Skip to content
2000
Volume 31, Issue 14
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Diabetic neuropathy (DN) is a widespread and severely debilitating consequence of diabetes mellitus that impairs function, causes discomfort, and damages peripheral nerves. Numerous molecular pathways are involved in the pathogenesis of DN, including cyclooxygenase, polyol, protein kinase C, and inflammatory pathways. These molecular pathways may be responsible for the mechanism behind the onset and development of DN. The metabolic profile can be evaluated by examining the molecular mechanisms that connect diabetes to certain biochemical indicators. Historically, the use of plants and herbs as medicine has been highly valued in many populations. These traditional sources, either alone or in combination with contemporary drugs, are being studied by modern medicine for their potential applications in managing and treating diabetic neuropathy. The efficacy and potential negative effects of an herb are largely dependent on its purity and provenance. Rich supplies of bioactive chemicals with particular pharmacological qualities that don't have negative side effects can be found in many plants. Some phytoconstituents with antidiabetic properties are found in medicinal plants, including terpenoids, saponins, flavonoids or carotenoids, alkaloids, and glycosides. We conclude with the statement that developing novel therapeutic procedures for the therapy of DN would be aided by the effective manipulation of common molecular pathways.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128335400241101115928
2025-01-01
2025-06-28
Loading full text...

Full text loading...

References

  1. ZainoB. GoelR. DevaragudiS. PrakashA. VaghamashiY. SethiY. PatelN. KakaN. Diabetic neuropathy: Pathogenesis and evolving principles of management.Dis. Mon.202369910158210.1016/j.disamonth.2023.10158237164794
    [Google Scholar]
  2. AragawTJ AfeworkDT GetahunKA Assessment of knowledge, attitude, and utilization of traditional medicine among the communities of Debre Tabor Town, Amhara Regional State, North Central Ethiopia: A cross-sectional study.Evidence-Based Complemt. Alternat. Med.2020202016565131
    [Google Scholar]
  3. JaacksL.M. SiegelK.R. GujralU.P. NarayanK.M.V. Type 2 diabetes: A 21st century epidemic.Best Pract. Res. Clin. Endocrinol. Metab.201630333134310.1016/j.beem.2016.05.00327432069
    [Google Scholar]
  4. OserT.K. LitchmanM.L. AllenN.A. KwanB.M. FisherL. JortbergB.T. PolonskyW.H. OserS.M. Personal continuous glucose monitoring use among adults with type 2 diabetes: Clinical efficacy and economic impacts.Curr. Diab. Rep.202121114910.1007/s11892‑021‑01408‑134882273
    [Google Scholar]
  5. HarikrishnanR BalasundaramC. Potential of herbal extracts and bioactive compounds for human healthcare. The Role of Phytoconstitutents in Health CareLondon, United KingdomRoutledge2020: pp. 3-158.10.4324/9780429284267‑2
    [Google Scholar]
  6. GalieroR. CaturanoA. VetranoE. BecciaD. BrinC. AlfanoM. Di SalvoJ. EpifaniR. PiacevoleA. TagliaferriG. RoccoM. IadiciccoI. DocimoG. RinaldiL. SarduC. SalvatoreT. MarfellaR. SassoF.C. Peripheral neuropathy in diabetes mellitus: Pathogenetic mechanisms and diagnostic options.Int. J. Mol. Sci.2023244355410.3390/ijms2404355436834971
    [Google Scholar]
  7. SibalL. LawH.N. GebbieJ. HomeP. Cardiovascular risk factors predicting the development of distal symmetrical polyneuropathy in people with type 1 diabetes: A 9-year follow-up study.Ann. N. Y. Acad. Sci.20061084130431810.1196/annals.1372.03617151310
    [Google Scholar]
  8. Arokiasamy P, Salvi S, Selvamani Y. Global Burden of Diabetes Mellitus. In: Handbook of Global Health. Kickbusch, I., Ganten, D., Moeti, M. (eds); Springer, Cham 2021; pp. 1-44.10.1007/978‑3‑030‑05325‑3_28‑2
  9. Sempere-BigorraM. Julián-RochinaI. CauliO. Differences and similarities in neuropathy in type 1 and 2 diabetes: A systematic review.J. Pers. Med.202111323010.3390/jpm1103023033810048
    [Google Scholar]
  10. Morley-ForsterP. Prevalence of neuropathic pain and the need for treatment.Pain Res. Manag.200611A5A10A10.1155/2006/718098
    [Google Scholar]
  11. SasakiH. KawamuraN. DyckP.J. DyckP.J.B. KiharaM. LowP.A. Spectrum of diabetic neuropathies.Diabetol. Int.2020112879610.1007/s13340‑019‑00424‑732206478
