Skip to content
2000
image of Emerging Promise of Green Synthesized Metallic Nanoparticles for the Management of Neurological Disorders

Abstract

The management of neurological disorders is very challenging due to the presence of the blood- brain barrier (BBB) that prevents the entry of drugs into the central nervous system (CNS). The advancement of metallic nanoparticles (NPs) provides a novel direction for the treatment of neurological disorders. However, there is a significant concern regarding the toxic effects of metal NPs on biological tissues like the brain. The green synthesis strategy offers a superior alternative to the traditional methods for the development of metallic NPs. Notable metal and metal oxide NPs can be produced using various bio-reductants derived from natural sources such as plant tissues, fungi, bacteria, yeast, and alga. These biological agents play double roles as they expedite the reduction process and act as capping and stabilizing agents. In this paper, we discuss the major neurological disorders and the physical barriers limiting the transport of therapeutics to the CNS. Moreover, a special focus is given to the unique features of green synthesized metallic NPs for therapeutic purposes in various neurological disorders. The insights provided will guide future research toward better outcomes and facilitate the development of innovative treatments for neurological disorders.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128337464240930042205
2024-10-15
2024-11-08
Loading full text...

Full text loading...

References

  1. Kang Y.J. Xue Y. Shin J.H. Cho H. Human mini-brains for reconstituting central nervous system disorders. Lab Chip 2023 23 5 964 981 10.1039/D2LC00897A 36644973
    [Google Scholar]
  2. Kumar A. Nader M.A. Deep G. Emergence of extracellular vesicles as ‘liquid biopsy’ for neurological disorders: Boom or Bust. Pharmacol. Rev. 2023 76 2 PHARMREV-AR-2022-000788 10.1124/pharmrev.122.000788 38351075
    [Google Scholar]
  3. Farhoudi M. Sadigh-Eteghad S. Mahmoudi J. Farjami A. Mahmoudian M. Salatin S. The therapeutic benefits of intravenously administrated nanoparticles in stroke and age-related neurodegenerative diseases. Curr. Pharm. Des. 2022 28 24 1985 2000 10.2174/1381612828666220608093639 35676838
    [Google Scholar]
  4. Maghsoodi M. Rahmani M. Ghavimi H. Montazam S.H. Soltani S. Alami M. Salatin S. Jelvehgari M. Fast dissolving sublingual films containing sumatriptan alone and combined with methoclopramide: Evaluation in vitro drug release and mucosal permeation. Ulum-i Daruyi 2016 22 3 153 163 10.15171/PS.2016.25
    [Google Scholar]
  5. Yousfan A. Al Rahwanji M.J. Hanano A. Al-Obaidi H. A comprehensive study on nanoparticle drug delivery to the brain: Application of machine learning techniques. Mol. Pharm. 2024 21 1 333 345 10.1021/acs.molpharmaceut.3c00880 38060692
    [Google Scholar]
  6. Salatin S. Farhoudi M. Farjami A. Maleki Dizaj S. Sharifi S. Shahi S. Nanoparticle formulations of antioxidants for the management of oxidative stress in stroke: A review. Biomedicines 2023 11 11 3010 10.3390/biomedicines11113010 38002010
    [Google Scholar]
  7. Malik A.Q. Mir T.G. Kumar D. Mir I.A. Rashid A. Ayoub M. Shukla S. A review on the green synthesis of nanoparticles, their biological applications, and photocatalytic efficiency against environmental toxins. Environ. Sci. Pollut. Res. Int. 2023 30 27 69796 69823 10.1007/s11356‑023‑27437‑9 37171732
    [Google Scholar]
  8. Salatin S. Tarzamani M. Farjami A. Jelvehgari M. Development and characterization of a novel mucoadhesive sol-gel suppository of sumatriptan: Design, optimization, in vitro and ex vivo evaluation for rectal drug delivery. Ther. Deliv. 2022 13 2 95 108 10.4155/tde‑2021‑0069 35128946
    [Google Scholar]
  9. Salatin S. Farhoudi M. Sadigh-Eteghad S. Farjami A. Nanoparticle and stem cell combination therapy for the management of stroke. Curr. Pharm. Des. 2023 29 1 15 29 10.2174/1381612829666221213113119 36515043
    [Google Scholar]
  10. Salatin S. Asadi R. Jelvehgari M. Development and characterization of sublingual films for enhanced bioavailability of selegiline hydrochloride. Ther. Deliv. 2021 12 2 159 174 10.4155/tde‑2020‑0118 33557601
    [Google Scholar]
  11. Alami-Milani M. Salatin S. Rayeni F.S. Jelvehgari M. Preparation and in vitro evaluation of thermosensitive and mucoadhesive hydrogels for intranasal delivery of phenobarbital sodium. Ther. Deliv. 2021 12 6 461 475 10.4155/tde‑2021‑0022 34013779
    [Google Scholar]
