Skip to content
2000
Volume 31, Issue 5
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

The oral route of drug administration is often preferred by patients and healthcare providers due to its convenience, ease of use, non-invasiveness, and patient acceptance. However, traditional oral dosage forms have several limitations, including low bioavailability, limited drug loading capacity, and stability and storage issues, particularly with solutions and suspensions. Over the years, researchers have dedicated considerable effort to developing novel oral drug delivery systems to overcome these limitations. This review discusses various challenges associated with oral drug delivery systems, including biological, pharmaceutical, and physicochemical barriers. It also explores common delivery approaches, such as gastroretentive drug delivery, small intestine drug delivery, and colon-targeting drug delivery systems. Additionally, numerous strategies aimed at improving oral drug delivery efficiency are reviewed, including solid dispersion, absorption enhancers, lipid-based formulations, nanoparticles, polymer-based nanocarriers, liposomal formulations, microencapsulation, and micellar formulations. Furthermore, innovative approaches like orally disintegrating tablets (ODT), orally disintegrating films (ODF), layered tablets, micro particulates, self-nano emulsifying formulations (SNEF), and controlled release dosage forms are explored for their potential in enhancing oral drug delivery efficiency and promoting patients’ compliance. Overall, this review highlights significant progress in addressing challenges in the pharmaceutical industry and clinical settings, offering novel approaches for the development of effective oral drug delivery systems.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128338560240923073357
2024-10-10
2025-04-02
Loading full text...

Full text loading...

References

  1. AlqahtaniM.S. KaziM. AlsenaidyM.A. AhmadM.Z. Advances in oral drug delivery.Front. Pharmacol.20211261841110.3389/fphar.2021.61841133679401
    [Google Scholar]
  2. PrasadV. De JesúsK. MailankodyS. The high price of anticancer drugs: Origins, implications, barriers, solutions.Nat. Rev. Clin. Oncol.201714638139010.1038/nrclinonc.2017.3128290490
    [Google Scholar]
  3. HuaS. Advances in oral drug delivery for regional targeting in the gastrointestinal tract - Influence of physiological, pathophysiological and pharmaceutical factors.Front. Pharmacol.20201152410.3389/fphar.2020.0052432425781
    [Google Scholar]
  4. RanadeV.V. Drug delivery systems 5A. Oral drug delivery.J. Clin. Pharmacol.199131121610.1002/j.1552‑4604.1991.tb01881.x2045525
    [Google Scholar]
  5. KaurG. AroraM. Ravi KumarM.N.V. Oral drug delivery technologies-a decade of developments.J. Pharmacol. Exp. Ther.2019370352954310.1124/jpet.118.25582831010845
    [Google Scholar]
  6. HuaS. LyeE.C. Impact of gastric and bowel surgery on gastrointestinal drug delivery.Drug Deliv. Transl. Res.2023131375310.1007/s13346‑022‑01179‑635585472
    [Google Scholar]
  7. RubbensJ. MolsR. BrouwersJ. AugustijnsP. Exploring gastric drug absorption in fasted and fed state rats.Int. J. Pharm.2018548163664110.1016/j.ijpharm.2018.07.01729981414
    [Google Scholar]
  8. ReixN. GuhmannP. BietigerW. PingetM. JeandidierN. SigristS. Duodenum-specific drug delivery: In vivo assessment of a pharmaceutically developed enteric-coated capsule for a broad applicability in rat studies.Int. J. Pharm.20124221-233834010.1016/j.ijpharm.2011.10.01722019485
    [Google Scholar]
  9. YoshidaT. LaiT.C. KwonG.S. SakoK. pH- and ion-sensitive polymers for drug delivery.Expert Opin. Drug Deliv.201310111497151310.1517/17425247.2013.82197823930949
    [Google Scholar]
  10. LouJ. DuanH. QinQ. TengZ. GanF. ZhouX. ZhouX. Advances in oral drug delivery systems: Challenges and opportunities.Pharmaceutics202315248410.3390/pharmaceutics1502048436839807
    [Google Scholar]
  11. FoxC.B. KimJ. LeL.V. NemethC.L. ChirraH.D. DesaiT.A. Micro/nanofabricated platforms for oral drug delivery.J. Control. Release201521943144410.1016/j.jconrel.2015.07.03326244713
    [Google Scholar]
  12. TarghotraM. ChauhanM.K. An overview on various approaches and recent patents on buccal drug delivery systems.Curr. Pharm. Des.202026395030503910.2174/138161282666620061418201332534560
