Skip to content
2000
image of A Comprehensive Review of Challenges in OralDrugDeliverySystems and RecentAdvancements in Innovative Design Strategies

Abstract

The oral route of drug administration is often preferred by patients and healthcare providers due to its convenience, ease of use, non-invasiveness, and patient acceptance. However, traditional oral dosage forms have several limitations, including low bioavailability, limited drug loading capacity, and stability and storage issues, particularly with solutions and suspensions. Over the years, researchers have dedicated considerable effort to developing novel oral drug delivery systems to overcome these limitations. This review discusses various challenges associated with oral drug delivery systems, including biological, pharmaceutical, and physicochemical barriers. It also explores common delivery approaches, such as gastroretentive drug delivery, small intestine drug delivery, and colon-targeting drug delivery systems. Additionally, numerous strategies aimed at improving oral drug delivery efficiency are reviewed, including solid dispersion, absorption enhancers, lipid-based formulations, nanoparticles, polymer-based nanocarriers, liposomal formulations, microencapsulation, and micellar formulations. Furthermore, innovative approaches like orally disintegrating tablets (ODT), orally disintegrating films (ODF), layered tablets, micro particulates, self-nano emulsifying formulations (SNEF), and controlled release dosage forms are explored for their potential in enhancing oral drug delivery efficiency and promoting patients’ compliance. Overall, this review highlights significant progress in addressing challenges in the pharmaceutical industry and clinical settings, offering novel approaches for the development of effective oral drug delivery systems.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128338560240923073357
2024-10-10
2024-11-08
Loading full text...

Full text loading...

References

  1. Alqahtani M.S. Kazi M. Alsenaidy M.A. Ahmad M.Z. Advances in oral drug delivery. Front. Pharmacol. 2021 12 618411 10.3389/fphar.2021.618411 33679401
    [Google Scholar]
  2. Prasad V. De Jesús K. Mailankody S. The high price of anticancer drugs: Origins, implications, barriers, solutions. Nat. Rev. Clin. Oncol. 2017 14 6 381 390 10.1038/nrclinonc.2017.31 28290490
    [Google Scholar]
  3. Hua S. Advances in oral drug delivery for regional targeting in the gastrointestinal tract - influence of physiological, pathophysiological and pharmaceutical factors. Front. Pharmacol. 2020 11 524 10.3389/fphar.2020.00524 32425781
    [Google Scholar]
  4. Ranade V.V. Drug delivery systems 5A. Oral drug delivery. J. Clin. Pharmacol. 1991 31 1 2 16 10.1002/j.1552‑4604.1991.tb01881.x 2045525
    [Google Scholar]
  5. Kaur G. Arora M. Ravi Kumar M.N.V. Oral drug delivery technologies—a decade of developments. J. Pharmacol. Exp. Ther. 2019 370 3 529 543 10.1124/jpet.118.255828 31010845
    [Google Scholar]
  6. Hua S. Lye E.C. Impact of gastric and bowel surgery on gastrointestinal drug delivery. Drug Deliv. Transl. Res. 2023 13 1 37 53 10.1007/s13346‑022‑01179‑6 35585472
    [Google Scholar]
  7. Rubbens J. Mols R. Brouwers J. Augustijns P. Exploring gastric drug absorption in fasted and fed state rats. Int. J. Pharm. 2018 548 1 636 641 10.1016/j.ijpharm.2018.07.017 29981414
    [Google Scholar]
  8. Reix N. Guhmann P. Bietiger W. Pinget M. Jeandidier N. Sigrist S. Duodenum-specific drug delivery: In vivo assessment of a pharmaceutically developed enteric-coated capsule for a broad applicability in rat studies. Int. J. Pharm. 2012 422 1-2 338 340 10.1016/j.ijpharm.2011.10.017 22019485
    [Google Scholar]
  9. Yoshida T. Lai T.C. Kwon G.S. Sako K. pH- and ion-sensitive polymers for drug delivery. Expert Opin. Drug Deliv. 2013 10 11 1497 1513 10.1517/17425247.2013.821978 23930949
    [Google Scholar]
  10. Lou J. Duan H. Qin Q. Teng Z. Gan F. Zhou X. Zhou X. Advances in oral drug delivery systems: Challenges and opportunities. Pharmaceutics 2023 15 2 484 10.3390/pharmaceutics15020484 36839807
    [Google Scholar]
  11. Fox C.B. Kim J. Le L.V. Nemeth C.L. Chirra H.D. Desai T.A. Micro/nanofabricated platforms for oral drug delivery. J. Control. Release 2015 219 431 444 10.1016/j.jconrel.2015.07.033 26244713
    [Google Scholar]
  12. Targhotra M. Chauhan M.K. An overview on various approaches and recent patents on buccal drug delivery systems. Curr. Pharm. Des. 2020 26 39 5030 5039 10.2174/1381612826666200614182013 32534560
    [Google Scholar]
  13. Batchelor H. Bioadhesive dosage forms for esophageal drug delivery. Pharm. Res. 2005 22 2 175 181 10.1007/s11095‑004‑1183‑5 15783063
    [Google Scholar]
  14. Zhang L. Russell D. Conway B.R. Batchelor H. Strategies and therapeutic opportunities for the delivery of drugs to the esophagus. Crit. Rev. Ther. Drug Carrier Syst. 2008 25 3 259 304 10.1615/CritRevTherDrugCarrierSyst.v25.i3.20 18540840
    [Google Scholar]
  15. Ensign L.M. Cone R. Hanes J. Oral drug delivery with polymeric nanoparticles: The gastrointestinal mucus barriers. Adv. Drug Deliv. Rev. 2012 64 6 557 570 10.1016/j.addr.2011.12.009 22212900
    [Google Scholar]
  16. Bagan J. Paderni C. Termine N. Campisi G. Lo Russo L. Compilato D. Di Fede O. Mucoadhesive polymers for oral transmucosal drug delivery: A review. Curr. Pharm. Des. 2012 18 34 5497 5514 10.2174/138161212803307545 22632395