  12. Hou K. Pan H. Shahpasand-Kroner H. Hu C. Abskharon R. Seidler P. Mekkittikul M. Balbirnie M. Lantz C. Sawaya M.R. Dolinsky J.L. Jones M. Zuo X. Loo J.A. Frautschy S. Cole G. Eisenberg D.S. D-peptide-magnetic nanoparticles fragment tau fibrils and rescue behavioral deficits in a mouse model of Alzheimer’s disease. Sci. Adv. 2024 10 18 eadl2991 10.1126/sciadv.adl2991 38691615
    [Google Scholar]
  13. Li W. Cheng J. He F. Zhang P. Zhang N. Wang J. Song Q. Hou Y. Gan Z. Cell membrane-based nanomaterials for theranostics of central nervous system diseases. J. Nanobiotechnology 2023 21 1 276 10.1186/s12951‑023‑02004‑z 37596631
    [Google Scholar]
  14. Annu S.A. Sartaj A. Qamar Z. Md S. Alhakamy N.A. Baboota S. Ali J. An insight to brain targeting utilizing polymeric nanoparticles: Effective treatment modalities for neurological disorders and brain tumor. Front. Bioeng. Biotechnol. 2022 10 788128 10.3389/fbioe.2022.788128 35186901
    [Google Scholar]
  15. Tapeinos C. Battaglini M. Ciofani G. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J. Control. Release 2017 264 306 332 10.1016/j.jconrel.2017.08.033 28844756
    [Google Scholar]
  16. Henna T.K. Raphey V.R. Sankar R. Ameena Shirin V.K. Gangadharappa H.V. Pramod K. Carbon nanostructures: The drug and the delivery system for brain disorders. Int. J. Pharm. 2020 587 119701 10.1016/j.ijpharm.2020.119701 32736018
    [Google Scholar]
  17. Siddiqi K.S. Husen A. Sohrab S.S. Yassin M.O. Recent status of nanomaterial fabrication and their potential applications in neurological disease management. Nanoscale Res. Lett. 2018 13 1 231 10.1186/s11671‑018‑2638‑7 30097809
    [Google Scholar]
  18. Hu Y. Wang X. Niu Y. He K. Tang M. Application of quantum dots in brain diseases and their neurotoxic mechanism. Nanoscale Adv. 2024 6 15 3733 3746 10.1039/D4NA00028E 39050959
    [Google Scholar]
  19. Mendiratta S. Hussein M. Nasser H.A. Ali A.A.A. Multidisciplinary role of mesoporous silica nanoparticles in brain regeneration and cancers: From crossing the blood–brain barrier to treatment. Part. Part. Syst. Charact. 2019 36 9 1900195 10.1002/ppsc.201900195
    [Google Scholar]
  20. Lu M. Hao C. Xu L. Yu F. Jiang J. Wang Y. Xu J. Kuang H. Xu C. Sun M. TRIM21-dependent ultrasmall chiral gold nanoparticles for preventing microglia senescence against Alzheimer’s disease. Sci. China Chem. 2024 67 4 1360 1372 10.1007/s11426‑023‑1859‑4
    [Google Scholar]
  21. Kumthekar P. Ko C.H. Paunesku T. Dixit K. Sonabend A.M. Bloch O. Tate M. Schwartz M. Zuckerman L. Lezon R. Lukas R.V. Jovanovic B. McCortney K. Colman H. Chen S. Lai B. Antipova O. Deng J. Li L. Tommasini-Ghelfi S. Hurley L.A. Unruh D. Sharma N.V. Kandpal M. Kouri F.M. Davuluri R.V. Brat D.J. Muzzio M. Glass M. Vijayakumar V. Heidel J. Giles F.J. Adams A.K. James C.D. Woloschak G.E. Horbinski C. Stegh A.H. A first-in-human phase 0 clinical study of RNA interference–based spherical nucleic acids in patients with recurrent glioblastoma. Sci. Transl. Med. 2021 13 584 eabb3945 10.1126/scitranslmed.abb3945 33692132
    [Google Scholar]
  22. Maier-Hauff K. Ulrich F. Nestler D. Niehoff H. Wust P. Thiesen B. Orawa H. Budach V. Jordan A. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neurooncol. 2011 103 2 317 324 10.1007/s11060‑010‑0389‑0 20845061
    [Google Scholar]
  23. Grauer O. Jaber M. Hess K. Weckesser M. Schwindt W. Maring S. Wölfer J. Stummer W. Combined intracavitary thermotherapy with iron oxide nanoparticles and radiotherapy as local treatment modality in recurrent glioblastoma patients. J. Neurooncol. 2019 141 1 83 94 10.1007/s11060‑018‑03005‑x 30506500
    [Google Scholar]
  24. Saleh A. Schroeter M. Ringelstein A. Hartung H.P. Siebler M. Mödder U. Jander S. Iron oxide particle-enhanced MRI suggests variability of brain inflammation at early stages after ischemic stroke. Stroke 2007 38 10 2733 2737 10.1161/STROKEAHA.107.481788 17717318
    [Google Scholar]
  25. Zhang X. Li Y. Hu Y. Green synthesis of silver nanoparticles and their preventive effect in deficits in recognition and spatial memory in sporadic Alzheimer’s rat model. Colloids Surf. A Physicochem. Eng. Asp. 2020 605 125288 10.1016/j.colsurfa.2020.125288
    [Google Scholar]
  26. Suthar J.K. Vaidya A. Ravindran S. Toxic implications of silver nanoparticles on the central nervous system: A systematic literature review. J. Appl. Toxicol. 2023 43 1 4 21 10.1002/jat.4317 35285037
    [Google Scholar]
  27. Soni M. Mehta P. Soni A. Goswami G.K. Green nanoparticles: Synthesis and applications. IOSR J. Biotechnol. Biochem. 2018 4 78 83
