. 2 70 77 10.2174/1874104501105010070 21966327
    [Google Scholar]
  38. Nam Y.H. Moon H.W. Lee Y.R. Kim E.Y. Rodriguez I. Jeong S.Y. Castañeda R. Park J.H. Choung S.Y. Hong B.N. Kang T.H. Panax ginseng (Korea Red Ginseng) repairs diabetic sensorineural damage through promotion of the nerve growth factor pathway in diabetic zebrafish. J. Ginseng Res. 2019 43 2 272 281 10.1016/j.jgr.2018.02.006 30976165
    [Google Scholar]
  39. Park K Kim Y Kim J Supplementation with Korean red ginseng improves current perception threshold in Korean type 2 diabetes patients: A randomized, double-blind, placebo-controlled trial. J. Diabetes Res. 2020 2020 5295328 10.1155/2020/5295328
    [Google Scholar]
  40. Uzayisenga R. Ayeka P.A. Wang Y. Anti-diabetic potential of Panax notoginseng saponins (PNS): A review. Phytother. Res. 2014 28 4 510 516 10.1002/ptr.5026 23846979
    [Google Scholar]
  41. Naseri K. Saadati S. Sadeghi A. Asbaghi O. Ghaemi F. Zafarani F. Li H.B. Gan R.Y. The efficacy of ginseng (Panax) on human prediabetes and type 2 diabetes mellitus: A systematic review and meta-analysis. Nutrients 2022 14 12 2401 10.3390/nu14122401 35745129
    [Google Scholar]
  42. Une H.D. Dureshahwar K. Mubashir M. Quantification of quercetin obtained from Allium cepa Lam. leaves and its effects on streptozotocin-induced diabetic neuropathy. Pharmacognosy Res. 2017 9 3 287 293 10.4103/pr.pr_147_16 28827972
    [Google Scholar]
  43. Khan D. Mohammed M. Upaganlawar A. Ameliorative potential of Allium cepa Lam. leaves on diabetes induced and chronic constriction injury induced neuropathic pain in experimental rats. Indian J. Pharm. Educ. Res 2020 54 143 149 10.5530/ijper.54.1.17
    [Google Scholar]
  44. Galavi A. Hosseinzadeh H. Razavi B.M. The effects of Allium cepa L. (onion) and its active constituents on metabolic syndrome: A review. Iran. J. Basic Med. Sci. 2021 24 1 3 16 33643564
    [Google Scholar]
  45. Batool M. Khan M. Mubarak M. A Wonder Plant Aloe vera L.(Liliaceae): An overview of its folk traditional uses, phytoconstituents, biological activities, and cosmaceutical applications. Proc. Pakistan Acad. Sci.: B. Life Environ. Sci. 2023 60 3 337 65
    [Google Scholar]
  46. Elkomy N.M.I.M. El-Shaibany A. Elnagar G.M. Abdelkhalek A.S. Al-Mahbashi H. Elaasser M.M. Raweh S.M. Aldiyarbi M.A. Raslan A.E. Evaluation of acute oral toxicity, anti-diabetic and antioxidant effects of Aloe vera flowers extract. J. Ethnopharmacol. 2023 309 116310 10.1016/j.jep.2023.116310 36863642
    [Google Scholar]
  47. Guven M. Gölge U.H. Aslan E. Sehitoglu M.H. Aras A.B. Akman T. Cosar M. The effect of aloe vera on ischemia—Reperfusion injury of sciatic nerve in rats. Biomed. Pharmacother. 2016 79 201 207 10.1016/j.biopha.2016.02.023 27044829
    [Google Scholar]
  48. Muñiz-Ramirez A Perez RM Garcia E Antidiabetic activity of Aloe vera leaves. Evid Based Complement Alternat Med. 2020 2020 6371201 10.1155/2020/6371201
    [Google Scholar]
  49. Haghani F. Arabnezhad M.R. Mohammadi S. Ghaffarian-Bahraman A. Aloe vera and streptozotocin-induced diabetes mellitus. Rev. Bras. Farmacogn. 2022 32 2 174 187 10.1007/s43450‑022‑00231‑3 35287334