    [Google Scholar]
  12. CastelliG. DesaiK.M. CantoneR.E. Peripheral neuropathy: Evaluation and differential diagnosis.Am. Fam. Physician20201021273273933320513
    [Google Scholar]
  13. SinghR. FarooqS.A. MannanA. SinghT.G. NajdaA. GrażynaZ. AlbadraniG.M. SayedA.A. Abdel-DaimM.M. Animal models of diabetic microvascular complications: Relevance to clinical features.Biomed. Pharmacother.202214511230510.1016/j.biopha.2021.11230534872802
    [Google Scholar]
  14. ParveenA. SultanaR. LeeS.M. KimT.H. KimS.Y. Phytochemicals against anti-diabetic complications: Targeting the advanced glycation end product signaling pathway.Arch. Pharm. Res.202144437840110.1007/s12272‑021‑01323‑933837513
    [Google Scholar]
  15. AnsariP. HannanJ.M.A. AzamS. JakariaM. Challenges in diabetic micro-complication management: Focus on diabetic neuropathy.Int. J. Transl. Med.20211317518610.3390/ijtm1030013
    [Google Scholar]
  16. MotaR.I. MorganS.E. BahnsonE.M. Diabetic vasculopathy: Macro and microvascular injury.Curr. Pathobiol. Rep.20208111410.1007/s40139‑020‑00205‑x32655983
    [Google Scholar]
  17. YuanS.Y. BreslinJ.W. PerrinR. GaudreaultN. GuoM. KargozaranH. WuM.H. Microvascular permeability in diabetes and insulin resistance.Microcirculation2007144-536337310.1080/1073968070128309117613808
    [Google Scholar]
  18. MünchG. WestcottB. MeniniT. GugliucciA. Advanced glycation endproducts and their pathogenic roles in neurological disorders.Amino Acids20124241221123610.1007/s00726‑010‑0777‑y20949363
    [Google Scholar]
  19. SingerP. ShapiroH. TheillaM. AnbarR. SingerJ. CohenJ. Anti-inflammatory properties of omega-3 fatty acids in critical illness: Novel mechanisms and an integrative perspective.Intensive Care Med.20083491580159210.1007/s00134‑008‑1142‑418461305
    [Google Scholar]
  20. Sifuentes-FrancoS Pacheco-MoisésFP Rodríguez-CarrizalezAD The role of oxidative stress, mitochondrial function, and autophagy in diabetic polyneuropathy.J. Diabetes Res.201720179167308110.1155/2017/1673081
    [Google Scholar]
  21. SkaperS.D. FacciL. ZussoM. GiustiP. An inflammation-centric view of neurological disease: Beyond the neuron.Front. Cell. Neurosci.2018127210.3389/fncel.2018.0007229618972
    [Google Scholar]
  22. ArdeleanuV. TomaA. PafiliK. PapanasN. MotofeiI. DiaconuC.C. RizzoM. Pantea StoianA. Current pharmacological treatment of painful diabetic neuropathy: A narrative review.Medicina (Kaunas)20205612510.3390/medicina5601002531936646
    [Google Scholar]
  23. KhdourM.R. Treatment of diabetic peripheral neuropathy: A review.J. Pharm. Pharmacol.202072786387210.1111/jphp.1324132067247
    [Google Scholar]
  24. AlamU. SloanG. TesfayeS. Treating pain in diabetic neuropathy: Current and developmental drugs.Drugs202080436338410.1007/s40265‑020‑01259‑232040849
    [Google Scholar]
  25. AmerM.S. AlsadanyM.A. TolbaM.F. OmarO.H. Quality of life in elderly diabetic patients with peripheral arterial disease.Geriatr. Gerontol. Int.201313244345010.1111/j.1447‑0594.2012.00928.x22934536
    [Google Scholar]
  26. WatterworthB WrightTB Diabetic peripheral neuropathy. PainChamSpringer201910.1007/978‑3‑319‑99124‑5_194
    [Google Scholar]
  27. BaloghM. ZádorF. ZádoriZ.S. ShaquraM. KirályK. MohammadzadehA. VargaB. LázárB. MousaS.A. HosztafiS. RibaP. BenyheS. GyiresK. SchäferM. FürstS. Al-KhrasaniM. Efficacy-based perspective to overcome reduced opioid analgesia of advanced painful diabetic neuropathy in rats.Front. Pharmacol.20191034710.3389/fphar.2019.0034731024314
    [Google Scholar]
  28. HussainN. SaidA.S.A. JavaidF.A. Al HaddadA.H.I. AnwarM. KhanZ. Abu-MellalA. The efficacy and safety profile of capsaicin 8% patch versus 5% Lidocaine patch in patients with diabetic peripheral neuropathic pain: A randomized, placebo-controlled study of South Asian male patients.J. Diabetes Metab. Disord.202120127127810.1007/s40200‑021‑00741‑234178837
    [Google Scholar]
  29. AkbariNJ. HosseinifarM. NaimiS.S. MikailiS. RahbarS. The efficacy of physiotherapy interventions in mitigating the symptoms and complications of diabetic peripheral neuropathy: A systematic review.J. Diabetes Metab. Disord.20201921995200410.1007/s40200‑020‑00652‑833553048
    [Google Scholar]