    [Google Scholar]
  13. BatchelorH. Bioadhesive dosage forms for esophageal drug delivery.Pharm. Res.200522217518110.1007/s11095‑004‑1183‑515783063
    [Google Scholar]
  14. ZhangL. RussellD. ConwayB.R. BatchelorH. Strategies and therapeutic opportunities for the delivery of drugs to the esophagus.Crit. Rev. Ther. Drug Carrier Syst.200825325930410.1615/CritRevTherDrugCarrierSyst.v25.i3.2018540840
    [Google Scholar]
  15. EnsignL.M. ConeR. HanesJ. Oral drug delivery with polymeric nanoparticles: The gastrointestinal mucus barriers.Adv. Drug Deliv. Rev.201264655757010.1016/j.addr.2011.12.00922212900
    [Google Scholar]
  16. BaganJ. PaderniC. TermineN. CampisiG. Lo RussoL. CompilatoD. Di FedeO. Mucoadhesive polymers for oral transmucosal drug delivery: A review.Curr. Pharm. Des.201218345497551410.2174/13816121280330754522632395
    [Google Scholar]
  17. DruckerD.J. Advances in oral peptide therapeutics.Nat. Rev. Drug Discov.202019427728910.1038/s41573‑019‑0053‑031848464
    [Google Scholar]
  18. LimY.F. WilliamsM.A.K. LentleR.G. JanssenP.W.M. ManselB.W. KeenS.A.J. ChambersP. An exploration of the microrheological environment around the distal ileal villi and proximal colonic mucosa of the possum (Trichosurus vulpecula).J. R. Soc. Interface201310812012100810.1098/rsif.2012.100823389898
    [Google Scholar]
  19. WangY. PiC. FengX. HouY. ZhaoL. WeiY. The influence of nanoparticle properties on oral bioavailability of drugs.Int. J. Nanomedicine2020156295631010.2147/IJN.S25726932943863
    [Google Scholar]
  20. AmidonS. BrownJ.E. DaveV.S. Colon-targeted oral drug delivery systems: Design trends and approaches.AAPS PharmSciTech201516473174110.1208/s12249‑015‑0350‑926070545
    [Google Scholar]
  21. PhilipA. PhilipB. Colon targeted drug delivery systems: A review on primary and novel approaches.Oman Med. J.2010252707810.5001/omj.2010.2422125706
    [Google Scholar]
  22. KoziolekM. GrimmM. BeckerD. IordanovV. ZouH. ShimizuJ. WankeC. GarbaczG. WeitschiesW. Investigation of pH and temperature profiles in the GI tract of fasted human subjects using the intellicap® system.J. Pharm. Sci.201510492855286310.1002/jps.2427425411065
    [Google Scholar]
  23. RenukuntlaJ. VadlapudiA.D. PatelA. BodduS.H.S. MitraA.K. Approaches for enhancing oral bioavailability of peptides and proteins.Int. J. Pharm.20134471-2759310.1016/j.ijpharm.2013.02.03023428883
    [Google Scholar]
  24. LiuL. YaoW. RaoY. LuX. GaoJ. pH-Responsive carriers for oral drug delivery: Challenges and opportunities of current platforms.Drug Deliv.201724156958110.1080/10717544.2017.127923828195032
    [Google Scholar]
  25. ShanM. GentileM. YeiserJ.R. WallandA.C. BornsteinV.U. ChenK. HeB. CassisL. BigasA. ColsM. ComermaL. HuangB. BlanderJ.M. XiongH. MayerL. BerinC. AugenlichtL.H. VelcichA. CeruttiA. Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals.Science2013342615744745310.1126/science.123791024072822
    [Google Scholar]
  26. BoeghM. García-DíazM. MüllertzA. NielsenH.M. Steric and interactive barrier properties of intestinal mucus elucidated by particle diffusion and peptide permeation.Eur. J. Pharm. Biopharm.201595Pt A13614310.1016/j.ejpb.2015.01.01425622791
    [Google Scholar]
  27. KrauseM.E. SahinE. Chemical and physical instabilities in manufacturing and storage of therapeutic proteins.Curr. Opin. Biotechnol.20196015916710.1016/j.copbio.2019.01.01430861476
    [Google Scholar]
  28. Nick PaceC. ScholtzJ.M. GrimsleyG.R. Forces stabilizing proteins.FEBS Lett.2014588142177218410.1016/j.febslet.2014.05.00624846139
    [Google Scholar]
  29. SongN-n ZhangS LiuC Overview of factors affecting oral drug absorption.Asian J Drug Metab Pharmacokinet20044167176
    [Google Scholar]
  30. VarmaM.V.S. KaushalA.M. GargA. GargS. Factors affecting mechanism and kinetics of drug release from matrix-based oral controlled drug delivery systems.Am. J. Drug Deliv.200421435710.2165/00137696‑200402010‑00003
    [Google Scholar]
  31. SamineniR. ChimakurthyJ. KonidalaS. Emerging role of biopharmaceutical classification and biopharmaceutical drug disposition system in dosage form development: A systematic review.Turk. J. Pharm. Sci.202219670671310.4274/tjps.galenos.2021.7355436544401
    [Google Scholar]