    [Google Scholar]
  17. Drucker D.J. Advances in oral peptide therapeutics. Nat. Rev. Drug Discov. 2020 19 4 277 289 10.1038/s41573‑019‑0053‑0 31848464
    [Google Scholar]
  18. Lim Y.F. Williams M.A.K. Lentle R.G. Janssen P.W.M. Mansel B.W. Keen S.A.J. Chambers P. An exploration of the microrheological environment around the distal ileal villi and proximal colonic mucosa of the possum ( Trichosurus vulpecula ). J. R. Soc. Interface 2013 10 81 20121008 10.1098/rsif.2012.1008 23389898
    [Google Scholar]
  19. Wang Y. Pi C. Feng X. Hou Y. Zhao L. Wei Y. The influence of nanoparticle properties on oral bioavailability of drugs. Int. J. Nanomedicine 2020 15 6295 6310 10.2147/IJN.S257269 32943863
    [Google Scholar]
  20. Amidon S. Brown J.E. Dave V.S. Colon-targeted oral drug delivery systems: Design trends and approaches. AAPS PharmSciTech 2015 16 4 731 741 10.1208/s12249‑015‑0350‑9 26070545
    [Google Scholar]
  21. Philip A. Philip B. Colon targeted drug delivery systems: A review on primary and novel approaches. Oman Med. J. 2010 25 2 70 78 10.5001/omj.2010.24 22125706
    [Google Scholar]
  22. Koziolek M. Grimm M. Becker D. Iordanov V. Zou H. Shimizu J. Wanke C. Garbacz G. Weitschies W. Investigation of pH and temperature profiles in the GI tract of fasted human subjects using the intellicap® system. J. Pharm. Sci. 2015 104 9 2855 2863 10.1002/jps.24274 25411065
    [Google Scholar]
  23. Renukuntla J. Vadlapudi A.D. Patel A. Boddu S.H.S. Mitra A.K. Approaches for enhancing oral bioavailability of peptides and proteins. Int. J. Pharm. 2013 447 1-2 75 93 10.1016/j.ijpharm.2013.02.030 23428883
    [Google Scholar]
  24. Liu L. Yao W. Rao Y. Lu X. Gao J. pH-Responsive carriers for oral drug delivery: challenges and opportunities of current platforms. Drug Deliv. 2017 24 1 569 581 10.1080/10717544.2017.1279238 28195032
    [Google Scholar]
  25. Shan M. Gentile M. Yeiser J.R. Walland A.C. Bornstein V.U. Chen K. He B. Cassis L. Bigas A. Cols M. Comerma L. Huang B. Blander J.M. Xiong H. Mayer L. Berin C. Augenlicht L.H. Velcich A. Cerutti A. Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science 2013 342 6157 447 453 10.1126/science.1237910 24072822
    [Google Scholar]
  26. Boegh M. García-Díaz M. Müllertz A. Nielsen H.M. Steric and interactive barrier properties of intestinal mucus elucidated by particle diffusion and peptide permeation. Eur. J. Pharm. Biopharm. 2015 95 Pt A 136 143 10.1016/j.ejpb.2015.01.014 25622791
    [Google Scholar]
  27. Krause M.E. Sahin E. Chemical and physical instabilities in manufacturing and storage of therapeutic proteins. Curr. Opin. Biotechnol. 2019 60 159 167 10.1016/j.copbio.2019.01.014 30861476
    [Google Scholar]
  28. Nick Pace C. Scholtz J.M. Grimsley G.R. Forces stabilizing proteins. FEBS Lett. 2014 588 14 2177 2184 10.1016/j.febslet.2014.05.006 24846139
    [Google Scholar]
  29. Song N-n Zhang S Liu C Overview of factors affecting oral drug absorption. Asian J Drug Metab Pharmacokinet 2004 4 167 176
    [Google Scholar]
  30. Varma M.V.S. Kaushal A.M. Garg A. Garg S. Factors affecting mechanism and kinetics of drug release from matrix-based oral controlled drug delivery systems. Am. J. Drug Deliv. 2004 2 1 43 57 10.2165/00137696‑200402010‑00003
    [Google Scholar]
  31. Samineni R. Chimakurthy J. Konidala S. Emerging role of biopharmaceutical classification and biopharmaceutical drug disposition system in dosage form development: A systematic review. Turk. J. Pharm. Sci. 2022 19 6 706 713 10.4274/tjps.galenos.2021.73554 36544401
    [Google Scholar]
  32. Yu L.X. Amidon G.L. Polli J.E. Zhao H. Mehta M.U. Conner D.P. Shah V.P. Lesko L.J. Chen M.L. Lee V.H.L. Hussain A.S. Biopharmaceutics classification system: The scientific basis for biowaiver extensions. Pharm. Res. 2002 19 7 921 925 10.1023/A:1016473601633 12180542
    [Google Scholar]
  33. Lennernäs H. Intestinal permeability and its relevance for absorption and elimination. Xenobiotica 2007 37 10-11 1015 1051 10.1080/00498250701704819 17968735
    [Google Scholar]
  34. Ezike T.C. Okpala U.S. Onoja U.L. Nwike C.P. Ezeako E.C. Okpara O.J. Okoroafor C.C. Eze S.C. Kalu O.L. Odoh E.C. Nwadike U.G. Ogbodo J.O. Umeh B.U. Ossai E.C. Nwanguma B.C. Advances in drug delivery systems, challenges and future directions. Heliyon 2023 9 6 e17488 10.1016/j.heliyon.2023.e17488 37416680
    [Google Scholar]
  35. Awasthi R. Kulkarni G.T. Decades of research in drug targeting to the upper gastrointestinal tract using gastroretention technologies: where do we stand? Drug Deliv. 2016 23 2 378 394 10.3109/10717544.2014.936535 25026414
    [Google Scholar]
  36. Das S. Kaur S. Rai V.K. Gastro-retentive drug delivery systems: A recent update on clinical pertinence and drug delivery. Drug Deliv. Transl. Res. 2021 11 5 1849 1877 10.1007/s13346‑020‑00875‑5 33403646
    [Google Scholar]
  37. Tripathi J. Thapa P. Maharjan R. Jeong S.H. Current state and future perspectives on gastroretentive drug delivery systems. Pharmaceutics 2019 11 4 193 10.3390/pharmaceutics11040193 31010054
    [Google Scholar]
  38. Rimawi I.B. Muqedi R.H. Kanaze F.I. Development of gabapentin expandable gastroretentive controlled drug delivery system. Sci. Rep. 2019 9 1 11675 10.1038/s41598‑019‑48260‑8 31406203
    [Google Scholar]
