Skip to content
2000
Volume 31, Issue 5
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Oral thin films are changing the way drugs are delivered, making drug administration more convenient and patient-friendly. This review delves into the fascinating possibilities of natural polymers in thin film design. We consider the benefits of biocompatible polymers produced from chitosan, gelatin, and pullulan. Their intrinsic biodegradability and safety make them excellent for use with a wide range of patients. Additionally, the research investigates novel strategies for creating these distinctive drug delivery systems. We look beyond standard solvent casting techniques, hot melt extrusion methods, rolling methods, . These technologies provide exact control over film qualities, allowing for tailored medication delivery and increased patient compliance. This review seeks to bridge the gap between natural polymers and cutting-edge fabrication processes. By investigating this combination, we pave the road for the development of next-generation oral thin films that are more efficacious, patient-acceptable, and environmentally-friendly.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128329293241001090601
2024-10-08
2025-01-31
Loading full text...

Full text loading...

References

  1. Sevi̇nç ÖzakarR. ÖzakarE. Current overview of oral thin films.Turk. J. Pharm. Sci.202118111112110.4274/tjps.galenos.2020.7639033634686
    [Google Scholar]
  2. BalaR. KhannaS. PawarP. AroraS. Orally dissolving strips: A new approach to oral drug delivery system.Int. J. Pharm. Investig.201332677610.4103/2230‑973X.11489724015378
    [Google Scholar]
  3. HoffmannE.M. BreitenbachA. BreitkreutzJ. Advances in orodispersible films for drug delivery.Expert Opin. Drug Deliv.20118329931610.1517/17425247.2011.55321721284577
    [Google Scholar]
  4. MusazziU.M. KhalidG.M. SelminF. MinghettiP. CilurzoF. Trends in the production methods of orodispersible films.Int. J. Pharm.202057611896310.1016/j.ijpharm.2019.11896331857185
    [Google Scholar]
  5. DouglasP. AlbadarinA.B. SajjiaM. MangwandiC. KuhsM. CollinsM.N. WalkerG.M. Effect of poly ethylene glycol on the mechanical and thermal properties of bioactive poly(ε-caprolactone) melt extrudates for pharmaceutical applications.Int. J. Pharm.20165001-217918610.1016/j.ijpharm.2016.01.03626794874
    [Google Scholar]
  6. DouglasP. KuhsM. SajjiaM. KhraishehM. WalkerG. CollinsM.N. AlbadarinA.B. Bioactive PCL matrices with a range of structural & rheological properties.React. Funct. Polym.2016101546210.1016/j.reactfunctpolym.2016.02.004
    [Google Scholar]
  7. BorgesJ.G. SilvaA.G. Cervi-BitencourtC.M. VaninF.M. CarvalhoR.A. Lecithin, gelatin and hydrolyzed collagen orally disintegrating films: Functional properties.Int. J. Biol. Macromol.20168690791610.1016/j.ijbiomac.2016.01.08926826291
    [Google Scholar]
  8. LeeY. KimK. KimM. ChoiD.H. JeongS.H. Orally disintegrating films focusing on formulation, manufacturing process, and characterization.J. Pharm. Investig.201747318320110.1007/s40005‑017‑0311‑2
    [Google Scholar]
  9. SalaE. RockallA.G. FreemanS.J. MitchellD.G. ReinholdC. The added role of MR imaging in treatment stratification of patients with gynecologic malignancies: what the radiologist needs to know.Radiology2013266371774010.1148/radiol.1212031523431227