    [Google Scholar]
  50. Gunasekaran V. Mathew M.M. Gautam M. Neuroprotective role of Pterocarpus marsupium Roxb in streptozotocin-induced diabetic neuropathic pain in Type 2 diabetic rats. J. Pharm. Res. 2017 11 1 7
    [Google Scholar]
  51. Pari L. Majeed M. Rathinam A. Chandramohan R. Molecular action of inflammation and oxidative stress in hyperglycemic rats: Effect of different concentrations of Pterocarpus marsupiums extract. J. Diet. Suppl. 2018 15 4 452 470 10.1080/19390211.2017.1356416 28981393
    [Google Scholar]
  52. Khan F. Sarker M.M.R. Ming L.C. Mohamed I.N. Zhao C. Sheikh B.Y. Tsong H.F. Rashid M.A. Comprehensive review on phytochemicals, pharmacological and clinical potentials of gymnema sylvestre. Front. Pharmacol. 2019 10 OCT 1223 10.3389/fphar.2019.01223 31736747
    [Google Scholar]
  53. Sandech N. Jangchart R. Komolkriengkrai M. Boonyoung P. Khimmaktong W. Efficiency of Gymnema sylvestre ‑derived gymnemic acid on the restoration and improvement of brain vascular characteristics in diabetic rats. Exp. Ther. Med. 2021 22 6 1420 10.3892/etm.2021.10855 34707702
    [Google Scholar]
  54. Kishore L. Singh R. Preventive effect of gymnema sylvestre homeopathic preparation on streptozotocin-nicotinamide induced diabetic nephropathy in rats. Orient. Pharm. Exp. Med. 2017 17 3 223 232 10.1007/s13596‑017‑0272‑z
    [Google Scholar]
  55. Gunasekaran V. Srinivasan S. Rani S.S. Potential antioxidant and antimicrobial activity of Gymnema sylvestre related to diabetes. Faslnamah-i Giyahan-i Daruyi 2019 7 2 5 11
    [Google Scholar]
  56. Kaushik S. Masand N. Iyer M.R. Patil V.M. Preclinical to Clinical Profile of Curcuma longa as Antidiabetic Therapeutics. Curr. Top. Med. Chem. 2023 23 24 2267 2276 10.2174/1568026623666230428101440 37132313
    [Google Scholar]
  57. Wal P. Singh P. Sinha A. A detailed review of various herbal treatment options for potentially curing or ameliorating pain in diabetic neuropathy. Curr. Tradit. Med. 2023 9 2 e250422203995 10.2174/2215083808666220425102520
    [Google Scholar]
  58. Yang X. Zhao X. Liu Y. Liu Y. Liu L. An Z. Xing H. Tian J. Song X. Ginkgo biloba extract protects against diabetic cardiomyopathy by restoring autophagy via adenosine monophosphate‐activated protein kinase/mammalian target of the rapamycin pathway modulation. Phytother. Res. 2023 37 4 1377 1390 10.1002/ptr.7746 36751963
    [Google Scholar]
  59. Tursinawati Y. Rosidi A. Hajar N. Diatri D. Kurniati I. Rahmatullah D. Cleodor M. Diaz P. Effect of different melatonin-rich extract of Emprit ginger (Zingiber officinale var. amarum) doses on biochemical parameters in streptozotocin-induced diabetic rats. Scr. Med. (Brno) 2024 55 4 399 408 10.5937/scriptamed55‑51069
    [Google Scholar]
  60. Askari V.R. Khosravi K. Baradaran Rahimi V. Garzoli S. A Mechanistic Review on How Berberine Use Combats Diabetes and Related Complications: Molecular, Cellular, and Metabolic Effects. Pharmaceuticals (Basel) 2023 17 1 7 10.3390/ph17010007 38275993