  32. YuL.X. AmidonG.L. PolliJ.E. ZhaoH. MehtaM.U. ConnerD.P. ShahV.P. LeskoL.J. ChenM.L. LeeV.H.L. HussainA.S. Biopharmaceutics classification system: The scientific basis for biowaiver extensions.Pharm. Res.200219792192510.1023/A:101647360163312180542
    [Google Scholar]
  33. LennernäsH. Intestinal permeability and its relevance for absorption and elimination.Xenobiotica20073710-111015105110.1080/0049825070170481917968735
    [Google Scholar]
  34. EzikeT.C. OkpalaU.S. OnojaU.L. NwikeC.P. EzeakoE.C. OkparaO.J. OkoroaforC.C. EzeS.C. KaluO.L. OdohE.C. NwadikeU.G. OgbodoJ.O. UmehB.U. OssaiE.C. NwangumaB.C. Advances in drug delivery systems, challenges and future directions.Heliyon202396e1748810.1016/j.heliyon.2023.e1748837416680
    [Google Scholar]
  35. AwasthiR. KulkarniG.T. Decades of research in drug targeting to the upper gastrointestinal tract using gastroretention technologies: Where do we stand?Drug Deliv.201623237839410.3109/10717544.2014.93653525026414
    [Google Scholar]
  36. DasS. KaurS. RaiV.K. Gastro-retentive drug delivery systems: A recent update on clinical pertinence and drug delivery.Drug Deliv. Transl. Res.20211151849187710.1007/s13346‑020‑00875‑533403646
    [Google Scholar]
  37. TripathiJ. ThapaP. MaharjanR. JeongS.H. Current state and future perspectives on gastroretentive drug delivery systems.Pharmaceutics201911419310.3390/pharmaceutics1104019331010054
    [Google Scholar]
  38. RimawiI.B. MuqediR.H. KanazeF.I. Development of gabapentin expandable gastroretentive controlled drug delivery system.Sci. Rep.2019911167510.1038/s41598‑019‑48260‑831406203
    [Google Scholar]
  39. KaewkroekK. PetchsomritA. Wira SeptamaA. WiwattanapatapeeR. Development of starch/chitosan expandable films as a gastroretentive carrier for ginger extract-loaded solid dispersion.Saudi Pharm. J.202230212013110.1016/j.jsps.2021.12.01735528854
    [Google Scholar]
  40. NeumannM. HeimhardtC. SeidlitzK. KoziolekM. SchneiderF. SchillerC. HankeU. AnschützM. KnopkeC. DonathF. ThomaR. BrätterC. SchugB. FrankeH. WeitschiesW. Development of a furosemide-containing expandable system for gastric retention.J. Control. Release202133810511810.1016/j.jconrel.2021.08.02634416321
    [Google Scholar]
  41. WangS. WenH. LiP. CuiM. SunW. WangH. LiuH. LiS. PanW. YangX. Formulation and evaluation of gastric-floating controlled release tablets of Ginkgolides.J. Drug Deliv. Sci. Technol.20195171710.1016/j.jddst.2019.02.011
    [Google Scholar]
  42. LiuH. WangS. ShiH. ZhangR. QuK. HuY. QuX. GanC. ChenJ. ShiX. ZhangM. ZengW. Gastric floating tablet improves the bioavailability and reduces the hypokalemia effect of gossypol in vivo. Saudi Pharm. J.202129430531410.1016/j.jsps.2021.03.00133994825
    [Google Scholar]
  43. HuangZ. XuC. ZhaoL. WeiC. WuY. QiuJ. YuZ. YangK. HuH. WangZ. Preparation, optimization and in vivo study of gastric floating tablets of constunolide and dehydrocostus lactone with ideal therapeutic effect on gastric diseases.J. Drug Deliv. Sci. Technol.20227810394210.1016/j.jddst.2022.103942
    [Google Scholar]
  44. KoiralaS. NepalP. GhimireG. BasnetR. RawatI. DahalA. PandeyJ. Parajuli-BaralK. Formulation and evaluation of mucoadhesive buccal tablets of aceclofenac.Heliyon202173e0643910.1016/j.heliyon.2021.e0643933786387
    [Google Scholar]
  45. JinH. NgoH.V. ParkC. LeeB.J. Mucoadhesive buccal tablet of leuprolide and its fatty acid conjugate: Design, in vitro evaluation and formulation strategies.Int. J. Pharm.202363912296310.1016/j.ijpharm.2023.12296337068715
    [Google Scholar]
  46. ArabiM. MortazaviS.A. JafariazarZ. FarhadnejadH. Alipour HarisaG. FatahiY. Fabrication and in vitro evaluation of buccal mucoadhesive tablet of meloxicam.Iran. J. Pharm. Res.2020193637633680010
    [Google Scholar]
  47. SharmaA. GoyalA.K. RathG. Development and characterization of gastroretentive high-density pellets lodged with zero valent iron nanoparticles.J. Pharm. Sci.2018107102663267310.1016/j.xphs.2018.06.01429936203
    [Google Scholar]
  48. PatilJ. SayyedH. SuryawanshiH. PatilB. Formulation and evaluation of verdant tablets containing saponin-coalesced silver nanoparticles got from fenugreek seed extract.Chem Proc2022856
    [Google Scholar]
  49. FeltonL.A. PorterS.C. An update on pharmaceutical film coating for drug delivery.Expert Opin. Drug Deliv.201310442143510.1517/17425247.2013.76379223339342
    [Google Scholar]