    [Google Scholar]
  10. PrajapatiV.D. ChaudhariA.M. GandhiA.K. MaheriyaP. Pullulan based oral thin film formulation of zolmitriptan: Development and optimization using factorial design.Int. J. Biol. Macromol.2018107Pt B2075208510.1016/j.ijbiomac.2017.10.08229074082
    [Google Scholar]
  11. AbramsA.P. ThompsonL.A. Physiology of aging of older adults: systemic and oral health considerations.Dent. Clin. North Am.201458472973810.1016/j.cden.2014.06.00225201538
    [Google Scholar]
  12. HarrisD. RobinsonJ.R. Drug delivery via the mucous membranes of the oral cavity.J. Pharm. Sci.199281111010.1002/jps.26008101021619560
    [Google Scholar]
  13. WertzP.W. SquierC.A. Cellular and molecular basis of barrier function in oral epithelium.Crit. Rev. Ther. Drug Carrier Syst.1991832372691954652
    [Google Scholar]
  14. RuchikaN. KhanN. DograS.S. SanejaA. The dawning era of oral thin films for nutraceutical delivery: From laboratory to clinic.Biotechnol. Adv.20247310836210.1016/j.biotechadv.2024.10836238615985
    [Google Scholar]
  15. YardyA. EntzK. BennettD. MacphailB. AdronovA. Incorporation of loratadine-cyclodextrin complexes in oral thin films for rapid drug delivery.J. Pharm. Sci.202411351220122710.1016/j.xphs.2023.11.01137984698
    [Google Scholar]
  16. BartlettA.L. ZhangG. WallaceG. McLeanS. MyersK.C. Teusink-CrossA. TaggartC. PatelB. DavidsonR. DaviesS.M. JodeleS. Optimized vitamin D repletion with oral thin film cholecalciferol in patients undergoing stem cell transplant.Blood Adv.20237164555456210.1182/bloodadvances.202300985537285801
    [Google Scholar]
  17. KhadraI. ObeidM.A. DunnC. WattsS. HalbertG. FordS. MullenA. Characterisation and optimisation of diclofenac sodium orodispersible thin film formulation.Int. J. Pharm.2019561434610.1016/j.ijpharm.2019.01.06430772459
    [Google Scholar]
  18. PaolicelliP. PetralitoS. VaraniG. NardoniM. PacelliS. Di MuzioL. TirillòJ. BartuliC. CesaS. CasadeiM.A. AdroverA. Effect of glycerol on the physical and mechanical properties of thin gellan gum films for oral drug delivery.Int. J. Pharm.20185471-222623410.1016/j.ijpharm.2018.05.04629787893
    [Google Scholar]
  19. ZeigerR.S. SchatzM. PomichowskiM.E. LiQ. SlezakJ.M. NolteH. TakharH.S. Real-world assessment of anaphylaxis and eosinophilic esophagitis with 12 SQ house dust mite SLIT-tablet sublingual immunotherapy.J. Allergy Clin. Immunol. Glob.20243310025010.1016/j.jacig.2024.10025038699651
    [Google Scholar]
  20. BeighA.H. RasoolR. KawoosaF. manzoorS. RashidR. AndrabiK.I. shahZ.A. QureshiT. Improved pulmonary function test (PFT) after 1 one year of Sublingual Immunotherapy (SLIT) in unison with pharmacotherapy in mild allergic asthmatics.Immunol. Lett.2021230364110.1016/j.imlet.2020.12.00433340589
    [Google Scholar]
  21. SinghR.S. SainiG.K. KennedyJ.F. Pullulan: Microbial sources, production and applications.Carbohydr. Polym.200873451553110.1016/j.carbpol.2008.01.00326048217
    [Google Scholar]
  22. GuanJ. WangW. ZhangK. ShiX. YangQ. SongJ. Role of AplaeA in the regulation of spore production and poly(malic acid) synthesis in Aureobasidium pullulans.Int. J. Biol. Macromol.2024279Pt 113515310.1016/j.ijbiomac.2024.13515339214223