  39. Kaewkroek K. Petchsomrit A. Wira Septama A. Wiwattanapatapee R. Development of starch/chitosan expandable films as a gastroretentive carrier for ginger extract-loaded solid dispersion. Saudi Pharm. J. 2022 30 2 120 131 10.1016/j.jsps.2021.12.017 35528854
    [Google Scholar]
  40. Neumann M. Heimhardt C. Seidlitz K. Koziolek M. Schneider F. Schiller C. Hanke U. Anschütz M. Knopke C. Donath F. Thoma R. Brätter C. Schug B. Franke H. Weitschies W. Development of a furosemide-containing expandable system for gastric retention. J. Control. Release 2021 338 105 118 10.1016/j.jconrel.2021.08.026 34416321
    [Google Scholar]
  41. Wang S. Wen H. Li P. Cui M. Sun W. Wang H. Liu H. Li S. Pan W. Yang X. Formulation and evaluation of gastric-floating controlled release tablets of Ginkgolides. J. Drug Deliv. Sci. Technol. 2019 51 7 17 10.1016/j.jddst.2019.02.011
    [Google Scholar]
  42. Liu H. Wang S. Shi H. Zhang R. Qu K. Hu Y. Qu X. Gan C. Chen J. Shi X. Zhang M. Zeng W. Gastric floating tablet improves the bioavailability and reduces the hypokalemia effect of gossypol in vivo. Saudi Pharm. J. 2021 29 4 305 314 10.1016/j.jsps.2021.03.001 33994825
    [Google Scholar]
  43. Huang Z. Xu C. Zhao L. Wei C. Wu Y. Qiu J. Yu Z. Yang K. Hu H. Wang Z. Preparation, optimization and in vivo study of gastric floating tablets of constunolide and dehydrocostus lactone with ideal therapeutic effect on gastric diseases. J. Drug Deliv. Sci. Technol. 2022 78 103942 10.1016/j.jddst.2022.103942
    [Google Scholar]
  44. Koirala S. Nepal P. Ghimire G. Basnet R. Rawat I. Dahal A. Pandey J. Parajuli-Baral K. Formulation and evaluation of mucoadhesive buccal tablets of aceclofenac. Heliyon 2021 7 3 e06439 10.1016/j.heliyon.2021.e06439 33786387
    [Google Scholar]
  45. Jin H. Ngo H.V. Park C. Lee B.J. Mucoadhesive buccal tablet of leuprolide and its fatty acid conjugate: Design, in vitro evaluation and formulation strategies. Int. J. Pharm. 2023 639 122963 10.1016/j.ijpharm.2023.122963 37068715
    [Google Scholar]
  46. Arabi M. Mortazavi S.A. Jafariazar Z. Farhadnejad H. Alipour Harisa G. Fatahi Y. Fabrication and in-vitro evaluation of buccal mucoadhesive tablet of meloxicam. Iran. J. Pharm. Res. 2020 19 3 63 76 33680010
    [Google Scholar]
  47. Sharma A. Goyal A.K. Rath G. Development and characterization of gastroretentive high-density pellets lodged with zero valent iron nanoparticles. J. Pharm. Sci. 2018 107 10 2663 2673 10.1016/j.xphs.2018.06.014 29936203
    [Google Scholar]
  48. Patil J. Sayyed H. Suryawanshi H. Patil B. Formulation and evaluation of verdant tablets containing saponin-coalesced silver nanoparticles got from fenugreek seed extract. Chemistry Proceedings 2022 8 56
    [Google Scholar]
  49. Felton L.A. Porter S.C. An update on pharmaceutical film coating for drug delivery. Expert Opin. Drug Deliv. 2013 10 4 421 435 10.1517/17425247.2013.763792 23339342
    [Google Scholar]
  50. Wathoni N. Nguyen A.N. Rusdin A. Umar A.K. Mohammed A.F.A. Motoyama K. Joni I.M. Muchtaridi M. Enteric-coated strategies in colorectal cancer nanoparticle drug delivery system. Drug Des. Devel. Ther. 2020 14 4387 4405 10.2147/DDDT.S273612 33116423
    [Google Scholar]
  51. Khan M.J. Huang W.C. Akhlaq M. Raza S. Hamadou A.H. Yuning G. Sun J. Mao X. Design, preparation, and evaluation of enteric coating formulation of HPMC and eudragit L100 on carboxylated agarose hydrogel by using drug tartrazine. BioMed Res. Int. 2022 2022 1 6 10.1155/2022/1042253 35127935
    [Google Scholar]
  52. Raval M. Sheth N.R. Ramani R.V. Formulation and evaluation of sustained release enteric-coated pellets of budesonide for intestinal delivery. Int. J. Pharm. Investig. 2013 3 4 203 211 10.4103/2230‑973X.121294 24350040
    [Google Scholar]
  53. Lee T.J. Kim D. Kim J.C. Ro S.W. Na D.H. Formulation development and pharmacokinetic evaluation of enteric-coated dexrabeprazole tablets. J. Pharm. Investig. 2023 53 2 323 331 10.1007/s40005‑022‑00602‑x
    [Google Scholar]
  54. Panthi V.K. Jha S.K. Chaubey R. Pangeni R. Formulation and development of Serratiopeptidase enteric coated tablets and analytical method validation by UV Spectroscopy. Int. J. Anal. Chem. 2021 2021 1 13 10.1155/2021/9749474 34712328
    [Google Scholar]
  55. Kumar A. Naik P.K. Pradhan D. Ghosh G. Rath G. Mucoadhesive formulations: Innovations, merits, drawbacks, and future outlook. Pharm. Dev. Technol. 2020 25 7 797 814 10.1080/10837450.2020.1753771 32267180
    [Google Scholar]
  56. Teruel A.H. Gonzalez-Alvarez I. Bermejo M. Merino V. Marcos M.D. Sancenon F. Gonzalez-Alvarez M. Martinez-Mañez R. New insights of oral colonic drug delivery systems for inflammatory bowel disease therapy. Int. J. Mol. Sci. 2020 21 18 6502 10.3390/ijms21186502 32899548
    [Google Scholar]
  57. Yan Y. Ren F. Wang P. Sun Y. Xing J. Synthesis and evaluation of a prodrug of 5-aminosalicylic acid for the treatment of ulcerative colitis. Iran. J. Basic Med. Sci. 2019 22 12 1452 1461 32133064
    [Google Scholar]
  58. Kim S. Lee S. Lee H. Ju S. Park S. Kwon D. Yoo J.W. Yoon I.S. Min D.S. Jung Y.S. Jung Y. A colon-targeted prodrug, 4-phenylbutyric acid-glutamic acid conjugate, ameliorates 2,4-dinitrobenzenesulfonic acid-induced colitis in rats. Pharmaceutics 2020 12 9 843 10.3390/pharmaceutics12090843 32899177
    [Google Scholar]
  59. Rajpurohit H. Sharma S. Sharma P. Bhandari A. Polymers for colon targeted drug delivery. Indian J. Pharm. Sci. 2010 72 6 689 696 10.4103/0250‑474X.84576 21969739