  50. WathoniN. NguyenA.N. RusdinA. UmarA.K. MohammedA.F.A. MotoyamaK. JoniI.M. MuchtaridiM. Enteric-coated strategies in colorectal cancer nanoparticle drug delivery system.Drug Des. Devel. Ther.2020144387440510.2147/DDDT.S27361233116423
    [Google Scholar]
  51. KhanM.J. HuangW.C. AkhlaqM. RazaS. HamadouA.H. YuningG. SunJ. MaoX. Design, preparation, and evaluation of enteric coating formulation of HPMC and eudragit L100 on carboxylated agarose hydrogel by using drug tartrazine.BioMed Res. Int.202220221610.1155/2022/104225335127935
    [Google Scholar]
  52. RavalM. ShethN.R. RamaniR.V. Formulation and evaluation of sustained release enteric-coated pellets of budesonide for intestinal delivery.Int. J. Pharm. Investig.20133420321110.4103/2230‑973X.12129424350040
    [Google Scholar]
  53. LeeT.J. KimD. KimJ.C. RoS.W. NaD.H. Formulation development and pharmacokinetic evaluation of enteric-coated dexrabeprazole tablets.J. Pharm. Investig.202353232333110.1007/s40005‑022‑00602‑x
    [Google Scholar]
  54. PanthiV.K. JhaS.K. ChaubeyR. PangeniR. Formulation and development of Serratiopeptidase enteric coated tablets and analytical method validation by UV Spectroscopy.Int. J. Anal. Chem.2021202111310.1155/2021/974947434712328
    [Google Scholar]
  55. KumarA. NaikP.K. PradhanD. GhoshG. RathG. Mucoadhesive formulations: Innovations, merits, drawbacks, and future outlook.Pharm. Dev. Technol.202025779781410.1080/10837450.2020.175377132267180
    [Google Scholar]
  56. TeruelA.H. Gonzalez-AlvarezI. BermejoM. MerinoV. MarcosM.D. SancenonF. Gonzalez-AlvarezM. Martinez-MañezR. New insights of oral colonic drug delivery systems for inflammatory bowel disease therapy.Int. J. Mol. Sci.20202118650210.3390/ijms2118650232899548
    [Google Scholar]
  57. YanY. RenF. WangP. SunY. XingJ. Synthesis and evaluation of a prodrug of 5-aminosalicylic acid for the treatment of ulcerative colitis.Iran. J. Basic Med. Sci.201922121452146132133064
    [Google Scholar]
  58. KimS. LeeS. LeeH. JuS. ParkS. KwonD. YooJ.W. YoonI.S. MinD.S. JungY.S. JungY. A colon-targeted prodrug, 4-phenylbutyric acid-glutamic acid conjugate, ameliorates 2,4-dinitrobenzenesulfonic acid-induced colitis in rats.Pharmaceutics202012984310.3390/pharmaceutics1209084332899177
    [Google Scholar]
  59. RajpurohitH. SharmaS. SharmaP. BhandariA. Polymers for colon targeted drug delivery.Indian J. Pharm. Sci.201072668969610.4103/0250‑474X.8457621969739
    [Google Scholar]
  60. LiS. JinM. WuY. JungS. LiD. HeN. LeeM. An efficient enzyme-triggered controlled release system for colon-targeted oral delivery to combat dextran sodium sulfate (DSS)-induced colitis in mice.Drug Deliv.20212811120113110.1080/10717544.2021.193418934121560
    [Google Scholar]
  61. ZhangY. WangL. WangZ.D. ZhouQ. ZhouX. ZhouT. GuanY.X. LiuX. Surface-anchored microbial enzyme-responsive solid lipid nanoparticles enabling colonic budesonide release for ulcerative colitis treatment.J. Nanobiotechnol202321114510.1186/s12951‑023‑01889‑037127609
    [Google Scholar]
  62. LeeS.H. BajracharyaR. MinJ.Y. HanJ.W. ParkB.J. HanH.K. Strategic approaches for colon targeted drug delivery: An overview of recent advancements.Pharmaceutics20201216810.3390/pharmaceutics1201006831952340
    [Google Scholar]
  63. BazanL. BendasE.R. El GazayerlyO.N. BadawyS.S. Comparative pharmaceutical study on colon targeted micro-particles of celecoxib: In vitro–in vivo evaluation.Drug Deliv.20162393339334910.1080/10717544.2016.117882427086898
    [Google Scholar]
  64. OshiM.A. NaeemM. BaeJ. KimJ. LeeJ. HasanN. KimW. ImE. JungY. YooJ.W. Colon-targeted dexamethasone microcrystals with pH-sensitive chitosan/alginate/Eudragit S multilayers for the treatment of inflammatory bowel disease.Carbohydr. Polym.201819843444210.1016/j.carbpol.2018.06.10730093020
    [Google Scholar]
  65. TanC. FanH. DingJ. HanC. GuanY. ZhuF. WuH. LiuY. ZhangW. HouX. TanS. TangQ. ROS-responsive nanoparticles for oral delivery of luteolin and targeted therapy of ulcerative colitis by regulating pathological microenvironment.Mater. Today Bio20221410024610.1016/j.mtbio.2022.10024635372817
    [Google Scholar]
  66. WangD. JiangQ. ShenR. PengL. ZhouW. MengT. HuF. WangJ. YuanH. ROS-responsive nanoparticles targeting inflamed colon for synergistic therapy of inflammatory bowel disease via barrier repair and anti-inflammation.Nano Res.20241765409542310.1007/s12274‑024‑6435‑6
    [Google Scholar]