    [Google Scholar]
  23. SinghR.S. KaurN. KennedyJ.F. Pullulan production from agro-industrial waste and its applications in food industry: A review.Carbohydr. Polym.2019217465710.1016/j.carbpol.2019.04.05031079684
    [Google Scholar]
  24. VuddandaP.R. Montenegro-NicoliniM. MoralesJ.O. VelagaS. Effect of plasticizers on the physico-mechanical properties of pullulan based pharmaceutical oral films.Eur. J. Pharm. Sci.20179629029810.1016/j.ejps.2016.09.01127629498
    [Google Scholar]
  25. SeolY.J. LeeJ.Y. ParkY.J. LeeY.M. -KuY. RhyuI.C. LeeS.J. HanS.B. ChungC.P. Chitosan sponges as tissue engineering scaffolds for bone formation.Biotechnol. Lett.200426131037104110.1023/B:BILE.0000032962.79531.fd15218375
    [Google Scholar]
  26. SinghR.S. KaurN. RanaV. KennedyJ.F. Pullulan: A novel molecule for biomedical applications.Carbohydr. Polym.201717110212110.1016/j.carbpol.2017.04.08928578944
    [Google Scholar]
  27. EsimO. OzkanC.K. KurbanogluS. ArslanA. TasC. SavaserA. OzkanS.A. OzkanY. Development and in vitro/in vivo evaluation of dihydroergotamine mesylate loaded maltodextrin-pullulan sublingual films.Drug Dev. Ind. Pharm.201945691492110.1080/03639045.2019.157878830714426
    [Google Scholar]
  28. SharmaR. KambojS. SinghG. RanaV. Development of aprepitant loaded orally disintegrating films for enhanced pharmacokinetic performance.Eur. J. Pharm. Sci.201684556910.1016/j.ejps.2016.01.00626780381
    [Google Scholar]
  29. TakeuchiY. UsuiR. IkezakiH. TaharaK. TakeuchiH. An advanced technique using an electronic taste-sensing system to evaluate the bitterness of orally disintegrating films and the evaluation of model films.Int. J. Pharm.2017531117919010.1016/j.ijpharm.2017.07.07328789886
    [Google Scholar]
  30. ChachlioutakiK. TzimtzimisE.K. TzetzisD. ChangM.W. AhmadZ. KaravasiliC. FatourosD.G. Electrospun orodispersible films of isoniazid for pediatric tuberculosis treatment.Pharmaceutics202012547010.3390/pharmaceutics1205047032455717
    [Google Scholar]
  31. TianY. BhideY.C. WoerdenbagH.J. HuckriedeA.L.W. FrijlinkH.W. HinrichsW.L.J. VisserJ.C. Development of an orodispersible film containing stabilized influenza vaccine.Pharmaceutics202012324510.3390/pharmaceutics1203024532182676
    [Google Scholar]
  32. ShahzadY. MaqboolM. HussainT. YousafA.M. KhanI.U. MahmoodT. JamshaidM. Natural and semisynthetic polymers blended orodispersible films of citalopram.Nat. Prod. Res.2020341162510.1080/14786419.2018.155269830663358
    [Google Scholar]
  33. RezaeeF. GanjiF. Formulation, characterization, and optimization of captopril fast-dissolving oral films.AAPS PharmSciTech20181952203221210.1208/s12249‑018‑1027‑y29728997
    [Google Scholar]
  34. TakeuchiY. UsuiR. IkezakiH. TaharaK. TakeuchiH. Characterization of orally disintegrating films: A feasibility study using an electronic taste sensor and a flow-through cell.J. Drug Deliv. Sci. Technol.20173910411210.1016/j.jddst.2017.03.010
    [Google Scholar]
  35. Senta-LoysZ. BourgeoisS. Pailler-MatteiC. AgustiG. BriançonS. FessiH. Formulation of orodispersible films for paediatric therapy: Investigation of feasibility and stability for tetrabenazine as drug model.J. Pharm. Pharmacol.201769558259210.1111/jphp.1262727671542