    [Google Scholar]
  60. Li S. Jin M. Wu Y. Jung S. Li D. He N. Lee M. An efficient enzyme-triggered controlled release system for colon-targeted oral delivery to combat dextran sodium sulfate (DSS)-induced colitis in mice. Drug Deliv. 2021 28 1 1120 1131 10.1080/10717544.2021.1934189 34121560
    [Google Scholar]
  61. Zhang Y. Wang L. Wang Z.D. Zhou Q. Zhou X. Zhou T. Guan Y.X. Liu X. Surface-anchored microbial enzyme-responsive solid lipid nanoparticles enabling colonic budesonide release for ulcerative colitis treatment. J. Nanobiotechnology 2023 21 1 145 10.1186/s12951‑023‑01889‑0 37127609
    [Google Scholar]
  62. Lee S.H. Bajracharya R. Min J.Y. Han J.W. Park B.J. Han H.K. Strategic approaches for colon targeted drug delivery: An overview of recent advancements. Pharmaceutics 2020 12 1 68 10.3390/pharmaceutics12010068 31952340
    [Google Scholar]
  63. Bazan L. Bendas E.R. El Gazayerly O.N. Badawy S.S. Comparative pharmaceutical study on colon targeted micro-particles of celecoxib: in-vitro–in-vivo evaluation. Drug Deliv. 2016 23 9 3339 3349 10.1080/10717544.2016.1178824 27086898
    [Google Scholar]
  64. Oshi M.A. Naeem M. Bae J. Kim J. Lee J. Hasan N. Kim W. Im E. Jung Y. Yoo J.W. Colon-targeted dexamethasone microcrystals with pH-sensitive chitosan/alginate/Eudragit S multilayers for the treatment of inflammatory bowel disease. Carbohydr. Polym. 2018 198 434 442 10.1016/j.carbpol.2018.06.107 30093020
    [Google Scholar]
  65. Tan C. Fan H. Ding J. Han C. Guan Y. Zhu F. Wu H. Liu Y. Zhang W. Hou X. Tan S. Tang Q. ROS-responsive nanoparticles for oral delivery of luteolin and targeted therapy of ulcerative colitis by regulating pathological microenvironment. Mater. Today Bio 2022 14 100246 10.1016/j.mtbio.2022.100246 35372817
    [Google Scholar]
  66. Wang D. Jiang Q. Shen R. Peng L. Zhou W. Meng T. Hu F. Wang J. Yuan H. ROS-responsive nanoparticles targeting inflamed colon for synergistic therapy of inflammatory bowel disease via barrier repair and anti-inflammation. Nano Res. 2024 17 6 5409 5423 10.1007/s12274‑024‑6435‑6
    [Google Scholar]
  67. Chen Q. Luo R. Han X. Zhang J. He Y. Qi S. Pu X. Nie W. Dong L. Xu H. Liu F. Lin M. Zhong H. Fu C. Gao F. Entrapment of macrophage-target nanoparticles by yeast microparticles for rhein delivery in ulcerative colitis treatment. Biomacromolecules 2021 22 6 2754 2767 10.1021/acs.biomac.1c00425 34019390
    [Google Scholar]
  68. Huang Y. Dai W.G. Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta Pharm. Sin. B 2014 4 1 18 25 10.1016/j.apsb.2013.11.001 26579360
    [Google Scholar]
  69. Malkawi R. Malkawi W.I. Al-Mahmoud Y. Tawalbeh J. Current trends on solid dispersions: Past, present, and future. Adv. Pharmacol. Pharm. Sci. 2022 2022 1 17 10.1155/2022/5916013 36317015
    [Google Scholar]
  70. Kaushik R. Budhwar V. Kaushik D. An overview on recent patents and technologies on solid dispersion. Recent Pat. Drug Deliv. Formul. 2020 14 1 63 74 10.2174/22124039MTAzoNzEwy 31951172
    [Google Scholar]
  71. Aungst B.J. Absorption enhancers: Applications and advances. AAPS J. 2012 14 1 10 18 10.1208/s12248‑011‑9307‑4 22105442
    [Google Scholar]
  72. Yewale C. Patil S. Kolate A. Kore G. Misra A. Oral absorption promoters: Opportunities, issues, and challenges. Crit. Rev. Ther. Drug Carrier Syst. 2015 32 5 363 387 10.1615/CritRevTherDrugCarrierSyst.2015011865 26559432
    [Google Scholar]
  73. Kim J.C. Park E.J. Na D.H. Gastrointestinal permeation enhancers for the development of oral peptide pharmaceuticals. Pharmaceuticals 2022 15 12 1585 10.3390/ph15121585 36559036
    [Google Scholar]
  74. Mohite P. Singh S. Pawar A. Sangale A. Prajapati B.G. Lipid-based oral formulation in capsules to improve the delivery of poorly water-soluble drugs. Front. Drug Deliv. 2023 3 1232012 10.3389/fddev.2023.1232012
    [Google Scholar]
  75. Kalepu S. Manthina M. Padavala V. Oral lipid-based drug delivery systems – an overview. Acta Pharm. Sin. B 2013 3 6 361 372 10.1016/j.apsb.2013.10.001
    [Google Scholar]
  76. Prajapati H.N. Dalrymple D.M. Serajuddin A.T.M. A comparative evaluation of mono-, di- and triglyceride of medium chain fatty acids by lipid/surfactant/water phase diagram, solubility determination and dispersion testing for application in pharmaceutical dosage form development. Pharm. Res. 2012 29 1 285 305 10.1007/s11095‑011‑0541‑3 21861203
    [Google Scholar]
  77. Lee B.K. Yun Y.H. Park K. Smart nanoparticles for drug delivery: Boundaries and opportunities. Chem. Eng. Sci. 2015 125 158 164 10.1016/j.ces.2014.06.042 25684780
    [Google Scholar]
  78. Rizvi S.A.A. Saleh A.M. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm. J. 2018 26 1 64 70 10.1016/j.jsps.2017.10.012 29379334
    [Google Scholar]
  79. Farjadian F. Ghasemi A. Gohari O. Roointan A. Karimi M. Hamblin M.R. Nanopharmaceuticals and nanomedicines currently on the market: Challenges and opportunities. Nanomedicine (Lond.) 2019 14 1 93 126 10.2217/nnm‑2018‑0120 30451076
    [Google Scholar]
  80. Dizaj S.M. Vazifehasl Zh. Salatin S. Adibkia Kh. Javadzadeh Y. Nanosizing of drugs: Effect on dissolution rate. Res. Pharm. Sci. 2015 10 2 95 108 26487886
    [Google Scholar]
  81. Halwani A.A. Development of pharmaceutical nanomedicines: From the bench to the market. Pharmaceutics 2022 14 1 106 10.3390/pharmaceutics14010106 35057002