  67. ChenQ. LuoR. HanX. ZhangJ. HeY. QiS. PuX. NieW. DongL. XuH. LiuF. LinM. ZhongH. FuC. GaoF. Entrapment of macrophage-target nanoparticles by yeast microparticles for rhein delivery in ulcerative colitis treatment.Biomacromolecules20212262754276710.1021/acs.biomac.1c0042534019390
    [Google Scholar]
  68. HuangY. DaiW.G. Fundamental aspects of solid dispersion technology for poorly soluble drugs.Acta Pharm. Sin. B201441182510.1016/j.apsb.2013.11.00126579360
    [Google Scholar]
  69. MalkawiR. MalkawiW.I. Al-MahmoudY. TawalbehJ. Current trends on solid dispersions: Past, present, and future.Adv. Pharmacol. Pharm. Sci.2022202211710.1155/2022/591601336317015
    [Google Scholar]
  70. KaushikR. BudhwarV. KaushikD. An overview on recent patents and technologies on solid dispersion.Recent Pat. Drug Deliv. Formul.2020141637410.2174/22124039MTAzoNzEwy31951172
    [Google Scholar]
  71. AungstB.J. Absorption enhancers: Applications and advances.AAPS J.2012141101810.1208/s12248‑011‑9307‑422105442
    [Google Scholar]
  72. YewaleC. PatilS. KolateA. KoreG. MisraA. Oral absorption promoters: Opportunities, issues, and challenges.Crit. Rev. Ther. Drug Carrier Syst.201532536338710.1615/CritRevTherDrugCarrierSyst.201501186526559432
    [Google Scholar]
  73. KimJ.C. ParkE.J. NaD.H. Gastrointestinal permeation enhancers for the development of oral peptide pharmaceuticals.Pharmaceuticals20221512158510.3390/ph1512158536559036
    [Google Scholar]
  74. MohiteP. SinghS. PawarA. SangaleA. PrajapatiB.G. Lipid-based oral formulation in capsules to improve the delivery of poorly water-soluble drugs.Front. Drug Deliv.20233123201210.3389/fddev.2023.1232012
    [Google Scholar]
  75. KalepuS. ManthinaM. PadavalaV. Oral lipid-based drug delivery systems - An overview.Acta Pharm. Sin. B20133636137210.1016/j.apsb.2013.10.001
    [Google Scholar]
  76. PrajapatiH.N. DalrympleD.M. SerajuddinA.T.M. A comparative evaluation of mono-, di- and triglyceride of medium chain fatty acids by lipid/surfactant/water phase diagram, solubility determination and dispersion testing for application in pharmaceutical dosage form development.Pharm. Res.201229128530510.1007/s11095‑011‑0541‑321861203
    [Google Scholar]
  77. LeeB.K. YunY.H. ParkK. Smart nanoparticles for drug delivery: Boundaries and opportunities.Chem. Eng. Sci.201512515816410.1016/j.ces.2014.06.04225684780
    [Google Scholar]
  78. RizviS.A.A. SalehA.M. Applications of nanoparticle systems in drug delivery technology.Saudi Pharm. J.2018261647010.1016/j.jsps.2017.10.01229379334
    [Google Scholar]
  79. FarjadianF. GhasemiA. GohariO. RoointanA. KarimiM. HamblinM.R. Nanopharmaceuticals and nanomedicines currently on the market: Challenges and opportunities.Nanomedicine (Lond.)20191419312610.2217/nnm‑2018‑012030451076
    [Google Scholar]
  80. DizajS.M. VazifehaslZh. SalatinS. AdibkiaKh. JavadzadehY. Nanosizing of drugs: Effect on dissolution rate.Res. Pharm. Sci.20151029510826487886
    [Google Scholar]
  81. HalwaniA.A. Development of pharmaceutical nanomedicines: From the bench to the market.Pharmaceutics202214110610.3390/pharmaceutics1401010635057002
    [Google Scholar]
  82. HuangY. HsuJ.C. KooH. CormodeD.P. Repurposing ferumoxytol: Diagnostic and therapeutic applications of an FDA-approved nanoparticle.Theranostics202212279681610.7150/thno.6737534976214
    [Google Scholar]
  83. KozielskiK.L. Ruiz-VallsA. TzengS.Y. Guerrero-CázaresH. RuiY. LiY. VaughanH.J. Gionet-GonzalesM. VantucciC. KimJ. SchiapparelliP. Al-KharbooshR. Quiñones-HinojosaA. GreenJ.J. Cancer-selective nanoparticles for combinatorial siRNA delivery to primary human GBM in vitro and in vivo.Biomaterials2019209798710.1016/j.biomaterials.2019.04.02031026613
    [Google Scholar]
  84. NiuS. ZhangL.K. ZhangL. ZhuangS. ZhanX. ChenW.Y. DuS. YinL. YouR. LiC.H. GuanY.Q. Inhibition by multifunctional magnetic nanoparticles loaded with alpha-synuclein RNAi plasmid in a Parkinson’s disease model.Theranostics20177234435610.7150/thno.1656228042339
    [Google Scholar]
  85. NgowiE.E. WangY.Z. QianL. HelmyY.A.S.H. AnyomiB. LiT. ZhengM. JiangE.S. DuanS.F. WeiJ.S. WuD.D. JiX.Y. The application of nanotechnology for the diagnosis and treatment of brain diseases and disorders.Front. Bioeng. Biotechnol.2021962983210.3389/fbioe.2021.62983233738278
    [Google Scholar]