    [Google Scholar]
  28. Shinde A. Prasad S.B. Srinivasarao D.A. Shah S. Famta P. Khairnar P. Pandey G. Vambhurkar G. Hedaoo A. Kumar R. Srivastava S. Nano voyagers: Pioneering a new frontier in cancer treatment with nanorobots as drug transporters. Appl. Mater. Today 2024 38 102162 10.1016/j.apmt.2024.102162
    [Google Scholar]
  29. Rane A.V. Kanny K. Abitha V. Thomas S. Methods for synthesis of nanoparticles and fabrication of nanocomposites. Synthesis of inorganic nanomaterials. Elsevier 2018 121 139 10.1016/B978‑0‑08‑101975‑7.00005‑1
    [Google Scholar]
  30. Jamkhande P.G. Ghule N.W. Bamer A.H. Kalaskar M.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol. 2019 53 101174 10.1016/j.jddst.2019.101174
    [Google Scholar]
  31. Sharifi S. Samani A. Ahmadian E. Eftekhari A. Derakhshankhah H. Jafari S. Mokhtarpour M. Salatin S. Oral delivery of proteins and peptides by mucoadhesive nanoparticles. Biointerface Res. Appl. Chem. 2019 9 2 3849 3852 10.33263/BRIAC92.849852
    [Google Scholar]
  32. Iravani S. Korbekandi H. Mirmohammadi S.V. Zolfaghari B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res. Pharm. Sci. 2014 9 6 385 406 26339255
    [Google Scholar]
  33. Banne S.V. Patil M.S. Kulkarni R.M. Patil S.J. Synthesis and characterization of silver nano particles for EDM applications. Mater. Today Proc. 2017 4 11 12054 12060 10.1016/j.matpr.2017.09.130
    [Google Scholar]
  34. Tan Y. Dai X. Li Y. Zhu D. Preparation of gold, platinum, palladium and silver nanoparticles by the reduction of their salts with a weak reductant–potassium bitartrate. J. Mater. Chem. 2003 13 5 1069 1075 10.1039/b211386d
    [Google Scholar]
  35. Norris C.B. Joseph P.R. Mackiewicz M.R. Reed S.M. Minimizing formaldehyde use in the synthesis of gold− silver core− shell nanoparticles. Chem. Mater. 2010 22 12 3637 3645 10.1021/cm9035693
    [Google Scholar]
  36. Mallick K. Witcomb M.J. Scurrell M.S. Polymer stabilized silver nanoparticles: A photochemical synthesis route. J. Mater. Sci. 2004 39 14 4459 4463 10.1023/B:JMSC.0000034138.80116.50
    [Google Scholar]
  37. Eluri R. Paul B. Synthesis of nickel nanoparticles by hydrazine reduction: mechanistic study and continuous flow synthesis. J. Nanopart. Res. 2012 14 4 800 10.1007/s11051‑012‑0800‑1
    [Google Scholar]
  38. Akbarzadeh R. Dehghani H. Sodium-dodecyl-sulphate-assisted synthesis of Ni nanoparticles: electrochemical properties. Bull. Mater. Sci. 2017 40 7 1361 1369 10.1007/s12034‑017‑1500‑3
    [Google Scholar]
  39. Devi H.S. Boda M.A. Shah M.A. Parveen S. Wani A.H. Green synthesis of iron oxide nanoparticles using Platanus orientalis leaf extract for antifungal activity. Green Processing and Synthesis 2019 8 1 38 45 10.1515/gps‑2017‑0145
    [Google Scholar]
  40. Gupta R. Xie H. Nanoparticles in daily life: Applications, toxicity and regulations. J. Environ. Pathol. Toxicol. Oncol. 2018 37 3 209 230 10.1615/JEnvironPatholToxicolOncol.2018026009 30317972
    [Google Scholar]
  41. Hua S. de Matos M.B.C. Metselaar J.M. Storm G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: Pathways for translational development and commercialization. Front. Pharmacol. 2018 9 790 10.3389/fphar.2018.00790 30065653
    [Google Scholar]
  42. Khan F. Shahid A. Zhu H. Wang N. Javed M.R. Ahmad N. Xu J. Alam M.A. Mehmood M.A. Prospects of algae-based green synthesis of nanoparticles for environmental applications. Chemosphere 2022 293 133571 10.1016/j.chemosphere.2022.133571 35026203
    [Google Scholar]
  43. Sriramulu M. Shanmugam S. Ponnusamy V.K. Agaricus bisporus mediated biosynthesis of copper nanoparticles and its biological effects: An in-vitro study. Colloid Interface Sci. Commun. 2020 35 100254 10.1016/j.colcom.2020.100254
    [Google Scholar]
  44. Kuppusamy P. Yusoff M.M. Maniam G.P. Govindan N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications – An updated report. Saudi Pharm. J. 2016 24 4 473 484 10.1016/j.jsps.2014.11.013 27330378
    [Google Scholar]
  45. Salatin S. Bazmani A. Shahi S. Naghili B. Memar M.Y. Dizaj S.M. Antimicrobial benefits of flavonoids and their nanoformulations. Curr. Pharm. Des. 2022 28 17 1419 1432 10.2174/1381612828666220509151407 35579158
    [Google Scholar]
  46. Dikshit P. Kumar J. Das A. Sadhu S. Sharma S. Singh S. Gupta P. Kim B. Green synthesis of metallic nanoparticles: Applications and limitations. Catalysts 2021 11 8 902 10.3390/catal11080902
    [Google Scholar]