    [Google Scholar]
  36. Senta-LoysZ. BourgeoisS. ValourJ.P. BriançonS. FessiH. Orodispersible films based on amorphous solid dispersions of tetrabenazine.Int. J. Pharm.20175181-224225210.1016/j.ijpharm.2016.12.03628007543
    [Google Scholar]
  37. KrullS.M. MaZ. LiM. DavéR.N. BilgiliE. Preparation and characterization of fast dissolving pullulan films containing BCS class II drug nanoparticles for bioavailability enhancement.Drug Dev. Ind. Pharm.20164271073108510.3109/03639045.2015.110709426567632
    [Google Scholar]
  38. TianY. VisserJ.C. KleverJ.S. WoerdenbagH.J. FrijlinkH.W. HinrichsW.L.J. Orodispersible films based on blends of trehalose and pullulan for protein delivery.Eur. J. Pharm. Biopharm.201813310411110.1016/j.ejpb.2018.09.01630273665
    [Google Scholar]
  39. WangX. LiuL. ChenW. JiaR. ZhengB. GuoZ. Insights into impact of chlorogenic acid on multi-scale structure and digestive properties of lotus seed starch under autoclaving treatment.Int. J. Biol. Macromol.2024278Pt 213486310.1016/j.ijbiomac.2024.13486339168208
    [Google Scholar]
  40. JiménezA. FabraM.J. TalensP. ChiraltA. Edible and biodegradable starch films: A review.Food Bioprocess Technol.2012562058207610.1007/s11947‑012‑0835‑4
    [Google Scholar]
  41. ShahU. NaqashF. GaniA. MasoodiF.A. Art and science behind modified starch edible films and coatings: A review.Compr. Rev. Food Sci. Food Saf.201615356858010.1111/1541‑4337.1219733401817
    [Google Scholar]
  42. TorresF.G. CommeauxS. TroncosoO.P. Starch-based biomaterials for wound-dressing applications.Stärke2013657-854355110.1002/star.201200259
    [Google Scholar]
  43. GarciaV.A.S. BorgesJ.G. MacielV.B.V. MazalliM.R. Lapa-GuimaraesJ.G. VaninF.M. de CarvalhoR.A. Gelatin/starch orally disintegrating films as a promising system for vitamin C delivery.Food Hydrocoll.20187912713510.1016/j.foodhyd.2017.12.027
    [Google Scholar]
  44. HeinemannR.J.B. CarvalhoR.A. Favaro-TrindadeC.S. Orally disintegrating film (ODF) for delivery of probiotics in the oral cavity- development of a novel product for oral health.Innov. Food Sci. Emerg. Technol.20131922723210.1016/j.ifset.2013.04.009
    [Google Scholar]
  45. GarciaV.A.S. BorgesJ.G. OsiroD. VaninF.M. CarvalhoR.A. Orally disintegrating films based on gelatin and pregelatinized starch: new carriers of active compounds from acerola.Food Hydrocoll.202010110551810.1016/j.foodhyd.2019.105518
    [Google Scholar]
  46. MoshfeghN. NiakousaryM. HosseiniS.M.H. MazloomiS.M. AbbasiA. Effect of maltodextrin and Persian gum as wall materials and tannic acid as copigment on some properties of encapsulated sour cherry anthocyanin microcapsules.Food Chem.2024463Pt 114116539265407
    [Google Scholar]
  47. CilurzoF. CuponeI.E. MinghettiP. BurattiS. SelminF. GennariC.G.M. MontanariL. Nicotine fast dissolving films made of maltodextrins: A feasibility study.AAPS PharmSciTech20101141511151710.1208/s12249‑010‑9525‑620936440
    [Google Scholar]
  48. SayedS. IbrahimH.K. MohamedM.I. El-MilligiM.F. Fast-dissolving sublingual films of terbutaline sulfate: Formulation and in vitro/in vivo evaluation.Mol. Pharm.20131082942294710.1021/mp400071323883311
    [Google Scholar]