  86. SaraivaC. PaivaJ. SantosT. FerreiraL. BernardinoL. MicroRNA-124 loaded nanoparticles enhance brain repair in Parkinson’s disease.J. Control. Release201623529130510.1016/j.jconrel.2016.06.00527269730
    [Google Scholar]
  87. AhmedH.M. RoyA. WahabM. AhmedM. Othman-QadirG. ElesawyB.H. KhandakerM.U. IslamM.N. EmranT.B. Applications of nanomaterials in agrifood and pharmaceutical industry.J. Nanomater.2021202111010.1155/2021/1472096
    [Google Scholar]
  88. JanaP. ShyamM. SinghS. JayaprakashV. DevA. Biodegradable polymers in drug delivery and oral vaccination.Eur. Polym. J.202114211015510.1016/j.eurpolymj.2020.110155
    [Google Scholar]
  89. BordatA. BoissenotT. NicolasJ. TsapisN. Thermoresponsive polymer nanocarriers for biomedical applications.Adv. Drug Deliv. Rev.201913816719210.1016/j.addr.2018.10.00530315832
    [Google Scholar]
  90. TewariA.K. UpadhyayS.C. KumarM. PathakK. KaushikD. VermaR. BhattS. MassoudE.E.S. RahmanM.H. CavaluS. Insights on development aspects of polymeric nanocarriers: The translation from bench to clinic.Polymers20221417354510.3390/polym1417354536080620
    [Google Scholar]
  91. ChoukaifeH. DoolaaneaA.A. AlfatamaM. Alginate nanoformulation: Influence of process and selected variables.Pharmaceuticals2020131133510.3390/ph1311033533114120
    [Google Scholar]
  92. SadaquatH. AkhtarM. NazirM. AhmadR. AlviZ. AkhtarN. Biodegradable and biocompatible polymeric nanoparticles for enhanced solubility and safe oral delivery of docetaxel: In vivo toxicity evaluation.Int. J. Pharm.202159812036310.1016/j.ijpharm.2021.12036333556487
    [Google Scholar]
  93. GeorgeA. ShahP.A. ShrivastavP.S. Natural biodegradable polymers based nano-formulations for drug delivery: A review.Int. J. Pharm.201956124426410.1016/j.ijpharm.2019.03.01130851391
    [Google Scholar]
  94. ChoukaifeH. SeyamS. AlallamB. DoolaaneaA.A. AlfatamaM. Current advances in chitosan nanoparticles based oral drug delivery for colorectal cancer treatment.Int. J. Nanomedicine2022173933396610.2147/IJN.S37522936105620
    [Google Scholar]
  95. HeH. LuY. QiJ. ZhuQ. ChenZ. WuW. Adapting liposomes for oral drug delivery.Acta Pharm. Sin. B201991364810.1016/j.apsb.2018.06.00530766776
    [Google Scholar]
  96. LiuP. ChenG. ZhangJ. A review of liposomes as a drug delivery system: Current status of approved products, regulatory environments, and future perspectives.Molecules2022274137210.3390/molecules2704137235209162
    [Google Scholar]
  97. HuS. NiuM. HuF. LuY. QiJ. YinZ. WuW. Integrity and stability of oral liposomes containing bile salts studied in simulated and ex vivo gastrointestinal media.Int. J. Pharm.20134411-269370010.1016/j.ijpharm.2012.10.02523089580
    [Google Scholar]
  98. AlghurabiH. TagamiT. OgawaK. OzekiT. Preparation, characterization and in vitro evaluation of eudragit S100-coated bile salt- containing liposomes for oral colonic delivery of budesonide.Polymers20221413269310.3390/polym1413269335808738
    [Google Scholar]
  99. ElnaggarY.S.R. OmranS. HazzahH.A. AbdallahO.Y. Anionic versus cationic bilosomes as oral nanocarriers for enhanced delivery of the hydrophilic drug risedronate.Int. J. Pharm.201956441042510.1016/j.ijpharm.2019.04.06931029657
    [Google Scholar]
  100. De LeoV. MilanoF. AgostianoA. CatucciL. Recent advancements in polymer/liposome assembly for drug delivery: From surface modifications to hybrid vesicles.Polymers2021137102710.3390/polym1307102733810273
    [Google Scholar]
  101. RuanoM. Mateos-MarotoA. OrtegaF. RitaccoH. RubioJ.E.F. GuzmánE. RubioR.G. Fabrication of robust capsules by sequential assembly of polyelectrolytes onto charged liposomes.Langmuir202137206189620010.1021/acs.langmuir.1c0034133945690
    [Google Scholar]
  102. BelaliN. ChaerunisaaA. Solvent evaporation as an efficient microencapsulating technique for taste masking in fast disintegrating oral tablets.Indones. J. Pharm.201919297
    [Google Scholar]
  103. WaniS.U.D. AliM. MehdiS. MasoodiM.H. ZargarM.I. ShakeelF. A review on chitosan and alginate-based microcapsules: Mechanism and applications in drug delivery systems.Int. J. Biol. Macromol.202324812587510.1016/j.ijbiomac.2023.12587537473899
    [Google Scholar]
  104. LiM. GuoQ. LinY. BaoH. MiaoS. Recent progress in microencapsulation of active peptides-wall material, preparation, and application: A review.Foods202312489610.3390/foods1204089636832971