    [Google Scholar]
  82. Huang Y. Hsu J.C. Koo H. Cormode D.P. Repurposing ferumoxytol: Diagnostic and therapeutic applications of an FDA-approved nanoparticle. Theranostics 2022 12 2 796 816 10.7150/thno.67375 34976214
    [Google Scholar]
  83. Kozielski K.L. Ruiz-Valls A. Tzeng S.Y. Guerrero-Cázares H. Rui Y. Li Y. Vaughan H.J. Gionet-Gonzales M. Vantucci C. Kim J. Schiapparelli P. Al-Kharboosh R. Quiñones-Hinojosa A. Green J.J. Cancer-selective nanoparticles for combinatorial siRNA delivery to primary human GBM in vitro and in vivo. Biomaterials 2019 209 79 87 10.1016/j.biomaterials.2019.04.020 31026613
    [Google Scholar]
  84. Niu S. Zhang L.K. Zhang L. Zhuang S. Zhan X. Chen W.Y. Du S. Yin L. You R. Li C.H. Guan Y.Q. Inhibition by multifunctional magnetic nanoparticles loaded with alpha-synuclein RNAi plasmid in a Parkinson’s disease model. Theranostics 2017 7 2 344 356 10.7150/thno.16562 28042339
    [Google Scholar]
  85. Ngowi E.E. Wang Y.Z. Qian L. Helmy Y.A.S.H. Anyomi B. Li T. Zheng M. Jiang E.S. Duan S.F. Wei J.S. Wu D.D. Ji X.Y. The application of nanotechnology for the diagnosis and treatment of brain diseases and disorders. Front. Bioeng. Biotechnol. 2021 9 629832 10.3389/fbioe.2021.629832 33738278
    [Google Scholar]
  86. Saraiva C. Paiva J. Santos T. Ferreira L. Bernardino L. MicroRNA-124 loaded nanoparticles enhance brain repair in Parkinson’s disease. J. Control. Release 2016 235 291 305 10.1016/j.jconrel.2016.06.005 27269730
    [Google Scholar]
  87. Ahmed H.M. Roy A. Wahab M. Ahmed M. Othman-Qadir G. Elesawy B.H. Khandaker M.U. Islam M.N. Emran T.B. Applications of nanomaterials in agrifood and pharmaceutical industry. J. Nanomater. 2021 2021 1 10 10.1155/2021/1472096
    [Google Scholar]
  88. Jana P. Shyam M. Singh S. Jayaprakash V. Dev A. Biodegradable polymers in drug delivery and oral vaccination. Eur. Polym. J. 2021 142 110155 10.1016/j.eurpolymj.2020.110155
    [Google Scholar]
  89. Bordat A. Boissenot T. Nicolas J. Tsapis N. Thermoresponsive polymer nanocarriers for biomedical applications. Adv. Drug Deliv. Rev. 2019 138 167 192 10.1016/j.addr.2018.10.005 30315832
    [Google Scholar]
  90. Tewari A.K. Upadhyay S.C. Kumar M. Pathak K. Kaushik D. Verma R. Bhatt S. Massoud E.E.S. Rahman M.H. Cavalu S. Insights on development aspects of polymeric nanocarriers: The translation from bench to clinic. Polymers 2022 14 17 3545 10.3390/polym14173545 36080620
    [Google Scholar]
  91. Choukaife H. Doolaanea A.A. Alfatama M. Alginate nanoformulation: Influence of process and selected variables. Pharmaceuticals 2020 13 11 335 10.3390/ph13110335 33114120
    [Google Scholar]
  92. Sadaquat H. Akhtar M. Nazir M. Ahmad R. Alvi Z. Akhtar N. Biodegradable and biocompatible polymeric nanoparticles for enhanced solubility and safe oral delivery of docetaxel: In vivo toxicity evaluation. Int. J. Pharm. 2021 598 120363 10.1016/j.ijpharm.2021.120363 33556487
    [Google Scholar]
  93. George A. Shah P.A. Shrivastav P.S. Natural biodegradable polymers based nano-formulations for drug delivery: A review. Int. J. Pharm. 2019 561 244 264 10.1016/j.ijpharm.2019.03.011 30851391
    [Google Scholar]
  94. Choukaife H. Seyam S. Alallam B. Doolaanea A.A. Alfatama M. Current advances in chitosan nanoparticles based oral drug delivery for colorectal cancer treatment. Int. J. Nanomedicine 2022 17 3933 3966 10.2147/IJN.S375229 36105620
    [Google Scholar]
  95. He H. Lu Y. Qi J. Zhu Q. Chen Z. Wu W. Adapting liposomes for oral drug delivery. Acta Pharm. Sin. B 2019 9 1 36 48 10.1016/j.apsb.2018.06.005 30766776
    [Google Scholar]
  96. Liu P. Chen G. Zhang J. A review of liposomes as a drug delivery system: Current status of approved products, regulatory environments, and future perspectives. Molecules 2022 27 4 1372 10.3390/molecules27041372 35209162
    [Google Scholar]
  97. Hu S. Niu M. Hu F. Lu Y. Qi J. Yin Z. Wu W. Integrity and stability of oral liposomes containing bile salts studied in simulated and ex vivo gastrointestinal media. Int. J. Pharm. 2013 441 1-2 693 700 10.1016/j.ijpharm.2012.10.025 23089580
    [Google Scholar]
  98. Alghurabi H. Tagami T. Ogawa K. Ozeki T. Preparation, characterization and in vitro evaluation of eudragit S100-coated bile salt- containing liposomes for oral colonic delivery of budesonide. Polymers 2022 14 13 2693 10.3390/polym14132693 35808738
    [Google Scholar]
  99. Elnaggar Y.S.R. Omran S. Hazzah H.A. Abdallah O.Y. Anionic versus cationic bilosomes as oral nanocarriers for enhanced delivery of the hydrophilic drug risedronate. Int. J. Pharm. 2019 564 410 425 10.1016/j.ijpharm.2019.04.069 31029657
    [Google Scholar]
  100. De Leo V. Milano F. Agostiano A. Catucci L. Recent advancements in polymer/liposome assembly for drug delivery: From surface modifications to hybrid vesicles. Polymers 2021 13 7 1027 10.3390/polym13071027 33810273
    [Google Scholar]
  101. Ruano M. Mateos-Maroto A. Ortega F. Ritacco H. Rubio J.E.F. Guzmán E. Rubio R.G. Fabrication of robust capsules by sequential assembly of polyelectrolytes onto charged liposomes. Langmuir 2021 37 20 6189 6200 10.1021/acs.langmuir.1c00341 33945690
    [Google Scholar]
  102. Belali N. Chaerunisaa A. Solvent evaporation as an efficient microencapsulating technique for taste masking in fast disintegrating oral tablets. Indones. J. Pharm. 2019 1 92 97