    [Google Scholar]
  61. Hashem H.A. Nabil Z.I. EL-Hak H.N.G. Ashwagandha root extract’s phenolic compound counteracts alloxan’s effects on oxidative stress, inflammatory cytokines, and peripheral neuropathy in rats. Comp. Clin. Pathol. 2023 32 5 867 880 10.1007/s00580‑023‑03496‑9
    [Google Scholar]
  62. Yang C.C. Wang M.H. Soung H.S. Tseng H.C. Lin F.H. Chang K.C. Tsai C.C. Through its powerful antioxidative properties, l-theanine ameliorates vincristine-induced neuropathy in rats. Antioxidants 2023 12 4 803 10.3390/antiox12040803 37107178
    [Google Scholar]
  63. Tambe S.M. Mali S. Amin P.D. Oliveira M. Neuroprotective potential of cannabidiol: Molecular mechanisms and clinical implications. J. Integr. Med. 2023 21 3 236 244 10.1016/j.joim.2023.03.004 36973157
    [Google Scholar]
  64. De Silva ND Wasana KGP Attanayake AP Cinnamon Bark (Cinnamomum species). Medicinal Spice and Condiment Crops Boca Raton, Florida CRC Press 2020
    [Google Scholar]
  65. Alsherif D.A. Hussein M.A. Abuelkasem S.S. Salvia officinalis improves glycemia and suppresses pro-inflammatory features in obese rats with metabolic syndrome. Curr. Pharm. Biotechnol. 2024 25 5 623 636 10.2174/1389201024666230811104740 37581324
    [Google Scholar]
  66. Tran T.T.L. Ly H.T. Le T.K.O. Le V.M. Anti-hyperglycemic effect of herbal formula of Moringa oleifera, Vernonia amygdalina and Centella asiatica extracts in streptozotocin-induced hyperglycemic mice. Pharmacol. Res. - Modern Chin. Med. 2024 11 100428 10.1016/j.prmcm.2024.100428
    [Google Scholar]
  67. Amri J. Alaee M. Latifi S.A. Alimoradian A. Salehi M. Amelioration of STZ-induced nephropathy in diabetic rats by saffron hydro alcoholic extract. Horm. Mol. Biol. Clin. Investig. 2021 42 4 411 418 10.1515/hmbci‑2021‑0005 34018383
    [Google Scholar]
  68. Singh T.G. Sharma R. Kaur A. Dhiman S. Singh R. Evaluation of renoprotective potential of Ficus religiosa in attenuation of diabetic nephropathy in rats. Obes. Med. 2020 19 100268 10.1016/j.obmed.2020.100268
    [Google Scholar]
  69. Gupta P.S. Singh S.K. Tripathi A.K. Pharmacopuncture of Bauhinia variegata nanoemulsion formulation against diabetic peripheral neuropathic pain. J. Pharmacopuncture 2020 23 1 30 36 10.3831/KPI.2020.23.005 32322433
    [Google Scholar]
  70. Ajayi A.F. Akhigbe R.E. Adewumi O.M. Okeleji L.O. Mujaidu K.B. Olaleye S.B. Effect of ethanolic extract of Cryptolepis sanguinolenta stem on in vivo and in vitro glucose absorption and transport: Mechanism of its antidiabetic activity. Indian J. Endocrinol. Metab. 2012 16 Suppl1 Suppl. 1 S91 S96 22701855
    [Google Scholar]
  71. Sánchez M. González-Burgos E. Iglesias I. Gómez-Serranillos M.P. Pharmacological update properties of Aloe vera and its major active constituents. Molecules 2020 25 6 1324 10.3390/molecules25061324 32183224
    [Google Scholar]
  72. Yeram P.B. Kulkarni Y.A. Glycosides and vascular complications of diabetes. Chem. Biodivers. 2022 19 10 e202200067 10.1002/cbdv.202200067 36181446
    [Google Scholar]