    [Google Scholar]
  105. OrtizM. JornadaD.S. PohlmannA.R. GuterresS.S. Development of novel chitosan microcapsules for pulmonary delivery of dapsone: Characterization, aerosol performance, and in vivo toxicity evaluation.AAPS PharmSciTech20151651033104010.1208/s12249‑015‑0283‑325652730
    [Google Scholar]
  106. CianR.E. SalgadoP.R. MauriA.N. DragoS.R. Pyropia columbina phycocolloids as microencapsulating material improve bioaccessibility of brewers’ spent grain peptides with ACE-I inhibitory activity.Int. J. Food Sci. Technol.20205531311131710.1111/ijfs.14397
    [Google Scholar]
  107. RashidA. KhalidS.H. IrfanM. AsgharS. RizgW.Y. SabeiF.Y. AlfayezE. AlkharobiH. SafhiA.Y. HosnyK.M. ArshadM.S. KhanI.U. In vitro and in vivo evaluation of composite oral fast disintegrating film: An innovative strategy for the codelivery of ranitidine HCl and flurbiprofen.Pharmaceutics2023157198710.3390/pharmaceutics1507198737514173
    [Google Scholar]
  108. YaoM. XieJ. DuH. McClementsD.J. XiaoH. LiL. Progress in microencapsulation of probiotics: A review.Compr. Rev. Food Sci. Food Saf.202019285787410.1111/1541‑4337.1253233325164
    [Google Scholar]
  109. de Araújo EtchepareM. NunesG.L. NicolosoB.R. BarinJ.S. Moraes FloresE.M. de Oliveira MelloR. Ragagnin de MenezesC. Improvement of the viability of encapsulated probiotics using whey proteins.Lebensm. Wiss. Technol.202011710860110.1016/j.lwt.2019.108601
    [Google Scholar]
  110. Marques da SilvaT. Jacob LopesE. CodevillaC.F. CichoskiA.J. FloresÉ.M.M. MottaM.H. da SilvaC.B. GrossoC.R.F. de MenezesC.R. Development and characterization of microcapsules containing Bifidobacterium Bb-12 produced by complex coacervation followed by freeze drying.Lebensm. Wiss. Technol.20189041241710.1016/j.lwt.2017.12.057
    [Google Scholar]
  111. AnselmoA.C. McHughK.J. WebsterJ. LangerR. JaklenecA. Layer-by-layer encapsulation of probiotics for delivery to the microbiome.Adv. Mater.201628439486949010.1002/adma.20160327027616140
    [Google Scholar]
  112. HouJ. SunE. ZhangZ.H. WangJ. YangL. CuiL. KeZ.C. TanX.B. JiaX.B. LvH. Improved oral absorption and anti-lung cancer activity of paclitaxel-loaded mixed micelles.Drug Deliv.201724126126910.1080/10717544.2016.124537028165804
    [Google Scholar]
  113. HoshyarN. GrayS. HanH. BaoG. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction.Nanomedicine201611667369210.2217/nnm.16.527003448
    [Google Scholar]
  114. ZoyaI. HeH. WangL. QiJ. LuY. WuW. The intragastrointestinal fate of paclitaxel-loaded micelles: Implications on oral drug delivery.Chin. Chem. Lett.20213241545154910.1016/j.cclet.2020.09.038
    [Google Scholar]
  115. Mod RazifM.R.F. ChanS.Y. WidodoR.T. ChewY.L. HassanM. HishamS.A. RahmanS.A. MingL.C. TanC.S. LeeS.K. LiewK.B. Optimization of a luteolin-loaded TPGS/poloxamer 407 nanomicelle: The effects of copolymers, hydration temperature and duration, and freezing temperature on encapsulation efficiency, particle size, and solubility.Cancers20231514374110.3390/cancers1514374137509402
    [Google Scholar]
  116. ChenX. ChenJ. LiB. YangX. ZengR. LiuY. LiT. HoR.J.Y. ShaoJ. PLGA-PEG-PLGA triblock copolymeric micelles as oral drug delivery system: In vitro drug release and in vivo pharmacokinetics assessment.J. Colloid Interface Sci.201749054255210.1016/j.jcis.2016.11.08927923139
    [Google Scholar]
  117. FanW. WeiQ. XiangJ. TangY. ZhouQ. GengY. LiuY. SunR. XuL. WangG. PiaoY. ShaoS. ZhouZ. TangJ. XieT. LiZ. ShenY. Mucus penetrating and cell-binding polyzwitterionic micelles as potent oral nanomedicine for cancer drug delivery.Adv. Mater.20223416210918910.1002/adma.20210918935196415
    [Google Scholar]
  118. KumarR. SirviA. KaurS. SamalS.K. RoyS. SangamwarA.T. Polymeric micelles based on amphiphilic oleic acid modified carboxymethyl chitosan for oral drug delivery of BCS Class IV compound: Intestinal permeability and pharmacokinetic evaluation.Eur. J. Pharm. Sci.202015310546610.1016/j.ejps.2020.10546632673792
    [Google Scholar]
  119. ZafarA. AlruwailiN.K. ImamS.S. YasirM. AlsaidanO.A. AlqurainiA. RawafA. AlsuwaytB. AnwerM.K. AlshehriS. GhoneimM.M. Development and optimization of nanolipid-based formulation of diclofenac sodium: In vitro characterization and preclinical evaluation.Pharmaceutics202214350710.3390/pharmaceutics1403050735335883
    [Google Scholar]