  30. AsifM. The prevention and control the type-2 diabetes by changing lifestyle and dietary pattern.J. Educ. Health Promot.201431110.4103/2277‑9531.12754124741641
    [Google Scholar]
  31. van MaurikJ.F.M.M. van HalM. van EijkR.P.A. KonM. PetersE.J.G. Value of surgical decompression of compressed nerves in the lower extremity in patients with painful diabetic neuropathy: A randomized controlled trial.Plast. Reconstr. Surg.2014134232533210.1097/PRS.000000000000036924732651
    [Google Scholar]
  32. NasimN. SandeepI.S. MohantyS. Plant-derived natural products for drug discovery: Current approaches and prospects.Nucleus202265339941110.1007/s13237‑022‑00405‑336276225
    [Google Scholar]
  33. PrzeorM. Some common medicinal plants with antidiabetic activity, known and available in Europe (A mini-review).Pharmaceuticals (Basel)20221516510.3390/ph1501006535056122
    [Google Scholar]
  34. MalikZA TabassumN SharmaPL Attenuation of experimentally induced diabetic neuropathy in association with reduced oxidative-nitrosative stress by chronic administration of Momordica charantia. Adv. Biosci. Biotechnol.201304034304710.4236/abb.2013.43047
    [Google Scholar]
  35. JainV. PareekA. PaliwalN. RatanY. JaggiA.S. SinghN. Antinociceptive and antiallodynic effects of Momordica charantia L. in tibial and sural nerve transection-induced neuropathic pain in rats.Nutr. Neurosci.2014172889610.1179/1476830513Y.000000006923692809
    [Google Scholar]
  36. JosephB. JiniD. Antidiabetic effects of Momordica charantia (bitter melon) and its medicinal potency.Asian Pac. J. Trop. Dis.2013329310210.1016/S2222‑1808(13)60052‑3
    [Google Scholar]
  37. SinghJ. CummingE. ManoharanG. KalaszH. AdeghateE. Medicinal chemistry of the anti-diabetic effects of Momordica charantia: Active constituents and modes of actions.Open Med. Chem. J.20115Suppl. 2707710.2174/187410450110501007021966327
    [Google Scholar]
  38. NamY.H. MoonH.W. LeeY.R. KimE.Y. RodriguezI. JeongS.Y. CastañedaR. ParkJ.H. ChoungS.Y. HongB.N. KangT.H. Panax ginseng (Korea Red Ginseng) repairs diabetic sensorineural damage through promotion of the nerve growth factor pathway in diabetic zebrafish.J. Ginseng Res.201943227228110.1016/j.jgr.2018.02.00630976165
    [Google Scholar]
  39. ParkK KimY KimJ Supplementation with Korean red ginseng improves current perception threshold in Korean type 2 diabetes patients: A randomized, double-blind, placebo-controlled trial.J. Diabetes Res.20202020529532810.1155/2020/5295328
    [Google Scholar]
  40. UzayisengaR. AyekaP.A. WangY. Anti-diabetic potential of Panax notoginseng saponins (PNS): A review.Phytother. Res.201428451051610.1002/ptr.502623846979
    [Google Scholar]
  41. NaseriK. SaadatiS. SadeghiA. AsbaghiO. GhaemiF. ZafaraniF. LiH.B. GanR.Y. The efficacy of ginseng (Panax) on human prediabetes and type 2 diabetes mellitus: A systematic review and meta-analysis.Nutrients20221412240110.3390/nu1412240135745129
    [Google Scholar]
  42. UneH.D. DureshahwarK. MubashirM. Quantification of quercetin obtained from Allium cepa Lam. leaves and its effects on streptozotocin-induced diabetic neuropathy.Pharmacognosy Res.20179328729310.4103/pr.pr_147_1628827972
    [Google Scholar]
  43. KhanD. MohammedM. UpaganlawarA. Ameliorative potential of Allium cepa Lam. leaves on diabetes induced and chronic constriction injury induced neuropathic pain in experimental rats.Indian J. Pharm. Educ. Res20205414314910.5530/ijper.54.1.17
    [Google Scholar]
  44. GalaviA. HosseinzadehH. RazaviB.M. The effects of Allium cepa L. (onion) and its active constituents on metabolic syndrome: A review.Iran. J. Basic Med. Sci.202124131633643564
    [Google Scholar]
  45. BatoolM. KhanM. MubarakM. A wonder plant Aloe vera L. (Liliaceae): An overview of its folk traditional uses, phytoconstituents, biological activities, and cosmaceutical applications.Proc. Pakistan Acad. Sci.: B. Life Environ. Sci.202360333765
    [Google Scholar]
  46. ElkomyN.M.I.M. El-ShaibanyA. ElnagarG.M. AbdelkhalekA.S. Al-MahbashiH. ElaasserM.M. RawehS.M. AldiyarbiM.A. RaslanA.E. Evaluation of acute oral toxicity, anti-diabetic and antioxidant effects of Aloe vera flowers extract.J. Ethnopharmacol.202330911631010.1016/j.jep.2023.11631036863642
    [Google Scholar]