  49. El-SetouhyD.A. El-MalakN.S.A. Formulation of a novel tianeptine sodium orodispersible film.AAPS PharmSciTech20101131018102510.1208/s12249‑010‑9464‑220532710
    [Google Scholar]
  50. SerranoD.R. Fernandez-GarciaR. MeleM. HealyA.M. LalatsaA. Designing fast-dissolving orodispersible films of amphotericin b for oropharyngeal candidiasis.Pharmaceutics201911836910.3390/pharmaceutics1108036931374879
    [Google Scholar]
  51. VidyadharaS. VardhanM.S. BalakrishnaT. SasidharR.L. Formulation of rizatriptan benzoate fast dissolving buccal films by emulsion evaporation technique.Int. J. Pharm. Investig.20155210110610.4103/2230‑973X.15338725838995
    [Google Scholar]
  52. FranceschiniI. SelminF. PaganiS. MinghettiP. CilurzoF. Nanofiller for the mechanical reinforcement of maltodextrins orodispersible films.Carbohydr. Polym.201613667668110.1016/j.carbpol.2015.09.07726572400
    [Google Scholar]
  53. MusazziU.M. DolciL.S. AlbertiniB. PasseriniN. CilurzoF. A new melatonin oral delivery platform based on orodispersible films containing solid lipid microparticles.Int. J. Pharm.201955928028810.1016/j.ijpharm.2019.01.04630690132
    [Google Scholar]
  54. LaiF. FranceschiniI. CorriasF. SalaM.C. CilurzoF. SinicoC. PiniE. Maltodextrin fast dissolving films for quercetin nanocrystal delivery. A feasibility study.Carbohydr. Polym.201512121722310.1016/j.carbpol.2014.11.07025659692
    [Google Scholar]
  55. CilurzoF. CuponeI.E. MinghettiP. SelminF. MontanariL. Fast dissolving films made of maltodextrins.Eur. J. Pharm. Biopharm.200870389590010.1016/j.ejpb.2008.06.03218667164
    [Google Scholar]
  56. SelminF. FranceschiniI. CuponeI.E. MinghettiP. CilurzoF. Aminoacids as non-traditional plasticizers of maltodextrins fast-dissolving films.Carbohydr. Polym.201511561361610.1016/j.carbpol.2014.09.02325439939
    [Google Scholar]
  57. ElblJ. GajdziokJ. KolarczykJ. 3D printing of multilayered orodispersible films with in-process drying.Int. J. Pharm.202057511888310.1016/j.ijpharm.2019.11888331811925
    [Google Scholar]
  58. MusazziU.M. SelminF. OrtenziM.A. MohammedG.K. FranzéS. MinghettiP. CilurzoF. Personalized orodispersible films by hot melt ram extrusion 3D printing.Int. J. Pharm.20185511-2525910.1016/j.ijpharm.2018.09.01330205128
    [Google Scholar]
  59. SuC. JiangC. LinJ. LiuJ. ZhanH. CheS. ChenX. FengC. Optimization of preparation conditions for β-chitosan derived from diatom biomanufacturing using response surface methodology.Int. J. Biol. Macromol.2024279Pt 413523310.1016/j.ijbiomac.2024.13523339251005
    [Google Scholar]
  60. RinaudoM. Chitin and chitosan: Properties and applications.Prog. Polym. Sci.200631760363210.1016/j.progpolymsci.2006.06.001
    [Google Scholar]
  61. KumarM.N.V.R. MuzzarelliR.A.A. MuzzarelliC. SashiwaH. DombA.J. Chitosan chemistry and pharmaceutical perspectives.Chem. Rev.2004104126017608410.1021/cr030441b15584695
    [Google Scholar]
  62. Nilsen-NygaardJ. StrandS. VårumK. DragetK. NordgårdC. Chitosan: Gels and interfacial properties.Polymers (Basel)20157355257910.3390/polym7030552
    [Google Scholar]
  63. Al-esnawyA.A. EreibaK.T. BakrA.M. AbdrabohA.S. Characterization and antibacterial activity of streptomycin sulfate loaded bioglass/chitosan beads for bone tissue engineering.J. Mol. Struct.2021122712971510.1016/j.molstruc.2020.129715