  47. Kulkarni D. Gadade D. Kapare H. Dhas N.L. Ban M. Characterization techniques for stimuli-responsive delivery nanoplatforms in cancer treatment. Site-specific Cancer Nanotheranostics CRC Press 2024 322 328
    [Google Scholar]
  48. Gokila V. Perarasu V. Rufina R. Qualitative comparison of chemical and green synthesized Fe 3 O 4 nanoparticles. Adv. Nano Res. 2021 10 71 76
    [Google Scholar]
  49. Wypij M. Golinska P. Dahm H. Rai M. Actinobacterial‐mediated synthesis of silver nanoparticles and their activity against pathogenic bacteria. IET Nanobiotechnol. 2017 11 3 336 342 10.1049/iet‑nbt.2016.0112 28476992
    [Google Scholar]
  50. Jadoun S. Arif R. Jangid N.K. Meena R.K. Green synthesis of nanoparticles using plant extracts: A review. Environ. Chem. Lett. 2021 19 1 355 374 10.1007/s10311‑020‑01074‑x
    [Google Scholar]
  51. Wang Y. O’Connor D. Shen Z. Lo I.M.C. Tsang D.C.W. Pehkonen S. Pu S. Hou D. Green synthesis of nanoparticles for the remediation of contaminated waters and soils: Constituents, synthesizing methods, and influencing factors. J. Clean. Prod. 2019 226 540 549 10.1016/j.jclepro.2019.04.128
    [Google Scholar]
  52. Makarov V.V. Love A.J. Sinitsyna O.V. Makarova S.S. Yaminsky I.V. Taliansky M.E. Kalinina N.O. “Green” nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Nat. 2014 6 1 35 44 10.32607/20758251‑2014‑6‑1‑35‑44 24772325
    [Google Scholar]
  53. Shahid M. Dumat C. Khalid S. Schreck E. Xiong T. Niazi N.K. Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. J. Hazard. Mater. 2017 325 36 58 10.1016/j.jhazmat.2016.11.063 27915099
    [Google Scholar]
  54. Narayanan K.B. Sakthivel N. Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv. Colloid Interface Sci. 2011 169 2 59 79 10.1016/j.cis.2011.08.004 21981929
    [Google Scholar]
  55. Nath D. Banerjee P. Green nanotechnology – A new hope for medical biology. Environ. Toxicol. Pharmacol. 2013 36 3 997 1014 10.1016/j.etap.2013.09.002 24095717
    [Google Scholar]
  56. Gardea-Torresdey J.L. Parsons J.G. Gomez E. Peralta-Videa J. Troiani H.E. Santiago P. Yacaman M.J. Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett. 2002 2 4 397 401 10.1021/nl015673+
    [Google Scholar]
  57. Bali R. Harris A.T. Biogenic synthesis of Au nanoparticles using vascular plants. Ind. Eng. Chem. Res. 2010 49 24 12762 12772 10.1021/ie101600m
    [Google Scholar]
  58. Salih T.A. Hassan K.T. Majeed S.R. Ibraheem I.J. Hassan O.M. Obaid A.S. In vitro scolicidal activity of synthesised silver nanoparticles from aqueous plant extract against Echinococcus granulosus. Biotechnol. Rep. 2020 28 e00545 10.1016/j.btre.2020.e00545 33163372
    [Google Scholar]
  59. Dhar S.A. Chowdhury R.A. Das S. Nahian M.K. Islam D. Gafur M.A. Plant-mediated green synthesis and characterization of silver nanoparticles using Phyllanthus emblica fruit extract. Mater. Today Proc. 2021 42 1867 1871 10.1016/j.matpr.2020.12.222
    [Google Scholar]
  60. Adewale O.B. Egbeyemi K.A. Onwuelu J.O. Potts-Johnson S.S. Anadozie S.O. Fadaka A.O. Osukoya O.A. Aluko B.T. Johnson J. Obafemi T.O. Onasanya A. Biological synthesis of gold and silver nanoparticles using leaf extracts of Crassocephalum rubens and their comparative in vitro antioxidant activities. Heliyon 2020 6 11 e05501 10.1016/j.heliyon.2020.e05501 33251363
    [Google Scholar]
  61. Satpathy S. Patra A. Ahirwar B. Hussain M.D. Process optimization for green synthesis of gold nanoparticles mediated by extract of Hygrophila spinosa T. Anders and their biological applications. Physica E 2020 121 113830 10.1016/j.physe.2019.113830
    [Google Scholar]
  62. Kulkarni D. Sherkar R. Shirsathe C. Sonwane R. Varpe N. Shelke S. More M.P. Pardeshi S.R. Dhaneshwar G. Junnuthula V. Dyawanapelly S. Biofabrication of nanoparticles: Sources, synthesis, and biomedical applications. Front. Bioeng. Biotechnol. 2023 11 1159193 10.3389/fbioe.2023.1159193 37200842
    [Google Scholar]
  63. Monowar T. Rahman M.S. Bhore S.J. Raju G. Sathasivam K.V. Silver nanoparticles synthesized by using the endophytic bacterium Pantoea ananatis are promising antimicrobial agents against multidrug resistant bacteria. Molecules 2018 23 12 3220 10.3390/molecules23123220 30563220
    [Google Scholar]
  64. Tan K.B. Sun D. Huang J. Odoom-Wubah T. Li Q. State of arts on the bio-synthesis of noble metal nanoparticles and their biological application. Chin. J. Chem. Eng. 2021 30 272 290 10.1016/j.cjche.2020.11.010
    [Google Scholar]
  65. Michael A. Singh A. Roy A. Islam M.R. [Retracted] Fungal‐ and algal‐derived synthesis of various nanoparticles and their applications. Bioinorg. Chem. Appl. 2022 2022 1 3142674 10.1155/2022/3142674 36199747