  73. Numan A. Masud F. Khawaja K.I. Khan F.F. Qureshi A.B. Burney S. Ashraf K. Ahmad N. Yousaf M.S. Rabbani I. Zaneb H. Rehman H. Clinical and electrophysiological efficacy of leaf extract of <i>Gingko biloba</i> L (Ginkgoaceae) in subjects with diabetic sensorimotor polyneuropathy. Trop. J. Pharm. Res. 2016 15 10 2137 2145 10.4314/tjpr.v15i10.12
    [Google Scholar]
  74. Kunnumakkara A.B. Hegde M. Parama D. Girisa S. Kumar A. Daimary U.D. Garodia P. Yenisetti S.C. Oommen O.V. Aggarwal B.B. Role of turmeric and curcumin in prevention and treatment of chronic diseases: Lessons learned from clinical trials. ACS Pharmacol. Transl. Sci. 2023 6 4 447 518 10.1021/acsptsci.2c00012 37082752
    [Google Scholar]
  75. Joshi P. Bisht A. Paliwal A. Dwivedi J. Sharma S. Recent updates on clinical developments of curcumin and its derivatives. Phytother. Res. 2023 37 11 5109 5158 10.1002/ptr.7974 37536946
    [Google Scholar]
  76. Moghadam F.H. Vakili-Zarch B. Shafiee M. Mirjalili A. Fenugreek seed extract treats peripheral neuropathy in pyridoxine induced neuropathic mice. EXCLI J. 2013 12 282 290 26417231
    [Google Scholar]
  77. Senevirathne B.S. Jayasinghe M.A. Pavalakumar D. Siriwardhana C.G. Ceylon cinnamon: A versatile ingredient for futuristic diabetes management. J. Fut. Foods 2022 2 2 125 142 10.1016/j.jfutfo.2022.03.010
    [Google Scholar]
  78. Mendes P.F. Ponce F. Fraga D.D. High doses of uncaria tomentosa (cat’s claw) reduce blood glucose levels in rats. Int. J. Pharm. Pharm. Sci. 2014 6 2 410 415
    [Google Scholar]
  79. Kaur G. Bali A. Singh N. Jaggi A.S. Ameliorative potential of Ocimum sanctum in chronic constriction injury-induced neuropathic pain in rats. An. Acad. Bras. Cienc. 2015 87 1 417 429 10.1590/0001‑3765201520130008 25673470
    [Google Scholar]
  80. Wang S. Moustaid-Moussa N. Chen L. Mo H. Shastri A. Su R. Bapat P. Kwun I. Shen C.L. Novel insights of dietary polyphenols and obesity. J. Nutr. Biochem. 2014 25 1 1 18 10.1016/j.jnutbio.2013.09.001 24314860
    [Google Scholar]
  81. Silva T.M. Fracasso D.S. Vargas Visentin A.P. Cassini C. Scariot F.J. Danetti S. Echeverrigaray S. Moura S. Touguinha L.B. Branco C.S. Salvador M. Dual effect of the herbal matcha green tea (Camellia sinensis L. kuntze) supplement in EA.hy926 endothelial cells and Artemia salina. J. Ethnopharmacol. 2022 298 115564 10.1016/j.jep.2022.115564 35940467
    [Google Scholar]
  82. Soleimani V. Delghandi P.S. Moallem S.A. Karimi G. Safety and toxicity of silymarin, the major constituent of milk thistle extract: An updated review. Phytother. Res. 2019 33 6 1627 1638 10.1002/ptr.6361 31069872
    [Google Scholar]
  83. Sheela N. Jose M.A. Sathyamurthy D. Kumar B.N. Effect of silymarin on streptozotocin-nicotinamide-induced type 2 diabetic nephropathy in rats. Iran. J. Kidney Dis. 2013 7 2 117 123 23485535
    [Google Scholar]
  84. Zan Y. Kuai C.X. Qiu Z.X. Huang F. Berberine ameliorates diabetic neuropathy: TRPV1 modulation by PKC pathway. Am. J. Chin. Med. 2017 45 8 1709 1723 10.1142/S0192415X17500926 29121795
    [Google Scholar]