  47. GuvenM. GölgeU.H. AslanE. SehitogluM.H. ArasA.B. AkmanT. CosarM. The effect of Aloe vera on ischemia-reperfusion injury of sciatic nerve in rats.Biomed. Pharmacother.20167920120710.1016/j.biopha.2016.02.02327044829
    [Google Scholar]
  48. Muñiz-RamirezA PerezRM GarciaE Antidiabetic activity of Aloe vera leaves.Evid Based Complement Alternat Med.20202020637120110.1155/2020/6371201
    [Google Scholar]
  49. HaghaniF. ArabnezhadM.R. MohammadiS. Ghaffarian-BahramanA. Aloe vera and streptozotocin-induced diabetes mellitus.Rev. Bras. Farmacogn.202232217418710.1007/s43450‑022‑00231‑335287334
    [Google Scholar]
  50. GunasekaranV. MathewM.M. GautamM. Neuroprotective role of Pterocarpus marsupium Roxb in streptozotocin-induced diabetic neuropathic pain in Type 2 diabetic rats.J. Pharm. Res.20171117
    [Google Scholar]
  51. PariL. MajeedM. RathinamA. ChandramohanR. Molecular action of inflammation and oxidative stress in hyperglycemic rats: Effect of different concentrations of Pterocarpus marsupiums extract.J. Diet. Suppl.201815445247010.1080/19390211.2017.135641628981393
    [Google Scholar]
  52. KhanF. SarkerM.M.R. MingL.C. MohamedI.N. ZhaoC. SheikhB.Y. TsongH.F. RashidM.A. Comprehensive review on phytochemicals, pharmacological and clinical potentials of Gymnema sylvestre.Front. Pharmacol.201910OCT122310.3389/fphar.2019.0122331736747
    [Google Scholar]
  53. SandechN. JangchartR. KomolkriengkraiM. BoonyoungP. KhimmaktongW. Efficiency of Gymnema sylvestre-derived gymnemic acid on the restoration and improvement of brain vascular characteristics in diabetic rats.Exp. Ther. Med.2021226142010.3892/etm.2021.1085534707702
    [Google Scholar]
  54. KishoreL. SinghR. Preventive effect of Gymnema sylvestre homeopathic preparation on streptozotocin-nicotinamide induced diabetic nephropathy in rats.Orient. Pharm. Exp. Med.201717322323210.1007/s13596‑017‑0272‑z
    [Google Scholar]
  55. GunasekaranV. SrinivasanS. RaniS.S. Potential antioxidant and antimicrobial activity of Gymnema sylvestre related to diabetes.Faslnamah-i Giyahan-i Daruyi201972511
    [Google Scholar]
  56. KaushikS. MasandN. IyerM.R. PatilV.M. Preclinical to clinical profile of Curcuma longa as antidiabetic therapeutics.Curr. Top. Med. Chem.202323242267227610.2174/156802662366623042810144037132313
    [Google Scholar]
  57. WalP. SinghP. SinhaA. A detailed review of various herbal treatment options for potentially curing or ameliorating pain in diabetic neuropathy.Curr. Tradit. Med.202392e25042220399510.2174/2215083808666220425102520
    [Google Scholar]
  58. YangX. ZhaoX. LiuY. LiuY. LiuL. AnZ. XingH. TianJ. SongX. Ginkgo biloba extract protects against diabetic cardiomyopathy by restoring autophagy via adenosine monophosphate-activated protein kinase/mammalian target of the rapamycin pathway modulation.Phytother. Res.20233741377139010.1002/ptr.774636751963
    [Google Scholar]
  59. TursinawatiY. RosidiA. HajarN. DiatriD. KurniatiI. RahmatullahD. CleodorM. DiazP. Effect of different melatonin-rich extract of Emprit ginger (Zingiber officinale var. amarum) doses on biochemical parameters in streptozotocin-induced diabetic rats.Scr. Med. (Brno)202455439940810.5937/scriptamed55‑51069
    [Google Scholar]
  60. AskariV.R. KhosraviK. Baradaran RahimiV. GarzoliS. A mechanistic review on how berberine use combats diabetes and related complications: Molecular, cellular, and metabolic effects.Pharmaceuticals (Basel)2023171710.3390/ph1701000738275993
    [Google Scholar]
  61. HashemH.A. NabilZ.I. EL-HakH.N.G. Ashwagandha root extract’s phenolic compound counteracts alloxan’s effects on oxidative stress, inflammatory cytokines, and peripheral neuropathy in rats.Comp. Clin. Pathol.202332586788010.1007/s00580‑023‑03496‑9
    [Google Scholar]
  62. YangC.C. WangM.H. SoungH.S. TsengH.C. LinF.H. ChangK.C. TsaiC.C. Through its powerful antioxidative properties, l-theanine ameliorates vincristine-induced neuropathy in rats.Antioxidants202312480310.3390/antiox1204080337107178
    [Google Scholar]
  63. TambeS.M. MaliS. AminP.D. OliveiraM. Neuroprotective potential of cannabidiol: Molecular mechanisms and clinical implications.J. Integr. Med.202321323624410.1016/j.joim.2023.03.00436973157
    [Google Scholar]
  64. De SilvaND WasanaKGP AttanayakeAP Cinnamon Bark (Cinnamomum species). Medicinal Spice and Condiment CropsBoca Raton, FloridaCRC Press 2024; pp. 180-99.