    [Google Scholar]
  103. Wani S.U.D. Ali M. Mehdi S. Masoodi M.H. Zargar M.I. Shakeel F. A review on chitosan and alginate-based microcapsules: Mechanism and applications in drug delivery systems. Int. J. Biol. Macromol. 2023 248 125875 10.1016/j.ijbiomac.2023.125875 37473899
    [Google Scholar]
  104. Li M. Guo Q. Lin Y. Bao H. Miao S. Recent progress in microencapsulation of active peptides—wall material, preparation, and application: A review. Foods 2023 12 4 896 10.3390/foods12040896 36832971
    [Google Scholar]
  105. Ortiz M. Jornada D.S. Pohlmann A.R. Guterres S.S. Development of novel chitosan microcapsules for pulmonary delivery of dapsone: Characterization, aerosol performance, and in vivo toxicity evaluation. AAPS PharmSciTech 2015 16 5 1033 1040 10.1208/s12249‑015‑0283‑3 25652730
    [Google Scholar]
  106. Cian R.E. Salgado P.R. Mauri A.N. Drago S.R. Pyropia columbina phycocolloids as microencapsulating material improve bioaccessibility of brewers’ spent grain peptides with ACE-I inhibitory activity. Int. J. Food Sci. Technol. 2020 55 3 1311 1317 10.1111/ijfs.14397
    [Google Scholar]
  107. Rashid A. Khalid S.H. Irfan M. Asghar S. Rizg W.Y. Sabei F.Y. Alfayez E. Alkharobi H. Safhi A.Y. Hosny K.M. Arshad M.S. Khan I.U. In vitro and in vivo evaluation of composite oral fast disintegrating film: An innovative strategy for the codelivery of ranitidine HCl and flurbiprofen. Pharmaceutics 2023 15 7 1987 10.3390/pharmaceutics15071987 37514173
    [Google Scholar]
  108. Yao M. Xie J. Du H. McClements D.J. Xiao H. Li L. Progress in microencapsulation of probiotics: A review. Compr. Rev. Food Sci. Food Saf. 2020 19 2 857 874 10.1111/1541‑4337.12532 33325164
    [Google Scholar]
  109. de Araújo Etchepare M. Nunes G.L. Nicoloso B.R. Barin J.S. Moraes Flores E.M. de Oliveira Mello R. Ragagnin de Menezes C. Improvement of the viability of encapsulated probiotics using whey proteins. Lebensm. Wiss. Technol. 2020 117 108601 10.1016/j.lwt.2019.108601
    [Google Scholar]
  110. Marques da Silva T. Jacob Lopes E. Codevilla C.F. Cichoski A.J. Flores É.M.M. Motta M.H. da Silva C.B. Grosso C.R.F. de Menezes C.R. Development and characterization of microcapsules containing Bifidobacterium Bb-12 produced by complex coacervation followed by freeze drying. Lebensm. Wiss. Technol. 2018 90 412 417 10.1016/j.lwt.2017.12.057
    [Google Scholar]
  111. Anselmo A.C. McHugh K.J. Webster J. Langer R. Jaklenec A. Layer-by-layer encapsulation of probiotics for delivery to the microbiome. Adv. Mater. 2016 28 43 9486 9490 10.1002/adma.201603270 27616140
    [Google Scholar]
  112. Hou J. Sun E. Zhang Z.H. Wang J. Yang L. Cui L. Ke Z.C. Tan X.B. Jia X.B. Lv H. Improved oral absorption and anti-lung cancer activity of paclitaxel-loaded mixed micelles. Drug Deliv. 2017 24 1 261 269 10.1080/10717544.2016.1245370 28165804
    [Google Scholar]
  113. Hoshyar N. Gray S. Han H. Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine 2016 11 6 673 692 10.2217/nnm.16.5 27003448
    [Google Scholar]
  114. Zoya I. He H. Wang L. Qi J. Lu Y. Wu W. The intragastrointestinal fate of paclitaxel-loaded micelles: Implications on oral drug delivery. Chin. Chem. Lett. 2021 32 4 1545 1549 10.1016/j.cclet.2020.09.038
    [Google Scholar]
  115. Mod Razif M.R.F. Chan S.Y. Widodo R.T. Chew Y.L. Hassan M. Hisham S.A. Rahman S.A. Ming L.C. Tan C.S. Lee S.K. Liew K.B. Optimization of a luteolin-loaded TPGS/poloxamer 407 nanomicelle: The effects of copolymers, hydration temperature and duration, and freezing temperature on encapsulation efficiency, particle size, and solubility. Cancers 2023 15 14 3741 10.3390/cancers15143741 37509402
    [Google Scholar]
  116. Chen X. Chen J. Li B. Yang X. Zeng R. Liu Y. Li T. Ho R.J.Y. Shao J. PLGA-PEG-PLGA triblock copolymeric micelles as oral drug delivery system: In vitro drug release and in vivo pharmacokinetics assessment. J. Colloid Interface Sci. 2017 490 542 552 10.1016/j.jcis.2016.11.089 27923139
    [Google Scholar]
  117. Fan W. Wei Q. Xiang J. Tang Y. Zhou Q. Geng Y. Liu Y. Sun R. Xu L. Wang G. Piao Y. Shao S. Zhou Z. Tang J. Xie T. Li Z. Shen Y. Mucus penetrating and cell-binding polyzwitterionic micelles as potent oral nanomedicine for cancer drug delivery. Adv. Mater. 2022 34 16 2109189 10.1002/adma.202109189 35196415
    [Google Scholar]
  118. Kumar R. Sirvi A. Kaur S. Samal S.K. Roy S. Sangamwar A.T. Polymeric micelles based on amphiphilic oleic acid modified carboxymethyl chitosan for oral drug delivery of bcs class iv compound: Intestinal permeability and pharmacokinetic evaluation. Eur. J. Pharm. Sci. 2020 153 105466 10.1016/j.ejps.2020.105466 32673792
    [Google Scholar]
  119. Zafar A. Alruwaili N.K. Imam S.S. Yasir M. Alsaidan O.A. Alquraini A. Rawaf A. Alsuwayt B. Anwer M.K. Alshehri S. Ghoneim M.M. Development and optimization of nanolipid-based formulation of diclofenac sodium: In vitro characterization and preclinical evaluation. Pharmaceutics 2022 14 3 507 10.3390/pharmaceutics14030507 35335883
    [Google Scholar]
  120. Alhalmi A. Amin S. Khan Z. Beg S. Al kamaly O. Saleh A. Kohli K. Nanostructured lipid carrier-based codelivery of raloxifene and naringin: Formulation, optimization, in vitro, ex vivo, in vivo assessment, and acute toxicity studies. Pharmaceutics 2022 14 9 1771 10.3390/pharmaceutics14091771 36145519
    [Google Scholar]