    [Google Scholar]
  66. Ijaz I. Gilani E. Nazir A. Bukhari A. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chem. Lett. Rev. 2020 13 3 223 245 10.1080/17518253.2020.1802517
    [Google Scholar]
  67. Soliman H. Elsayed A. Dyaa A. Antimicrobial activity of silver nanoparticles biosynthesised by Rhodotorula sp. strain ATL72. Egypt J Bas Appl Sci 2018 5 3 228 233 10.1016/j.ejbas.2018.05.005
    [Google Scholar]
  68. Fernández J.G. Fernández-Baldo M.A. Berni E. Camí G. Durán N. Raba J. Sanz M.I. Production of silver nanoparticles using yeasts and evaluation of their antifungal activity against phytopathogenic fungi. Process Biochem. 2016 51 9 1306 1313 10.1016/j.procbio.2016.05.021
    [Google Scholar]
  69. Chaudhary R. Nawaz K. Khan A.K. Hano C. Abbasi B.H. Anjum S. An overview of the algae-mediated biosynthesis of nanoparticles and their biomedical applications. Biomolecules 2020 10 11 1498 10.3390/biom10111498 33143289
    [Google Scholar]
  70. Durán N. Durán M. de Jesus M.B. Seabra A.B. Fávaro W.J. Nakazato G. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine 2016 12 3 789 799 10.1016/j.nano.2015.11.016 26724539
    [Google Scholar]
  71. Pagar R.R. Musale S.R. Pawar G. Kulkarni D. Giram P.S. Comprehensive review on the degradation chemistry and toxicity studies of functional materials. ACS Biomater. Sci. Eng. 2022 8 6 2161 2195 10.1021/acsbiomaterials.1c01304 35522605
    [Google Scholar]
  72. Maleki Dizaj S. Salatin S. Khezri K. Lee J.Y. Lotfipour F. Targeting multidrug resistance with antimicrobial peptide-decorated nanoparticles and polymers. Front. Microbiol. 2022 13 831655 10.3389/fmicb.2022.831655 35432230
    [Google Scholar]
  73. Alahmari A.S. Sharaf A. Almishrif K. Banaemah M. Kha M. Cytotoxicity properties of green synthesized cupric oxide nanoparticles on neural cells: Rat pheochromocytoma (PC-12) cells and melanoma stem cells A375 cells. Inorg. Chem. Commun. 2024 160 111935 10.1016/j.inoche.2023.111935
    [Google Scholar]
  74. Chang X. Niu S. Shang M. Li J. Zhang W. Sun Z. Li Y. Wu T. Zhang T. Tang M. Xue Y. Silver nanoparticles induced hippocampal neuronal damage involved in mitophagy, mitochondrial biogenesis and synaptic degeneration. Food Chem. Toxicol. 2022 166 113227 10.1016/j.fct.2022.113227 35697184
    [Google Scholar]
  75. Tavan M. Hanachi P. Mirjalili M.H. Dashtbani-Roozbehani A. Comparative assessment of the biological activity of the green synthesized silver nanoparticles and aqueous leaf extract of Perilla frutescens (L.). Sci. Rep. 2023 13 1 6391 10.1038/s41598‑023‑33625‑x 37076588
    [Google Scholar]
  76. Liaqat N. Jahan N. Khalil-ur-Rahman Anwar T. Qureshi H. Green synthesized silver nanoparticles: Optimization, characterization, antimicrobial activity, and cytotoxicity study by hemolysis assay. Front Chem. 2022 10 952006 10.3389/fchem.2022.952006 36105303
    [Google Scholar]
  77. Tareq M. Khadrawy Y.A. Rageh M.M. Mohammed H.S. Dose-dependent effects of green synthesized silver nanoparticles on rat’s brain. Sci. Rep. 2022 12 22642 10.1038/s41598‑022‑27171‑1 36587179
    [Google Scholar]
  78. Baruwati B. Simmons S.O. Varma R.S. Veronesi B. “Green” synthesized and coated nanosilver alters the membrane permeability of barrier (intestinal, brain endothelial) cells and stimulates oxidative stress pathways in neurons. ACS Sustain. Chem.& Eng. 2013 1 7 753 759 10.1021/sc400024a
    [Google Scholar]
  79. Liang X. Wang Z. Wang D. Du J. Qin J. Shen R. Green synthesis, chemical characterization, and protective potentials of silver nanoparticles on the development of cerebrovascular diseases in rat cerebral ischemia reperfusion injury. Inorg. Chem. Commun. 2024 162 112264 10.1016/j.inoche.2024.112264
    [Google Scholar]
  80. Hasim H. Naina Mohamed Salam S.K. Rao P.V. Muthuraju S. Muzaimi M. Asari M.A. Silver nanoparticles synthesized using Tualang honey ameliorate seizures, locomotor activity, and memory function in KA-induced status epilepticus in male rats. Biomed. Res. Ther. 2022 9 9 5291 5300 10.15419/bmrat.v9i9.766
    [Google Scholar]
  81. Yang Y. Jiang Y. Li B. Green supported of silver nanoparticles on the surface of reduced graphene oxide: Investigation of its anti-epileptic activity on experimental models of epilepsy in mice. Inorg. Chem. Commun. 2024 166 112603 10.1016/j.inoche.2024.112603
    [Google Scholar]
  82. Md I.U. D K. N T. A M. A S. J A. Md A.H. Green synthesis and characterization of silver nanoparticles using glycine max l. seed extract and their antiepileptic activity in rats. Int J Pharm Sci Nanotech 2017 10 6 3909 3914 10.37285/ijpsn.2017.10.6.6