  85. Bost J.W. Maroon A. Maroon J. Natural anti-inflammatory agents for pain relief. Surg. Neurol. Int. 2010 1 1 80 10.4103/2152‑7806.73804 21206541
    [Google Scholar]
  86. Cemek M. Kağa S. Şimşek N. Büyükokuroğlu M.E. Konuk M. Antihyperglycemic and antioxidative potential of Matricaria chamomilla L. in streptozotocin-induced diabetic rats. J. Nat. Med. 2008 62 3 284 293 10.1007/s11418‑008‑0228‑1 18404309
    [Google Scholar]
  87. Al-Malki AL El Rabey HA The antidiabetic effect of low doses of Moringa oleifera Lam. seeds on streptozotocin induced diabetes and diabetic nephropathy in male rats. Biomed. Res. Int. 2015 2015 381040
    [Google Scholar]
  88. Mahmoud A.M. Abd El-Twab S.M. Abdel-Reheim E.S. Consumption of polyphenol-rich Morus alba leaves extract attenuates early diabetic retinopathy: The underlying mechanism. Eur. J. Nutr. 2017 56 4 1671 1684 10.1007/s00394‑016‑1214‑0 27059477
    [Google Scholar]
  89. Manimekalai P Davidraj C Dhanalakshmi R Anti-antioxidant activity of alcoholic extract of Nelumbo nucifera on streptozotozin induced diabetic albino wistar rats. Indian J. Med. Healthcare 2012 2012 70 77
    [Google Scholar]
  90. Alkhalaf M.I. Hussein R.H. Hamza A. Green synthesis of silver nanoparticles by Nigella sativa extract alleviates diabetic neuropathy through anti-inflammatory and antioxidant effects. Saudi J. Biol. Sci. 2020 27 9 2410 2419 10.1016/j.sjbs.2020.05.005 32884424
    [Google Scholar]
  91. Mestry S.N. Dhodi J.B. Kumbhar S.B. Juvekar A.R. Attenuation of diabetic nephropathy in streptozotocin-induced diabetic rats by Punica granatum Linn. leaves extract. J. Tradit. Complement. Med. 2017 7 3 273 280 10.1016/j.jtcme.2016.06.008 28725620
    [Google Scholar]
  92. Punitha R. Manoharan S. Antihyperglycemic and antilipidperoxidative effects of Pongamia pinnata (Linn.) Pierre flowers in alloxan induced diabetic rats. J. Ethnopharmacol. 2006 105 1-2 39 46 10.1016/j.jep.2005.09.037 16271443
    [Google Scholar]
  93. Abad A.N.A. Nouri M.H.K. Gharjanie A. Effect of Matricaria chamomilla hydroalcoholic extract on cisplatin-induced neuropathy in mice. Chin. J. Nat. Med. 2011 9 2 126 131
    [Google Scholar]
  94. Coppock RW Dziwenka M St John’s wort (Hypericum perforatum L). Nutraceuticals Amsterdam Elsevier 2021
    [Google Scholar]
  95. Raghavan B. Kumari S.K. Effect of Terminalia arjuna stem bark on antioxidant status in liver and kidney of alloxan diabetic rats. Indian J. Physiol. Pharmacol. 2006 50 2 133 142 17051732
    [Google Scholar]
  96. Ranjithkumar R. Prathab Balaji S. Balaji B. Ramesh R.V. Ramanathan M. Standardized Aqueous Tribulus terristris (nerunjil) extract attenuates hyperalgesia in experimentally induced diabetic neuropathic pain model: Role of oxidative stress and inflammatory mediators. Phytother. Res. 2013 27 11 1646 1657 10.1002/ptr.4915 23280817
    [Google Scholar]
  97. Bahramsoltani R. Soleymani S. Rahimi R. Farzaei M.H. Turmeric and Inflammatory Diseases: An Overview of Clinical Evidence. Science of Spices and Culinary Herbs - Latest Laboratory, Pre-clinical, and Clinical Studies 2019 1 175 197 10.2174/9781681087511119010009