    [Google Scholar]
  64. PachecoM.S. KanoG.E. PauloL.A. LopesP.S. de MoraesM.A. Silk fibroin/chitosan/alginate multilayer membranes as a system for controlled drug release in wound healing.Int. J. Biol. Macromol.202015280381110.1016/j.ijbiomac.2020.02.14032068057
    [Google Scholar]
  65. SrinivasaP.C. RameshM.N. KumarK.R. TharanathanR.N. Properties of chitosan films prepared under different drying conditions.J. Food Eng.2004631798510.1016/S0260‑8774(03)00285‑1
    [Google Scholar]
  66. Haastert-TaliniK. GeunaS. DahlinL.B. MeyerC. StenbergL. FreierT. HeimannC. BarwigC. PintoL.F.V. RaimondoS. GambarottaG. SamyS.R. SousaN. SalgadoA.J. RatzkaA. WrobelS. GrotheC. Chitosan tubes of varying degrees of acetylation for bridging peripheral nerve defects.Biomaterials201334389886990410.1016/j.biomaterials.2013.08.07424050875
    [Google Scholar]
  67. AnjiReddyK. KarpagamS. Chitosan nanofilm and electrospun nanofiber for quick drug release in the treatment of Alzheimer’s disease: In vitro and in vivo evaluation.Int. J. Biol. Macromol.2017105Pt 113114210.1016/j.ijbiomac.2017.07.02128698078
    [Google Scholar]
  68. MaY. XinL. TanH. FanM. LiJ. JiaY. LingZ. ChenY. HuX. Chitosan membrane dressings toughened by glycerol to load antibacterial drugs for wound healing.Mater. Sci. Eng. C20178152253110.1016/j.msec.2017.08.05228888006
    [Google Scholar]
  69. SizílioR.H. GalvãoJ.G. TrindadeG.G.G. PinaL.T.S. AndradeL.N. GonsalvesJ.K.M.C. LiraA.A.M. ChaudM.V. AlvesT.F.R. ArguelhoM.L.P.M. NunesR.S. Chitosan/pvp-based mucoadhesive membranes as a promising delivery system of betamethasone-17-valerate for aphthous stomatitis.Carbohydr. Polym.201819033934510.1016/j.carbpol.2018.02.07929628256
    [Google Scholar]
  70. BrooksA.E. The potential of silk and silk-like proteins as natural mucoadhesive biopolymers for controlled drug delivery.Front Chem.201536510.3389/fchem.2015.0006526636069
    [Google Scholar]
  71. CardelleA. MadureiraA. CostaE. BarrosR. TavariaF. PintadoM. Development of oral strips containing chitosan as active ingredient - A product for buccal health.Int. J. Polym. Mater.201564150527103056001
    [Google Scholar]
  72. DharmasthalaS. ShabarayaA.R. AndradeG.S. ShriramR.G. HebbarS. DubeyA. Fast dissolving oral film of piroxicam: Solubility enhancement by forming an inclusion complex with β-cyclodextrin, formulation and evaluation.J. Young Pharm.20181111610.5530/jyp.2019.11.1
    [Google Scholar]
  73. Molet-RodríguezA. MéndezD.A. López-RubioA. FabraM.J. Martínez-SanzM. Salvia-TrujilloL. Martín-BellosoO. Emulsification capacity of pectin extracts from persimmon waste: Effect of structural characteristics and pectin-polyphenol interactions.Food Hydrocoll.202515811055310.1016/j.foodhyd.2024.110553
    [Google Scholar]
  74. BierhalzA.C.K. da SilvaM.A. KieckbuschT.G. Natamycin release from alginate/pectin films for food packaging applications.J. Food Eng.20121101182510.1016/j.jfoodeng.2011.12.016
    [Google Scholar]
  75. ReddyP. MurthyK.V. Formulation and evaluation of oral fast dissolving films of poorly soluble drug ezetimibe using transcutol Hp.Indian J. Pharm. Educ. Res.201852339840710.5530/ijper.52.3.46.