    [Google Scholar]
  83. Youssif K.A. Haggag E.G. Elshamy A.M. Rabeh M.A. Gabr N.M. Seleem A. Salem M.A. Hussein A.S. Krischke M. Mueller M.J. Abdelmohsen U.R. Anti-Alzheimer potential, metabolomic profiling and molecular docking of green synthesized silver nanoparticles of Lampranthus coccineus and Malephora lutea aqueous extracts. PLoS One 2019 14 11 e0223781 10.1371/journal.pone.0223781 31693694
    [Google Scholar]
  84. Khorrami S. Dogani M. Mahani S.E. Moghaddam M.M. Taheri R.A. Neuroprotective activity of green synthesized silver nanoparticles against methamphetamine-induced cell death in human neuroblastoma SH-SY5Y cells. Sci. Rep. 2023 13 1 11867 10.1038/s41598‑023‑37917‑0 37481580
    [Google Scholar]
  85. Akhlaghi H. Green synthesis of Silver nanoparticles using Pimpinella anisum L. seed aqueous extract and its antioxidant activity. J. Chem. Health Risks 2015 5
    [Google Scholar]
  86. Zhang Y. Feng S. Wang P. Neuroprotective properties of plant extract green-formulated silver nanoparticles on the contusive model of spinal cord injury in rats. Inorg. Chem. Commun. 2024 163 112265 10.1016/j.inoche.2024.112265
    [Google Scholar]
  87. Li W. Cao Z. Liu R. Liu L. Li H. Li X. Chen Y. Lu C. Liu Y. AuNPs as an important inorganic nanoparticle applied in drug carrier systems. Artif. Cells Nanomed. Biotechnol. 2019 47 1 4222 4233 10.1080/21691401.2019.1687501 31713452
    [Google Scholar]
  88. Lotfipour F. Shahi S. Farjami A. Salatin S. Mahmoudian M. Dizaj S.M. Safety and toxicity issues of therapeutically used nanoparticles from the oral route. BioMed Res. Int. 2021 2021 1 14 10.1155/2021/9322282 34746313
    [Google Scholar]
  89. Park S.Y. Yi E.H. Kim Y. Park G. Anti-neuroinflammatory effects of Ephedra sinica Stapf extract-capped gold nanoparticles in microglia. Int. J. Nanomedicine 2019 14 2861 2877 10.2147/IJN.S195218 31118612
    [Google Scholar]
  90. Zhao L. Lan T. Jiang G. Yan B. Protective effect of the gold nanoparticles green synthesized by Calendula officinalis L. extract on cerebral ischemia stroke-reperfusion injury in rats: A preclinical trial study. Inorg. Chem. Commun. 2022 141 109486 10.1016/j.inoche.2022.109486
    [Google Scholar]
  91. Boruah J.S. Devi C. Hazarika U. Bhaskar Reddy P.V. Chowdhury D. Barthakur M. Kalita P. Green synthesis of gold nanoparticles using an antiepileptic plant extract: in vitro biological and photo-catalytic activities. RSC Advances 2021 11 45 28029 28041 10.1039/D1RA02669K 35480751
    [Google Scholar]
  92. Peng H. Zhang S. Chai Q. Hua Z. Green synthesis of gold nanoparticles using Acorus calamus leaf extract and study on their anti-alzheimer potential. Biotechnol. Bioprocess Eng.; BBE 2024 29 1 157 163 10.1007/s12257‑024‑00010‑y
    [Google Scholar]
  93. Sher N. Ahmed M. Mushtaq N. Biogenic synthesis of gold nanoparticles using Heliotropium eichwaldi L and neuroprotective potential via anticholinesterase inhibition in rat brain. Appl. Organomet. Chem. 2023 37 4 e7000 10.1002/aoc.7000
    [Google Scholar]
  94. Anadozie S.O. Effiom D.O. Adewale O.B. Jude J. Zosela I. Akawa O.B. Olayinka J.N. Roux S. Hibiscus sabdariffa synthesized gold nanoparticles ameliorate aluminum chloride induced memory deficits through inhibition of COX-2/BACE-1 mRNA expression in rats. Arab. J. Chem. 2023 16 4 104604 10.1016/j.arabjc.2023.104604
    [Google Scholar]
  95. Suganthy N. Sri Ramkumar V. Pugazhendhi A. Benelli G. Archunan G. Biogenic synthesis of gold nanoparticles from Terminalia arjuna bark extract: Assessment of safety aspects and neuroprotective potential via antioxidant, anticholinesterase, and antiamyloidogenic effects. Environ. Sci. Pollut. Res. Int. 2018 25 11 10418 10433 10.1007/s11356‑017‑9789‑4 28762049
    [Google Scholar]
  96. Saeed K. Ahmad S. Ahmad H. Ullah F. Sadiq A. Uddin A. Khan I. Ahmad M. Green synthesis, characterization and cholinesterase inhibitory potential of gold nanoparticles. J. Mex. Chem. Soc. 2021 65 416 423
    [Google Scholar]
  97. Xue J. Liu T. Liu Y. Jiang Y. Seshadri V.D.D. Mohan S.K. Ling L. Neuroprotective effect of biosynthesised gold nanoparticles synthesised from root extract of Paeonia moutan against Parkinson disease – In vitro & In vivo model. J. Photochem. Photobiol. B 2019 200 111635 10.1016/j.jphotobiol.2019.111635 31671372
    [Google Scholar]