    [Google Scholar]
  98. Soltani A Bahrami F Bahari Z The effects of Valerian on sleep spindles in a model of neuropathic pain. Sleep Sci. 2021 14 S 02 133 139 10.5935/1984‑0063.20200110
    [Google Scholar]
  99. Patidar A. Birla D. Patel V. A review on advantages of natural analgesics over conventional synthetic analgesics. Int. J. Pharm. Life Sci. 2014 5 5
    [Google Scholar]
  100. Chávez-Silva F. Cerón-Romero L. Arias-Durán L. Navarrete-Vázquez G. Almanza-Pérez J. Román-Ramos R. Ramírez-Ávila G. Perea-Arango I. Villalobos-Molina R. Estrada-Soto S. Antidiabetic effect of Achillea millefollium through multitarget interactions: α-glucosidases inhibition, insulin sensitization and insulin secretagogue activities. J. Ethnopharmacol. 2018 212 1 7 10.1016/j.jep.2017.10.005 29031783
    [Google Scholar]
  101. Fajrin F.A. Nugroho A.E. Nurrochmad A. Susilowati R. Ginger extract and its compound, 6-shogaol, attenuates painful diabetic neuropathy in mice via reducing TRPV1 and NMDAR2B expressions in the spinal cord. J. Ethnopharmacol. 2020 249 112396 10.1016/j.jep.2019.112396 31743763
    [Google Scholar]
  102. Chen W. Balan P. Popovich D.G. Review of ginseng anti-diabetic studies. Molecules 2019 24 24 4501 10.3390/molecules24244501 31835292
    [Google Scholar]
  103. Liu H. Wei G. Wang T. Hou Y. Hou B. Li X. Wang C. Sun M. Su M. Guo Z. Wang L. Kang N. Li M. Jia Z. Angelica keiskei water extract Mitigates Age-Associated Physiological Decline in Mice. Redox Rep. 2024 29 1 2305036 10.1080/13510002.2024.2305036 38390941
    [Google Scholar]
  104. Verma V.K. Sarwa K.K. Zaman K. Antihyperglycemic activity of Swertia chirayita and Andrographis paniculata plant extracts in streptozotocin induced diabetic rats. Int. J. Pharm. Pharm. Sci. 2013 5 3 305 311
    [Google Scholar]
  105. Kumar A. Ilavarasan R. Jayachandran T. Anti-diabetic activity of Syzygium cumini and its isolated compound against streptozotocin-induced diabetic rats. J. Med. Plants Res. 2008 2 9 246 249
    [Google Scholar]
  106. Rajalakshmi M. Eliza J. Priya C.E. Anti-diabetic properties of Tinospora cordifolia stem extracts on streptozotocin-induced diabetic rats. Afr. J. Pharm. Pharmacol. 2009 3 5 171 180
    [Google Scholar]
  107. Wen D. Tan R.Z. Zhao C.Y. Li J.C. Zhong X. Diao H. Lin X. Duan D.D. Fan J.M. Xie X.S. Wang L. Astragalus mongholicus Bunge and Panax notoginseng (Burkill) FH chen formula for renal injury in diabetic Nephropathy—In Vivo and In Vitro evidence for autophagy regulation. Front. Pharmacol. 2020 11 732 10.3389/fphar.2020.00732 32595492
    [Google Scholar]
  108. Chu W. Cheung S. Lau R. Benzie I. Bilberry (vaccinium myrtillus L.). Oxid. Stress Dis. 2011 20115386 55 71 10.1201/b10787‑5 22593936
    [Google Scholar]
  109. Cordaro M. D’Amico R. Fusco R. Genovese T. Peritore A.F. Gugliandolo E. Crupi R. Di Paola D. Interdonato L. Impellizzeri D. Cuzzocrea S. Di Paola R. Siracusa R. Actaea racemosa L. Rhizome Protect against MPTP-Induced Neurotoxicity in Mice by Modulating Oxidative Stress and Neuroinflammation. Antioxidants 2022 12 1 40 10.3390/antiox12010040 36670902