  121. Wang M. You S.K. Lee H.K. Han M.G. Lee H.M. Pham T.M.A. Na Y.G. Cho C.W. Development and evaluation of docetaxel-phospholipid complex loaded self-microemulsifying drug delivery system: optimization and in vitro/ex vivo studies. Pharmaceutics 2020 12 6 544 10.3390/pharmaceutics12060544 32545452
    [Google Scholar]
  122. Mohanty D. Zafar A. Jafar M. Upadhyay A.K. Haque M.A. Gupta J.K. Bakshi V. Ghoneim M.M. Alshehri S. Jahangir M.A. Ansari M.J. Development, in-vitro characterization and preclinical evaluation of esomeprazole-encapsulated proniosomal formulation for the enhancement of anti-ulcer activity. Molecules 2022 27 9 2748 10.3390/molecules27092748 35566099
    [Google Scholar]
  123. Hosny K.M. Development of saquinavir mesylate nanoemulsion-loaded transdermal films: Two-step optimization of permeation parameters, characterization, and ex vivo and in vivo evaluation. Int. J. Nanomedicine 2019 14 8589 8601 10.2147/IJN.S230747 31802871
    [Google Scholar]
  124. Liew K.B. Ming L.C. Goh B.H. Peh K.K. Fast melt cocoa butter tablet: Effect of waxes, starch, and peg 6000 on physical properties of the preparation. Molecules 2022 27 10 3128 10.3390/molecules27103128 35630605
    [Google Scholar]
  125. Widodo R.T. Hassan A. Liew K.B. Ming L.C. A directly compressible pregelatinised sago starch: A new excipient in the pharmaceutical tablet formulations. Polymers 2022 14 15 3050 10.3390/polym14153050 35956565
    [Google Scholar]
  126. Hirani J.J. Rathod D.A. Vadalia K.R. Orally disintegrating tablets: A review. Trop. J. Pharm. Res. 2009 8 2 161 172 10.4314/tjpr.v8i2.44525
    [Google Scholar]
  127. Hazdi S.N. Phang H.C. Ng Z.Q. Chew Y.L. Uddin A.H. Sarker Z.I. Lee S.K. Liew K.B. Development of a novel co-processed excipitient comprising of xylitol, mannitol, microcrystalline cellulose, and crospovidone for the compounding of memantine hydrochloride orally disintegrating tablet. Int. J. Pharm. Compd. 2023 27 6 522 527 38100670
    [Google Scholar]
  128. Rada S.K. Kumari A. Fast dissolving tablets: Waterless patient compliance dosage forms. J. Drug Deliv. Ther. 2019 9 1 303 317 10.22270/jddt.v9i1.2292
    [Google Scholar]
  129. Nagar P. Singh K. Chauhan I. Verma M. Yasir M. Khan A. Sharma R. Gupta N. Gupta N. Orally disintegrating tablets: Formulation, preparation techniques and evaluation. J. Appl. Pharm. Sci. 2011 01 35 45
    [Google Scholar]
  130. Sevi̇nç Özakar R. Özakar E. Current overview of oral thin films. Turk. J. Pharm. Sci. 2021 18 1 111 121 10.4274/tjps.galenos.2020.76390 33634686
    [Google Scholar]
  131. Liew K.B. Odeniyi M.A. Peh K.K. Application of freeze-drying technology in manufacturing orally disintegrating films. Pharm. Dev. Technol. 2016 21 3 346 353 10.3109/10837450.2014.1003657 25597618
    [Google Scholar]
  132. Rofiq H.M. Phang H.C. Janakiraman A.K. Chew Y.L. Uddin A.H. Sarker Z.I. Lee S.K. Liew K.B. Compounding and characterization of oral disintegrating films containing memantine hydrochloride for geriatrics. Int. J. Pharm. Compd. 2023 27 6 512 521 38100669
    [Google Scholar]
  133. Thakur N. Bansal M. Sharma N. Yadav G. Khare P. Overview “a novel approach of fast dissolving films and their patients”. Adv. Biol. Res. 2013 7 50 58
    [Google Scholar]
  134. Liew K.B. Gobal G. Mohd Rofiq H. Phang H.C. Lee S.K. Ming L.C. Uddin A.B.M.H. Chew Y.L. Lakshminarayanan V. Orally disintegrating film: A review of its formulation and manufacturing method. Malaysian J Med Health Sci 2023 19 6 297 303 10.47836/mjmhs.19.6.39
    [Google Scholar]
  135. Liew K.B. Ruslan F.H. Helal Uddin A.B.M. Islam Sarker M.Z. Janakiraman A.K. Orally disintegrating film: A revisit of its two decades development. Eur. Chem. Bull. 2022 11 16 20
    [Google Scholar]
  136. Bala R. Khanna S. Pawar P. Arora S. Orally dissolving strips: A new approach to oral drug delivery system. Int. J. Pharm. Investig. 2013 3 2 67 76 10.4103/2230‑973X.114897 24015378
    [Google Scholar]
  137. Muthukumar S. Chellam S. Gayathri R. Vinesha R. Layered tablets: A novel oral solid dosage form. Dosage Forms. Usama A. Rijeka IntechOpen 2022
    [Google Scholar]
  138. Rameshwar V.A. Kishor D. Bi-layer tablets for various drugs: A review. Sch Acad J Pharm 2014 3 271 279
    [Google Scholar]
  139. Kim J.E. Park Y.J. QbD consideration for developing a double-layered tablet into a single-layered tablet with telmisartan and amlodipine. Pharmaceutics 2022 14 2 377 10.3390/pharmaceutics14020377 35214109
    [Google Scholar]
  140. Laracuente M.L. Yu M.H. McHugh K.J. Zero-order drug delivery: State of the art and future prospects. J. Control. Release 2020 327 834 856 10.1016/j.jconrel.2020.09.020 32931897
    [Google Scholar]
  141. Janczura M. Sip S. Cielecka-Piontek J. The development of innovative dosage forms of the fixed-dose combination of active pharmaceutical ingredients. Pharmaceutics 2022 14 4 834 10.3390/pharmaceutics14040834 35456668
    [Google Scholar]
  142. Shende P. Shrawne C. Gaud R. Multi-layer tablet: Current scenario and recent advances. Int. J. Drug Deliv. 2012 4 418 426
    [Google Scholar]
  143. Efentakis M. Peponaki C. Formulation study and evaluation of matrix and three-layer tablet sustained drug delivery systems based on Carbopols with isosorbite mononitrate. AAPS PharmSciTech 2008 9 3 917 923 10.1208/s12249‑008‑9084‑2 18686040
    [Google Scholar]