    [Google Scholar]
  65. AlsherifD.A. HusseinM.A. AbuelkasemS.S. Salvia officinalis improves glycemia and suppresses pro-inflammatory features in obese rats with metabolic syndrome.Curr. Pharm. Biotechnol.202425562363610.2174/138920102466623081110474037581324
    [Google Scholar]
  66. TranT.T.L. LyH.T. LeT.K.O. LeV.M. Anti-hyperglycemic effect of herbal formula of Moringa oleifera, Vernonia amygdalina and Centella asiatica extracts in streptozotocin-induced hyperglycemic mice.Pharmacol. Res. - Modern Chin. Med.20241110042810.1016/j.prmcm.2024.100428
    [Google Scholar]
  67. AmriJ. AlaeeM. LatifiS.A. AlimoradianA. SalehiM. Amelioration of STZ-induced nephropathy in diabetic rats by saffron hydro alcoholic extract.Horm. Mol. Biol. Clin. Investig.202142441141810.1515/hmbci‑2021‑000534018383
    [Google Scholar]
  68. SinghT.G. SharmaR. KaurA. DhimanS. SinghR. Evaluation of renoprotective potential of Ficus religiosa in attenuation of diabetic nephropathy in rats.Obes. Med.20201910026810.1016/j.obmed.2020.100268
    [Google Scholar]
  69. GuptaP.S. SinghS.K. TripathiA.K. Pharmacopuncture of Bauhinia variegata nanoemulsion formulation against diabetic peripheral neuropathic pain.J. Pharmacopuncture2020231303610.3831/KPI.2020.23.00532322433
    [Google Scholar]
  70. AjayiA.F. AkhigbeR.E. AdewumiO.M. OkelejiL.O. MujaiduK.B. OlaleyeS.B. Effect of ethanolic extract of Cryptolepis sanguinolenta stem on in vivo and in vitro glucose absorption and transport: Mechanism of its antidiabetic activity.Indian J. Endocrinol. Metab.201216Suppl. 1S91S9622701855
    [Google Scholar]
  71. SánchezM. González-BurgosE. IglesiasI. Gómez-SerranillosM.P. Pharmacological update properties of Aloe vera and its major active constituents.Molecules2020256I32410.3390/molecules2506132432183224
    [Google Scholar]
  72. YeramP.B. KulkarniY.A. Glycosides and vascular complications of diabetes.Chem. Biodivers.20221910e20220006710.1002/cbdv.20220006736181446
    [Google Scholar]
  73. NumanA. MasudF. KhawajaK.I. KhanF.F. QureshiA.B. BurneyS. AshrafK. AhmadN. YousafM.S. RabbaniI. ZanebH. RehmanH. Clinical and electrophysiological efficacy of leaf extract of Gingko biloba L (Ginkgoaceae) in subjects with diabetic sensorimotor polyneuropathy.Trop. J. Pharm. Res.201615102137214510.4314/tjpr.v15i10.12
    [Google Scholar]
  74. KunnumakkaraA.B. HegdeM. ParamaD. GirisaS. KumarA. DaimaryU.D. GarodiaP. YenisettiS.C. OommenO.V. AggarwalB.B. Role of turmeric and curcumin in prevention and treatment of chronic diseases: Lessons learned from clinical trials.ACS Pharmacol. Transl. Sci.20236444751810.1021/acsptsci.2c0001237082752
    [Google Scholar]
  75. JoshiP. BishtA. PaliwalA. DwivediJ. SharmaS. Recent updates on clinical developments of curcumin and its derivatives.Phytother. Res.202337115109515810.1002/ptr.797437536946
    [Google Scholar]
  76. MoghadamF.H. Vakili-ZarchB. ShafieeM. MirjaliliA. Fenugreek seed extract treats peripheral neuropathy in pyridoxine induced neuropathic mice.EXCLI J.20131228229026417231
    [Google Scholar]
  77. SenevirathneB.S. JayasingheM.A. PavalakumarD. SiriwardhanaC.G. Ceylon cinnamon: A versatile ingredient for futuristic diabetes management.J. Fut. Foods20222212514210.1016/j.jfutfo.2022.03.010
    [Google Scholar]
  78. MendesP.F. PonceF. FragaD.D. High doses of Uncaria tomentosa (cat’s claw) reduce blood glucose levels in rats.Int. J. Pharm. Pharm. Sci.201462410415
    [Google Scholar]
  79. KaurG. BaliA. SinghN. JaggiA.S. Ameliorative potential of Ocimum sanctum in chronic constriction injury-induced neuropathic pain in rats.An. Acad. Bras. Cienc.201587141742910.1590/0001‑376520152013000825673470
    [Google Scholar]
  80. WangS. Moustaid-MoussaN. ChenL. MoH. ShastriA. SuR. BapatP. KwunI. ShenC.L. Novel insights of dietary polyphenols and obesity.J. Nutr. Biochem.201425111810.1016/j.jnutbio.2013.09.00124314860
    [Google Scholar]
  81. SilvaT.M. FracassoD.S. Vargas VisentinA.P. CassiniC. ScariotF.J. DanettiS. EcheverrigarayS. MouraS. TouguinhaL.B. BrancoC.S. SalvadorM. Dual effect of the herbal matcha green tea (Camellia sinensis L. kuntze) supplement in EA.hy926 endothelial cells and Artemia salina.J. Ethnopharmacol.202229811556410.1016/j.jep.2022.11556435940467