    [Google Scholar]
  110. Ahmadimoghaddam D. Zarei M. Mohammadi S. Izadidastenaei Z. Salehi I. Bupleurum falcatum L. alleviates nociceptive and neuropathic pain: Potential mechanisms of action. J. Ethnopharmacol. 2021 273 113990 10.1016/j.jep.2021.113990 33689798
    [Google Scholar]
  111. Ríos-Silva M. Trujillo X. Trujillo-Hernández B. Sánchez-Pastor E. Urzúa Z. Mancilla E. Huerta M. Effect of chronic administration of forskolin on glycemia and oxidative stress in rats with and without experimental diabetes. Int. J. Med. Sci. 2014 11 5 448 452 10.7150/ijms.8034 24688307
    [Google Scholar]
  112. Cui S.C. Yu J. Zhang X.H. Cheng M.Z. Yang L.W. Xu J.Y. Antihyperglycemic and antioxidant activity of water extract from Anoectochilus roxburghii in experimental diabetes. Exp. Toxicol. Pathol. 2013 65 5 485 488 10.1016/j.etp.2012.02.003 22440113
    [Google Scholar]
  113. Kishore L. Kaur N. Singh R. Bacosine isolated from aerial parts of Bacopa monnieri improves the neuronal dysfunction in Streptozotocin-induced diabetic neuropathy. J. Funct. Foods 2017 34 237 247 10.1016/j.jff.2017.04.044
    [Google Scholar]
  114. Gasparin A.T. Rosa E.S. Jesus C.H.A. Guiloski I.C. da Silva de Assis H.C. Beltrame O.C. Dittrich R.L. Pacheco S.D.G. Zanoveli J.M. da Cunha J.M. Bixin attenuates mechanical allodynia, anxious and depressive-like behaviors associated with experimental diabetes counteracting oxidative stress and glycated hemoglobin. Brain Res. 2021 1767 147557 10.1016/j.brainres.2021.147557 34107278
    [Google Scholar]
  115. Odoh U.E. Onugha V.O. Chukwube V.O. Evaluation of antidiabetic effect and hematotological profile of methanol extract of Ceiba pentandra G (Malvaceae) stem bark on alloxan-induced diabetic rats. Afr. J. Pharm. Pharmacol. 2016 10 28 584 590 10.5897/AJPP2015.4469
    [Google Scholar]
  116. Abdelmalek E.M. Ramadan M.A. Darwish F.M. Assaf M.H. Mohamed N.M. Ross S.A. Callistemon genus- a review on phytochemistry and biological activities. Med. Chem. Res. 2021 30 5 1031 1055 10.1007/s00044‑021‑02703‑y
    [Google Scholar]
  117. Al-Shaqha W.M. Khan M. Salam N. Azzi A. Chaudhary A.A. Anti-diabetic potential of Catharanthus roseus Linn. and its effect on the glucose transport gene (GLUT-2 and GLUT-4) in streptozotocin induced diabetic wistar rats. BMC Complement. Altern. Med. 2015 15 1 379 10.1186/s12906‑015‑0899‑6 26490765
    [Google Scholar]
  118. Eddouks M. Lemhadri A. Zeggwagh N.A. Michel J-B. Potent hypoglycaemic activity of the aqueous extract of Chamaemelum nobile in normal and streptozotocin-induced diabetic rats. Diabetes Res. Clin. Pract. 2005 67 3 189 195 10.1016/j.diabres.2004.07.015 15713350
    [Google Scholar]
  119. Hasannejad F. Ansar M.M. Rostampour M. Mahdavi Fikijivar E. Khakpour Taleghani B. Improvement of pyridoxine-induced peripheral neuropathy by Cichorium intybus hydroalcoholic extract through GABAergic system. J. Physiol. Sci. 2019 69 3 465 476 10.1007/s12576‑019‑00659‑8 30712095
    [Google Scholar]