  98. Mishra P. Ray S. Sinha S. Das B. Khan M.I. Behera S.K. Yun S.I. Tripathy S.K. Mishra A. Facile bio-synthesis of gold nanoparticles by using extract of Hibiscus sabdariffa and evaluation of its cytotoxicity against U87 glioblastoma cells under hyperglycemic condition. Biochem. Eng. J. 2016 105 264 272 10.1016/j.bej.2015.09.021
    [Google Scholar]
  99. Govindaraj M. Suresh M. Palaniyandi T. Viswanathan S. Wahab M.R.A. Baskar G. Surendran H. Ravi M. Sivaji A. Bio-fabrication of gold nanoparticles from brown seaweeds for anticancer activity against glioblastoma through invitro and molecular docking approaches. J. Mol. Struct. 2023 1281 135178 10.1016/j.molstruc.2023.135178
    [Google Scholar]
  100. Aboyewa J.A. Sibuyi N.R.S. Meyer M. Oguntibeju O.O. Gold nanoparticles synthesized using extracts of Cyclopia intermedia, commonly known as honeybush, amplify the cytotoxic effects of doxorubicin. Nanomaterials 2021 11 1 132 10.3390/nano11010132 33429945
    [Google Scholar]
  101. Jia L. Eltantawy W. Zaki M.S.A.A. Sideeg A.M. Mohammed H.M. El-kott A.F. Massoud D. Therapeutic effects of green-formulated gold nanoparticles by Origanum majorana on spinal cord injury in rats. Open Chem. 2023 21 1 20230172 10.1515/chem‑2023‑0172
    [Google Scholar]
  102. Qiao R. Fu C. Forgham H. Javed I. Huang X. Zhu J. Whittaker A.K. Davis T.P. Magnetic iron oxide nanoparticles for brain imaging and drug delivery. Adv. Drug Deliv. Rev. 2023 197 114822 10.1016/j.addr.2023.114822 37086918
    [Google Scholar]
  103. Singh N.A. Mandal A.K.A. Khan Z.A. Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG). Nutr. J. 2015 15 1 60 10.1186/s12937‑016‑0179‑4 27268025
    [Google Scholar]
  104. Mareedu T. Poiba V. Vangalapati M. Green synthesis of iron nanoparticles by green tea and black tea leaves extract. Mater. Today Proc. 2021 42 1498 1501 10.1016/j.matpr.2021.01.444
    [Google Scholar]
  105. Li L. Luo P. Wu S. Wang Y. Deciphering the neuroprotective effect of ascorbic acid mediated synthesis of iron oxide nanoparticles against Parkinson’s disease: An in vitro and in vivo approach. Macromol. Res. 2023 31 10 949 960 10.1007/s13233‑023‑00186‑x
    [Google Scholar]
  106. Khadrawy Y.A. Hosny E.N. Eldein Mohamed H.S. Assessment of the neuroprotective effect of green synthesized iron oxide nanoparticles capped with curcumin against a rat model of Parkinson’s disease. Iran. J. Basic Med. Sci. 2024 27 1 81 89 38164480
    [Google Scholar]
  107. Akbarizadeh M.R. Naderifar M. Mousazadeh F. Zafarnia N. Sarani M. Cytotoxic activity and Magnetic Behavior of green synthesized iron oxide nanoparticles on brain glioblastoma cells. Nanomed Res J 2022 7 99 106
    [Google Scholar]
  108. Tisi A. Pulcini F. Carozza G. Mattei V. Flati V. Passacantando M. Antognelli C. Maccarone R. Delle Monache S. Antioxidant properties of cerium oxide nanoparticles prevent retinal neovascular alterations in vitro and in vivo. Antioxidants 2022 11 6 1133 10.3390/antiox11061133 35740031
    [Google Scholar]
  109. Mamatha M.G. Ansari M.A. Begum M.Y. Prasad B D. Al Fatease A. Hani U. Alomary M.N. Sultana S. Punekar S.M. M B N. Lakshmeesha T.R. Ravikiran T. Green synthesis of cerium oxide nanoparticles, characterization, and their neuroprotective effect on hydrogen peroxide-induced oxidative injury in human neuroblastoma (SH-SY5Y) cell line. ACS Omega 2024 9 2 2639 2649 10.1021/acsomega.3c07505 38250384
    [Google Scholar]
  110. Foroutan Z. Afshari A.R. Sabouri Z. Mostafapour A. Far B.F. Jalili-Nik M. Darroudi M. Plant-based synthesis of cerium oxide nanoparticles as a drug delivery system in improving the anticancer effects of free temozolomide in glioblastoma (U87) cells. Ceram. Int. 2022 48 20 30441 30450 10.1016/j.ceramint.2022.06.322
    [Google Scholar]
  111. Sultana S. Dhananjaya N. Manohar Punekar S. Nivedika M.B. Abusehmoud R.A.M. Arya S. Ramachandrappa Lakshmeesha T. Ravikiran T. Aspergillus terreus mediated green synthesis of cerium oxide nanoparticles and its neuroprotective activity against rotenone-induced cytotoxicity in SH-SY5Y cells. Inorg. Chem. Commun. 2024 167 112732 10.1016/j.inoche.2024.112732
    [Google Scholar]
  112. Yiling W. Murakonda G.K. Jarubula R. Application of green-synthesized cerium oxide nanoparticles to treat spinal cord injury and cytotoxicity evaluation on paediatric leukaemia cells. Mater. Res. Express 2021 8 7 075006 10.1088/2053‑1591/ac0fad
    [Google Scholar]
  113. Majedi S. Hussain F.H.S. Barzinjy A.A. Tehrani M.H. Hawaiz F.E. Catalytic application of green-synthesized ZnO nanoparticles in the synthesis of 1 H -pyrazolo[1,2- a ]pyridazine-5,8-diones and evaluation of their anti-cancer properties. New J. Chem. 2023 47 36 16809 16818 10.1039/D3NJ00479A