  144. Rafiee M.H. Abdul Rasool B.K. An overview of microparticulate drug delivery system and its extensive therapeutic applications in diabetes. Adv. Pharm. Bull. 2022 12 4 730 746 36415632
    [Google Scholar]
  145. Cetin M. Sahin S. Microparticulate and nanoparticulate drug delivery systems for metformin hydrochloride. Drug Deliv. 2016 23 8 2796 2805 10.3109/10717544.2015.1089957 26394019
    [Google Scholar]
  146. da Silva R.Y.P. de Menezes D.L.B. Oliveira V.S. Converti A. de Lima Á.A.N. Microparticles in the development and improvement of pharmaceutical formulations: An analysis of in vitro and in vivo studies. Int. J. Mol. Sci. 2023 24 6 5441 10.3390/ijms24065441 36982517
    [Google Scholar]
  147. Nidhi R.M. Rashid M. Kaur V. Hallan S.S. Sharma S. Mishra N. Microparticles as controlled drug delivery carrier for the treatment of ulcerative colitis: A brief review. Saudi Pharm. J. 2016 24 4 458 472 10.1016/j.jsps.2014.10.001 27330377
    [Google Scholar]
  148. Lengyel M. Kállai-Szabó N. Antal V. Laki A.J. Antal I. Microparticles, microspheres, and microcapsules for advanced drug delivery. Sci. Pharm. 2019 87 3 20 10.3390/scipharm87030020
    [Google Scholar]
  149. Date A.A. Desai N. Dixit R. Nagarsenker M. Self-nanoemulsifying drug delivery systems: Formulation insights, applications and advances. Nanomedicine 2010 5 10 1595 1616 10.2217/nnm.10.126 21143036
    [Google Scholar]
  150. Salawi A. Self-emulsifying drug delivery systems: A novel approach to deliver drugs. Drug Deliv. 2022 29 1 1811 1823 10.1080/10717544.2022.2083724 35666090
    [Google Scholar]
  151. Buya A.B. Beloqui A. Memvanga P.B. Préat V. Self-nano-emulsifying drug-delivery systems: From the development to the current applications and challenges in oral drug delivery. Pharmaceutics 2020 12 12 1194 10.3390/pharmaceutics12121194 33317067
    [Google Scholar]
  152. Adepu S. Ramakrishna S. Controlled drug delivery systems: Current status and future directions. Molecules 2021 26 19 5905 10.3390/molecules26195905 34641447
    [Google Scholar]
  153. Nokhodchi A. Raja S. Patel P. Asare-Addo K. The role of oral controlled release matrix tablets in drug delivery systems. Bioimpacts 2012 2 4 175 187 23678458
    [Google Scholar]
  154. Sahoo C.K. Sahoo N.K. Rao S.R.M. Sudhakar M. Satyanarayana K. A review on controlled porosity osmotic pump tablets and its evaluation. Bull. Fac. Pharm. Cairo Univ. 2015 53 2 195 205 10.1016/j.bfopcu.2015.10.004
    [Google Scholar]
  155. Al Hanbali O.A. Khan H.M.S. Sarfraz M. Arafat M. Ijaz S. Hameed A. Transdermal patches: Design and current approaches to painless drug delivery. Acta Pharm. 2019 69 2 197 215 10.2478/acph‑2019‑0016 31259729
    [Google Scholar]
  156. Stanojević G. Medarević D. Adamov I. Pešić N. Kovačević J. Ibrić S. Tailoring atomoxetine release rate from DLP 3D-printed tablets using artificial neural networks: Influence of tablet thickness and drug loading. Molecules 2020 26 1 111 10.3390/molecules26010111 33383691
    [Google Scholar]
  157. Kaur G. Grewal J. Jyoti K. Jain U.K. Chandra R. Madan J. Oral controlled and sustained drug delivery systems: Concepts, advances, preclinical, and clinical status. Drug Targeting and Stimuli Sensitive Drug Delivery Systems. Chapter 15 Grumezescu A.M. William Andrew Publishing 2018 567 626 10.1016/B978‑0‑12‑813689‑8.00015‑X
    [Google Scholar]
  158. Hua S. Advances in nanoparticulate drug delivery approaches for sublingual and buccal administration. Front. Pharmacol. 2019 10 1328 10.3389/fphar.2019.01328 31827435
    [Google Scholar]
  159. Du P. Li P. Liu H. Zhao R. Zhao Z. Yu W. Zhou X. Liu L. Open-label, randomized, single-dose, 2-period, 2-sequence crossover, comparative pharmacokinetic study to evaluate bioequivalence of 2 oral formulations of olanzapine under fasting and fed conditions. Clin. Pharmacol. Drug Dev. 2020 9 5 621 628 10.1002/cpdd.743 31595704
    [Google Scholar]
  160. Easa N. Alany R.G. Carew M. Vangala A. A review of non-invasive insulin delivery systems for diabetes therapy in clinical trials over the past decade. Drug Discov. Today 2019 24 2 440 451 10.1016/j.drudis.2018.11.010 30465877
    [Google Scholar]
  161. Olorunsola E.O. Udoh I.E. Ekott M.B. Alozie M.F. Davies K.G. Biopharmaceutics and clinical outcomes of emerging dosage forms of insulin: A systematic review. Diabetes Epidemiol. Manage. 2023 9 100120 10.1016/j.deman.2022.100120
    [Google Scholar]
  162. Lintzeris N. Leung S.Y. Dunlop A.J. Larance B. White N. Rivas G.R. Holland R.M. Degenhardt L. Muhleisen P. Hurley M. Ali R. A randomised controlled trial of sublingual buprenorphine–naloxone film versus tablets in the management of opioid dependence. Drug Alcohol Depend. 2013 131 1-2 119 126 10.1016/j.drugalcdep.2012.12.009 23317685
    [Google Scholar]
  163. Nagpal K. Singh S. K. Mishra D. N. Patent innovations in fast dissolving/disintegrating dosage forms. Current Adv Drug Delivery Through Fast Dissolving/Disintegrating Dosage Forms. 2017 119
    [Google Scholar]
  164. Ruiz PSL Serafini MR Alves IA Novoa DMA Recent progress in self-emulsifying drug delivery systems: a systematic patent review (2011-2020). Crit Rev™ Ther Drug Carrier Syst. 2022 39 2
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128338560240923073357
Loading
/content/journals/cpd/10.2174/0113816128338560240923073357
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test