    [Google Scholar]
  82. SoleimaniV. DelghandiP.S. MoallemS.A. KarimiG. Safety and toxicity of silymarin, the major constituent of milk thistle extract: An updated review.Phytother. Res.20193361627163810.1002/ptr.636131069872
    [Google Scholar]
  83. SheelaN. JoseM.A. SathyamurthyD. KumarB.N. Effect of silymarin on streptozotocin-nicotinamide-induced type 2 diabetic nephropathy in rats.Iran. J. Kidney Dis.20137211712323485535
    [Google Scholar]
  84. ZanY. KuaiC.X. QiuZ.X. HuangF. Berberine ameliorates diabetic neuropathy: TRPV1 modulation by PKC pathway.Am. J. Chin. Med.20174581709172310.1142/S0192415X1750092629121795
    [Google Scholar]
  85. BostJ.W. MaroonA. MaroonJ. Natural anti-inflammatory agents for pain relief.Surg. Neurol. Int.2010118010.4103/2152‑7806.7380421206541
    [Google Scholar]
  86. CemekM. KağaS. ŞimşekN. BüyükokuroğluM.E. KonukM. Antihyperglycemic and antioxidative potential of Matricaria chamomilla L. in streptozotocin-induced diabetic rats.J. Nat. Med.200862328429310.1007/s11418‑008‑0228‑118404309
    [Google Scholar]
  87. Al-MalkiAL El RabeyHA The antidiabetic effect of low doses of Moringa oleifera Lam. seeds on streptozotocin induced diabetes and diabetic nephropathy in male rats.Biomed. Res. Int. 201520151381040
    [Google Scholar]
  88. MahmoudA.M. Abd El-TwabS.M. Abdel-ReheimE.S. Consumption of polyphenol-rich Morus alba leaves extract attenuates early diabetic retinopathy: The underlying mechanism.Eur. J. Nutr.20175641671168410.1007/s00394‑016‑1214‑027059477
    [Google Scholar]
  89. ManimekalaiP DavidrajC DhanalakshmiR Anti-antioxidant activity of alcoholic extract of Nelumbo nucifera on streptozotozin induced diabetic albino wistar rats.Indian J. Med. Healthcare201220127077
    [Google Scholar]
  90. AlkhalafM.I. HusseinR.H. HamzaA. Green synthesis of silver nanoparticles by Nigella sativa extract alleviates diabetic neuropathy through anti-inflammatory and antioxidant effects.Saudi J. Biol. Sci.20202792410241910.1016/j.sjbs.2020.05.00532884424
    [Google Scholar]
  91. MestryS.N. DhodiJ.B. KumbharS.B. JuvekarA.R. Attenuation of diabetic nephropathy in streptozotocin-induced diabetic rats by Punica granatum Linn. leaves extract.J. Tradit. Complement. Med.20177327328010.1016/j.jtcme.2016.06.00828725620
    [Google Scholar]
  92. PunithaR. ManoharanS. Antihyperglycemic and antilipidperoxidative effects of Pongamia pinnata (Linn.) Pierre flowers in alloxan induced diabetic rats.J. Ethnopharmacol.20061051-2394610.1016/j.jep.2005.09.03716271443
    [Google Scholar]
  93. AbadA.N.A. NouriM.H.K. GharjanieA. Effect of Matricaria chamomilla hydroalcoholic extract on cisplatin-induced neuropathy in mice.Chin. J. Nat. Med.201192126131
    [Google Scholar]
  94. Coppock RW, Dziwenka M. St John’s wort (Hypericum perforatum L). Nutraceuticals Academic Press 2021; pp. 661-95.
  95. RaghavanB. KumariS.K. Effect of Terminalia arjuna stem bark on antioxidant status in liver and kidney of alloxan diabetic rats.Indian J. Physiol. Pharmacol.200650213314217051732
    [Google Scholar]
  96. RanjithkumarR. Prathab BalajiS. BalajiB. RameshR.V. RamanathanM. Standardized aqueous Tribulus terristris (nerunjil) extract attenuates hyperalgesia in experimentally induced diabetic neuropathic pain model: Role of oxidative stress and inflammatory mediators.Phytother. Res.201327111646165710.1002/ptr.491523280817
    [Google Scholar]
  97. BahramsoltaniR. SoleymaniS. RahimiR. FarzaeiM.H. Turmeric and inflammatory diseases: An overview of clinical evidence.Sci Spices Culinary Herbs - Latest Lab Pre-clin Clin Stud2019117519710.2174/9781681087511119010009
    [Google Scholar]
  98. SoltaniA BahramiF BahariZ The effects of Valerian on sleep spindles in a model of neuropathic pain.Sleep Sci.202114S 0213313910.5935/1984‑0063.20200110
    [Google Scholar]
  99. PatidarA. BirlaD. PatelV. A review on advantages of natural analgesics over conventional synthetic analgesics.Int. J. Pharm. Life Sci.201455
    [Google Scholar]