  120. Mishra A. Bhatti R. Singh A. Singh Ishar M. Ameliorative effect of the cinnamon oil from Cinnamomum zeylanicum upon early stage diabetic nephropathy. Planta Med. 2010 76 5 412 417 10.1055/s‑0029‑1186237 19876811
    [Google Scholar]
  121. Sanaye M. Sathyapal G. Kulkarni Y.A. Effect of Costus pictus per se and in combination with Metformin and Enalapril in streptozotocin induced diabetic nephropathy in rats. J. Diabetes Metab. Disord. 2022 21 2 1349 1358 10.1007/s40200‑022‑01065‑5 36404856
    [Google Scholar]
  122. Banafshe H.R. Hamidi G.A. Noureddini M. Mirhashemi S.M. Mokhtari R. Shoferpour M. Effect of curcumin on diabetic peripheral neuropathic pain: Possible involvement of opioid system. Eur. J. Pharmacol. 2014 723 202 206 10.1016/j.ejphar.2013.11.033 24315931
    [Google Scholar]
  123. Deutschländer M.S. Lall N. Van de Venter M. Dewanjee S. The hypoglycemic activity of Euclea undulata Thunb. var. myrtina (Ebenaceae) root bark evaluated in a streptozotocin–nicotinamide induced type 2 diabetes rat model. S. Afr. J. Bot. 2012 80 9 12 10.1016/j.sajb.2012.02.006
    [Google Scholar]
  124. Xu W. Lu Z. Wang X. Cheung M.H. Lin M. Li C. Dong Y. Liang C. Chen Y. Gynura divaricata exerts hypoglycemic effects by regulating the PI3K/AKT signaling pathway and fatty acid metabolism signaling pathway. Nutr. Diabetes 2020 10 1 31 10.1038/s41387‑020‑00134‑z 32796820
    [Google Scholar]
  125. Mahajan R. Prasad S. Gaikwad S. Itankar P. Antioxidant phenolic compounds from seeds of Hordeum vulgare Linn. ameliorates diabetic nephropathy in streptozotocin-induced diabetic rats. J. Trad. Chin. Med. Sci. 2023 10 3 353 361 10.1016/j.jtcms.2023.06.010
    [Google Scholar]
  126. Luo J. Chuang T. Cheung J. Quan J. Tsai J. Sullivan C. Hector R.F. Reed M.J. Meszaros K. King S.R. Carlson T.J. Reaven G.M. Masoprocol (nordihydroguaiaretic acid): A new antihyperglycemic agent isolated from the creosote bush (Larrea tridentata). Eur. J. Pharmacol. 1998 346 1 77 79 10.1016/S0014‑2999(98)00139‑3 9617755
    [Google Scholar]
  127. Peralta I. Marrassini C. Saint Martin M. Plantamura Y.S. Cogoi L. Pellegrino N. Alonso M.R. Anesini C. Anti-hyperglycaemic effect and nutritional properties of an aqueous extract of Larrea divaricata Cav. (jarilla) in streptozotocin-induced diabetes in mice. J. Ethnopharmacol. 2022 296 115429 10.1016/j.jep.2022.115429 35659916
    [Google Scholar]
  128. Zhang X. Hu P. Zhang X. Li X. Chemical structure elucidation of an inulin-type fructan isolated from Lobelia chinensis lour with anti-obesity activity on diet-induced mice. Carbohydr. Polym. 2020 240 116357 10.1016/j.carbpol.2020.116357 32475601
    [Google Scholar]
  129. Zambrana S. Lundqvist L.C.E. Mamani O. Catrina S.B. Gonzales E. Östenson C.G. Lupinus mutabilis extract exerts an anti-diabetic effect by improving insulin release in type 2 diabetic Goto-Kakizaki rats. Nutrients 2018 10 7 933 10.3390/nu10070933 30037028
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128335400241101115928
Loading
/content/journals/cpd/10.2174/0113816128335400241101115928
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test