    [Google Scholar]
  76. ChattopadhyayS. RainesR.T. Collagen-based biomaterials for wound healing.Biopolymers2014101882183310.1002/bip.2248624633807
    [Google Scholar]
  77. ZouY. ChenX. LanY. YangJ. YangB. MaJ. ChengM. WangD. XuW. Find alternative for bovine and porcine gelatin: Study on physicochemical, rheological properties and water-holding capacity of chicken lungs gelatin by ultrasound treatment.Ultrason. Sonochem.202410910700410.1016/j.ultsonch.2024.10700439094266
    [Google Scholar]
  78. BorgesJ.G. TagliamentoM. SilvaA.G. SobralP.J.A. CarvalhoR.A. Development and characterization of orally-disintegrating films for propolis delivery.Food Sci. Technol. (Campinas)201333283310.1590/S0101‑20612013000500005
    [Google Scholar]
  79. BorgesJ.G. De CarvalhoR.A. Orally disintegrating films containing propolis: Properties and release profile.J. Pharm. Sci.201510441431143910.1002/jps.2435525631489
    [Google Scholar]
  80. TedescoM.P. Monaco-LourençoC.A. CarvalhoR.A. Gelatin/hydroxypropyl methylcellulose matrices - polymer interactions approach for oral disintegrating films.Mater. Sci. Eng. C20166966867410.1016/j.msec.2016.07.02327612760
    [Google Scholar]
  81. AgüeroL. Zaldivar-SilvaD. PeñaL. DiasM.L. Alginate microparticles as oral colon drug delivery device: A review.Carbohydr. Polym.2017168324310.1016/j.carbpol.2017.03.03328457455
    [Google Scholar]
  82. LeeK.Y. MooneyD.J. Alginate: Properties and biomedical applications.Prog. Polym. Sci.201237110612610.1016/j.progpolymsci.2011.06.00322125349
    [Google Scholar]
  83. PachecoM.S. da SilvaT.B. TomodaB.T. de MoraesM.A. Evaluation of diclofenac sodium incorporation in alginate membranes as potential drug release system.Materialia (Oxf.)20201210082710.1016/j.mtla.2020.100827
    [Google Scholar]
  84. RatheeS. SinghK.R.B. MallickS. SinghJ. PandeyS.S. OjhaA. SinghR.P. Smart alginate nanomaterials: Revolutionizing food across delivery, preservation, packaging, safety, and waste upcycling.Carbohydr. Polym. Technol. Appl.2024810056810.1016/j.carpta.2024.100568
    [Google Scholar]
  85. SikareepaisanP. RuktanonchaiU. SupapholP. Preparation and characterization of asiaticoside-loaded alginate films and their potential for use as effectual wound dressings.Carbohydr. Polym.20118341457146910.1016/j.carbpol.2010.09.048
    [Google Scholar]
  86. AugstA.D. KongH.J. MooneyD.J. Alginate hydrogels as biomaterials.Macromol. Biosci.20066862363310.1002/mabi.20060006916881042
    [Google Scholar]
  87. GohC.H. HengP.W.S. ChanL.W. Alginates as a useful natural polymer for microencapsulation and therapeutic applications.Carbohydr. Polym.201288111210.1016/j.carbpol.2011.11.012
    [Google Scholar]
  88. El-BaryA.A. Al SharabiI. Haza’aB.S. Effect of casting solvent, film-forming agent and solubilizer on orodispersible films of a polymorphic poorly soluble drug: An in vitro/in silico study.Drug Dev. Ind. Pharm.201945111751176910.1080/03639045.2019.165673331416366
    [Google Scholar]
  89. MurthyA. LakshmiU. AyalasomayajulaR. EarleP. JyotsnaV. Formulation and evaluation of tramadol hydrochloride oral thin films.IJPSR20189416921698
    [Google Scholar]
  90. Raza BukhariS.N. Formulation and evaluation of mouth dissolving films of losartan potassium using 32 factorial design.Int. J. Pharm. Sci. Res.20191014021411
    [Google Scholar]
  91. ShiL.L. XuW.J. CaoQ.R. YangM. CuiJ.H. Preparation, characterization and in vitro evaluation of a polyvinyl alcohol/sodium alginate based orodispersible film containing sildenafil citrate.Pharmazie201469532733424855822
    [Google Scholar]
  92. PachecoM.S. BarbieriD. da SilvaC.F. de MoraesM.A. A review on orally disintegrating films (ODFs) made from natural polymers such as pullulan, maltodextrin, starch, and others.Int. J. Biol. Macromol.202117850451310.1016/j.ijbiomac.2021.02.18033647337
    [Google Scholar]
  93. Santosh KumarR. Satya YagneshT.N. Oral dissolving films: An effective tool for fast therapeutic action.J. Drug Deliv. Ther.201991-s49250010.22270/jddt.v9i1‑s.2395
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128329293241001090601
Loading
/content/journals/cpd/10.2174/0113816128329293241001090601
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): alginate; chitosan; hydrolyzed collagen; maltodextrin; ODFs; pullulan
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test