  100. Chávez-SilvaF. Cerón-RomeroL. Arias-DuránL. Navarrete-VázquezG. Almanza-PérezJ. Román-RamosR. Ramírez-ÁvilaG. Perea-ArangoI. Villalobos-MolinaR. Estrada-SotoS. Antidiabetic effect of Achillea millefollium through multitarget interactions: α-glucosidases inhibition, insulin sensitization and insulin secretagogue activities.J. Ethnopharmacol.20182121710.1016/j.jep.2017.10.00529031783
    [Google Scholar]
  101. FajrinF.A. NugrohoA.E. NurrochmadA. SusilowatiR. Ginger extract and its compound, 6-shogaol, attenuates painful diabetic neuropathy in mice via reducing TRPV1 and NMDAR2B expressions in the spinal cord.J. Ethnopharmacol.202024911239610.1016/j.jep.2019.11239631743763
    [Google Scholar]
  102. ChenW. BalanP. PopovichD.G. Review of ginseng anti-diabetic studies.Molecules20192424450110.3390/molecules2424450131835292
    [Google Scholar]
  103. LiuH. WeiG. WangT. HouY. HouB. LiX. WangC. SunM. SuM. GuoZ. WangL. KangN. LiM. JiaZ. Angelica keiskei water extract mitigates age-associated physiological decline in mice.Redox Rep.2024291230503610.1080/13510002.2024.230503638390941
    [Google Scholar]
  104. VermaV.K. SarwaK.K. ZamanK. Antihyperglycemic activity of Swertia chirayita and Andrographis paniculata plant extracts in streptozotocin induced diabetic rats.Int. J. Pharm. Pharm. Sci.201353305311
    [Google Scholar]
  105. KumarA. IlavarasanR. JayachandranT. Anti-diabetic activity of Syzygium cumini and its isolated compound against streptozotocin-induced diabetic rats.J. Med. Plants Res.200829246249
    [Google Scholar]
  106. RajalakshmiM. ElizaJ. PriyaC.E. Anti-diabetic properties of Tinospora cordifolia stem extracts on streptozotocin-induced diabetic rats.Afr. J. Pharm. Pharmacol.200935171180
    [Google Scholar]
  107. WenD. TanR.Z. ZhaoC.Y. LiJ.C. ZhongX. DiaoH. LinX. DuanD.D. FanJ.M. XieX.S. WangL. Astragalus mongholicus Bunge and Panax notoginseng (Burkill) FH chen formula for renal injury in diabetic nephropathy-In vivo and in vitro evidence for autophagy regulation. Front. Pharmacol.20201173210.3389/fphar.2020.0073232595492
    [Google Scholar]
  108. ChuW. CheungS. LauR. BenzieI. Bilberry (Vaccinium myrtillus L.).Oxid. Stress Dis.201120115386557110.1201/b10787‑522593936
    [Google Scholar]
  109. CordaroM. D’AmicoR. FuscoR. GenoveseT. PeritoreA.F. GugliandoloE. CrupiR. Di PaolaD. InterdonatoL. ImpellizzeriD. CuzzocreaS. Di PaolaR. SiracusaR. Actaea racemosa L. Rhizome Protect against MPTP-induced neurotoxicity in mice by modulating oxidative stress and neuroinflammation.Antioxidants20221214010.3390/antiox1201004036670902
    [Google Scholar]
  110. AhmadimoghaddamD. ZareiM. MohammadiS. IzadidastenaeiZ. SalehiI. Bupleurum falcatum L. alleviates nociceptive and neuropathic pain: Potential mechanisms of action.J. Ethnopharmacol.202127311399010.1016/j.jep.2021.11399033689798
    [Google Scholar]
  111. Ríos-SilvaM. TrujilloX. Trujillo-HernándezB. Sánchez-PastorE. UrzúaZ. MancillaE. HuertaM. Effect of chronic administration of forskolin on glycemia and oxidative stress in rats with and without experimental diabetes.Int. J. Med. Sci.201411544845210.7150/ijms.803424688307
    [Google Scholar]
  112. CuiS.C. YuJ. ZhangX.H. ChengM.Z. YangL.W. XuJ.Y. Antihyperglycemic and antioxidant activity of water extract from Anoectochilus roxburghii in experimental diabetes.Exp. Toxicol. Pathol.201365548548810.1016/j.etp.2012.02.00322440113
    [Google Scholar]
  113. KishoreL. KaurN. SinghR. Bacosine isolated from aerial parts of Bacopa monnieri improves the neuronal dysfunction in Streptozotocin-induced diabetic neuropathy.J. Funct. Foods20173423724710.1016/j.jff.2017.04.044
    [Google Scholar]
  114. GasparinA.T. RosaE.S. JesusC.H.A. GuiloskiI.C. da Silva de AssisH.C. BeltrameO.C. DittrichR.L. PachecoS.D.G. ZanoveliJ.M. da CunhaJ.M. Bixin attenuates mechanical allodynia, anxious and depressive-like behaviors associated with experimental diabetes counteracting oxidative stress and glycated hemoglobin.Brain Res.2021176714755710.1016/j.brainres.2021.14755734107278
    [Google Scholar]
  115. OdohU.E. OnughaV.O. ChukwubeV.O. Evaluation of antidiabetic effect and hematotological profile of methanol extract of Ceiba pentandra G (Malvaceae) stem bark on alloxan-induced diabetic rats.Afr. J. Pharm. Pharmacol.2016102858459010.5897/AJPP2015.4469