    [Google Scholar]
  114. Bala N. Saha S. Chakraborty M. Maiti M. Das S. Basu R. Nandy P. Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Advances 2015 5 7 4993 5003 10.1039/C4RA12784F
    [Google Scholar]
  115. Yan M. Li J. Elaeagnus angustifolia extract green-formulated zinc nanoparticles possess a protective activity against nicotine-induced neurotoxicity. J. Exp. Nanosci. 2022 17 1 548 563 10.1080/17458080.2022.2120193
    [Google Scholar]
  116. Hamza R.Z. Al-Salmi F.A. El-Shenawy N.S. Evaluation of the effects of the green nanoparticles zinc oxide on monosodium glutamate-induced toxicity in the brain of rats. PeerJ 2019 7 e7460 10.7717/peerj.7460 31579564
    [Google Scholar]
  117. Mani R. Ezhumalai D. Muthusamy G. Namasivayam E. Neuroprotective effect of biogenically synthesized ZnO nanoparticles against oxidative stress and β‐amyloid toxicity in transgenic Caenorhabditis elegans. Biotechnol. Appl. Biochem. 2024 71 1 132 146 10.1002/bab.2527 37849075
    [Google Scholar]
  118. Jan H. Shah M. Andleeb A. Faisal S. Khattak A. Rizwan M. Drouet S. Hano C. Abbasi B.H. Plant‐based synthesis of zinc oxide nanoparticles (ZnO‐NPs) using aqueous leaf extract of Aquilegia pubiflora : Their antiproliferative activity against hepg2 cells inducing reactive oxygen species and other in vitro properties. Oxid. Med. Cell. Longev. 2021 2021 1 4786227 10.1155/2021/4786227 34457112
    [Google Scholar]
  119. El-Hawwary S.S. Abd Almaksoud H.M. Saber F.R. Elimam H. Sayed A.M. El Raey M.A. Abdelmohsen U.R. Green-synthesized zinc oxide nanoparticles, anti-Alzheimer potential and the metabolic profiling of Sabal blackburniana grown in Egypt supported by molecular modelling. RSC Advances 2021 11 29 18009 18025 10.1039/D1RA01725J 35480186
    [Google Scholar]
  120. Hamidian K. Sarani M. Sheikhi E. Khatami M. Cytotoxicity evaluation of green synthesized ZnO and Ag-doped ZnO nanoparticles on brain glioblastoma cells. J. Mol. Struct. 2022 1251 131962 10.1016/j.molstruc.2021.131962
    [Google Scholar]
  121. Nzilu D.M. Madivoli E.S. Makhanu D.S. Wanakai S.I. Kiprono G.K. Kareru P.G. Green synthesis of copper oxide nanoparticles and its efficiency in degradation of rifampicin antibiotic. Sci. Rep. 2023 13 1 14030 10.1038/s41598‑023‑41119‑z 37640783
    [Google Scholar]
  122. Sajjad H. Sajjad A. Haya R.T. Khan M.M. Zia M. Copper oxide nanoparticles: In vitro and in vivo toxicity, mechanisms of action and factors influencing their toxicology. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2023 271 109682 10.1016/j.cbpc.2023.109682 37328134
    [Google Scholar]
  123. Guo Z. Li M. Li B. Jin J. Gao Y. Treatment of nerve cancer with the green synthesis of CuO NPs. Arab. J. Chem. 2023 16 11 105252 10.1016/j.arabjc.2023.105252
    [Google Scholar]
  124. Dobrucka R. Kaczmarek M. Łagiedo M. Kielan A. Dlugaszewska J. Evaluation of biologically synthesized Au-CuO and CuO-ZnO nanoparticles against glioma cells and microorganisms. Saudi Pharm. J. 2019 27 3 373 383 10.1016/j.jsps.2018.12.006 30976181
    [Google Scholar]
  125. Tareq M. Khadrawy Y.A. Rageh M.M. Mohammed H.S. Dose-dependent biological toxicity of green synthesized silver nanoparticles in rat’s brain. Sci. Rep. 2022 12 1 22642 10.1038/s41598‑022‑27171‑1 36587179
    [Google Scholar]
  126. Wei M.Z. Deng T.S. Zhang Q. Cheng Z. Li S. Seed-mediated synthesis of gold nanorods at low concentrations of CTAB. ACS Omega 2021 6 13 9188 9195 10.1021/acsomega.1c00510 33842787
    [Google Scholar]
  127. Ahmadian E. Samiei M. Hasanzadeh A. Kavetskyy T. Jafari S. Alipour M. Salatin S. Rameshrad M. Sharifi S. Eftekhari A. Hasanzadeh M. Monitoring of drug resistance towards reducing the toxicity of pharmaceutical compounds: Past, present and future. J. Pharm. Biomed. Anal. 2020 186 113265 10.1016/j.jpba.2020.113265 32283481
    [Google Scholar]
  128. Nadeem M. Abbasi B.H. Younas M. Ahmad W. Khan T. A review of the green syntheses and anti-microbial applications of gold nanoparticles. Green Chem. Lett. Rev. 2017 10 4 216 227 10.1080/17518253.2017.1349192
    [Google Scholar]
  129. Vijayaram S. Razafindralambo H. Sun Y.Z. Vasantharaj S. Ghafarifarsani H. Hoseinifar S.H. Raeeszadeh M. Applications of green synthesized metal nanoparticles — A review. Biol. Trace Elem. Res. 2024 202 1 360 386 10.1007/s12011‑023‑03645‑9 37046039
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128337464240930042205
Loading
/content/journals/cpd/10.2174/0113816128337464240930042205
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test