    [Google Scholar]
  116. AbdelmalekE.M. RamadanM.A. DarwishF.M. AssafM.H. MohamedN.M. RossS.A. Callistemon genus- A review on phytochemistry and biological activities.Med. Chem. Res.20213051031105510.1007/s00044‑021‑02703‑y
    [Google Scholar]
  117. Al-ShaqhaW.M. KhanM. SalamN. AzziA. ChaudharyA.A. Anti-diabetic potential of Catharanthus roseus Linn. and its effect on the glucose transport gene (GLUT-2 and GLUT-4) in streptozotocin induced diabetic wistar rats.BMC Complement. Altern. Med.201515137910.1186/s12906‑015‑0899‑626490765
    [Google Scholar]
  118. EddouksM. LemhadriA. ZeggwaghN.A. MichelJ-B. Potent hypoglycaemic activity of the aqueous extract of Chamaemelum nobile in normal and streptozotocin-induced diabetic rats.Diabetes Res. Clin. Pract.200567318919510.1016/j.diabres.2004.07.01515713350
    [Google Scholar]
  119. HasannejadF. AnsarM.M. RostampourM. Mahdavi FikijivarE. Khakpour TaleghaniB. Improvement of pyridoxine-induced peripheral neuropathy by Cichorium intybus hydroalcoholic extract through GABAergic system.J. Physiol. Sci.201969346547610.1007/s12576‑019‑00659‑830712095
    [Google Scholar]
  120. MishraA. BhattiR. SinghA. IsharMS. Ameliorative effect of the cinnamon oil from Cinnamomum zeylanicum upon early stage diabetic nephropathy.Planta Med.201076541241710.1055/s‑0029‑118623719876811
    [Google Scholar]
  121. SanayeM. SathyapalG. KulkarniY.A. Effect of Costus pictus per se and in combination with Metformin and Enalapril in streptozotocin induced diabetic nephropathy in rats.J. Diabetes Metab. Disord.20222121349135810.1007/s40200‑022‑01065‑536404856
    [Google Scholar]
  122. BanafsheH.R. HamidiG.A. NoureddiniM. MirhashemiS.M. MokhtariR. ShoferpourM. Effect of curcumin on diabetic peripheral neuropathic pain: Possible involvement of opioid system.Eur. J. Pharmacol.201472320220610.1016/j.ejphar.2013.11.03324315931
    [Google Scholar]
  123. DeutschländerM.S. LallN. Van de VenterM. DewanjeeS. The hypoglycemic activity of Euclea undulata Thunb. var. myrtina (Ebenaceae) root bark evaluated in a streptozotocin–nicotinamide induced Type 2 diabetes rat model.S. Afr. J. Bot.20128091210.1016/j.sajb.2012.02.006
    [Google Scholar]
  124. XuW. LuZ. WangX. CheungM.H. LinM. LiC. DongY. LiangC. ChenY. Gynura divaricata exerts hypoglycemic effects by regulating the PI3K/Akt signaling pathway and fatty acid metabolism signaling pathway.Nutr. Diabetes20201013110.1038/s41387‑020‑00134‑z32796820
    [Google Scholar]
  125. MahajanR. PrasadS. GaikwadS. ItankarP. Antioxidant phenolic compounds from seeds of Hordeum vulgare Linn. ameliorates diabetic nephropathy in streptozotocin-induced diabetic rats.J. Trad. Chin. Med. Sci.202310335336110.1016/j.jtcms.2023.06.010
    [Google Scholar]
  126. LuoJ. ChuangT. CheungJ. QuanJ. TsaiJ. SullivanC. HectorR.F. ReedM.J. MeszarosK. KingS.R. CarlsonT.J. ReavenG.M. Masoprocol (nordihydroguaiaretic acid): A new antihyperglycemic agent isolated from the creosote bush (Larrea tridentata).Eur. J. Pharmacol.19983461777910.1016/S0014‑2999(98)00139‑39617755
    [Google Scholar]
  127. PeraltaI. MarrassiniC. Saint MartinM. PlantamuraY.S. CogoiL. PellegrinoN. AlonsoM.R. AnesiniC. Anti-hyperglycaemic effect and nutritional properties of an aqueous extract of Larrea divaricata Cav. (jarilla) in streptozotocin-induced diabetes in mice.J. Ethnopharmacol.202229611542910.1016/j.jep.2022.11542935659916
    [Google Scholar]
  128. ZhangX. HuP. ZhangX. LiX. Chemical structure elucidation of an inulin-type fructan isolated from Lobelia chinensis lour with anti-obesity activity on diet-induced mice.Carbohydr. Polym.202024011635710.1016/j.carbpol.2020.11635732475601
    [Google Scholar]
  129. ZambranaS. LundqvistL.C.E. MamaniO. CatrinaS.B. GonzalesE. ÖstensonC.G. Lupinus mutabilis extract exerts an anti-diabetic effect by improving insulin release in type 2 diabetic Goto-Kakizaki rats.Nutrients201810793310.3390/nu1007093330037028
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128335400241101115928
Loading
/content/journals/cpd/10.2174/0113816128335400241101115928
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test