  120. AlhalmiA. AminS. KhanZ. BegS. Al kamalyO. SalehA. KohliK. Nanostructured lipid carrier-based codelivery of raloxifene and naringin: Formulation, optimization, in vitro, ex vivo, in vivo assessment, and acute toxicity studies.Pharmaceutics2022149177110.3390/pharmaceutics1409177136145519
    [Google Scholar]
  121. WangM. YouS.K. LeeH.K. HanM.G. LeeH.M. PhamT.M.A. NaY.G. ChoC.W. Development and evaluation of docetaxel-phospholipid complex loaded self-microemulsifying drug delivery system: Optimization and in vitro/ex vivo studies.Pharmaceutics202012654410.3390/pharmaceutics1206054432545452
    [Google Scholar]
  122. MohantyD. ZafarA. JafarM. UpadhyayA.K. HaqueM.A. GuptaJ.K. BakshiV. GhoneimM.M. AlshehriS. JahangirM.A. AnsariM.J. Development, in vitro characterization and preclinical evaluation of esomeprazole-encapsulated proniosomal formulation for the enhancement of anti-ulcer activity.Molecules2022279274810.3390/molecules2709274835566099
    [Google Scholar]
  123. HosnyK.M. Development of saquinavir mesylate nanoemulsion-loaded transdermal films: Two-step optimization of permeation parameters, characterization, and ex vivo and in vivo evaluation.Int. J. Nanomedicine2019148589860110.2147/IJN.S23074731802871
    [Google Scholar]
  124. LiewK.B. MingL.C. GohB.H. PehK.K. Fast melt cocoa butter tablet: Effect of waxes, starch, and peg 6000 on physical properties of the preparation.Molecules20222710312810.3390/molecules2710312835630605
    [Google Scholar]
  125. WidodoR.T. HassanA. LiewK.B. MingL.C. A directly compressible pregelatinised sago starch: A new excipient in the pharmaceutical tablet formulations.Polymers20221415305010.3390/polym1415305035956565
    [Google Scholar]
  126. HiraniJ.J. RathodD.A. VadaliaK.R. Orally disintegrating tablets: A review.Trop. J. Pharm. Res.20098216117210.4314/tjpr.v8i2.44525
    [Google Scholar]
  127. HazdiS.N. PhangH.C. NgZ.Q. ChewY.L. UddinA.H. SarkerZ.I. LeeS.K. LiewK.B. Development of a novel co-processed excipitient comprising of xylitol, mannitol, microcrystalline cellulose, and crospovidone for the compounding of memantine hydrochloride orally disintegrating tablet.Int. J. Pharm. Compd.202327652252738100670
    [Google Scholar]
  128. RadaS.K. KumariA. Fast dissolving tablets: Waterless patient compliance dosage forms.J. Drug Deliv. Ther.20199130331710.22270/jddt.v9i1.2292
    [Google Scholar]
  129. NagarP. SinghK. ChauhanI. VermaM. YasirM. KhanA. SharmaR. GuptaN. GuptaN. Orally disintegrating tablets: Formulation, preparation techniques and evaluation.J. Appl. Pharm. Sci.2011013545
    [Google Scholar]
  130. Sevi̇nç ÖzakarR. ÖzakarE. Current overview of oral thin films.Turk. J. Pharm. Sci.202118111112110.4274/tjps.galenos.2020.7639033634686
    [Google Scholar]
  131. LiewK.B. OdeniyiM.A. PehK.K. Application of freeze-drying technology in manufacturing orally disintegrating films.Pharm. Dev. Technol.201621334635310.3109/10837450.2014.100365725597618
    [Google Scholar]
  132. RofiqH.M. PhangH.C. JanakiramanA.K. ChewY.L. UddinA.H. SarkerZ.I. LeeS.K. LiewK.B. Compounding and characterization of oral disintegrating films containing memantine hydrochloride for geriatrics.Int. J. Pharm. Compd.202327651252138100669
    [Google Scholar]
  133. ThakurN. BansalM. SharmaN. YadavG. KhareP. Overview "a novel approach of fast dissolving films and their patients".Adv. Biol. Res.201375058
    [Google Scholar]
  134. LiewK.B. GobalG. Mohd RofiqH. PhangH.C. LeeS.K. MingL.C. UddinA.B.M.H. ChewY.L. LakshminarayananV. Orally disintegrating film: A review of its formulation and manufacturing method.Malaysian J Med Health Sci202319629730310.47836/mjmhs.19.6.39
    [Google Scholar]
  135. LiewK.B. RuslanF.H. Helal UddinA.B.M. Islam SarkerM.Z. JanakiramanA.K. Orally disintegrating film: A revisit of its two decades development.Eur. Chem. Bull.2022111620
    [Google Scholar]
  136. BalaR. KhannaS. PawarP. AroraS. Orally dissolving strips: A new approach to oral drug delivery system.Int. J. Pharm. Investig.201332677610.4103/2230‑973X.11489724015378
    [Google Scholar]
  137. MuthukumarS. ChellamS. GayathriR. VineshaR. Layered tablets: A novel oral solid dosage form.Dosage Forms. UsamaA. RijekaIntechOpen2022
    [Google Scholar]
  138. RameshwarV.A. KishorD. Bi-layer tablets for various drugs: A review.Sch Acad J Pharm20143271279
    [Google Scholar]
  139. KimJ.E. ParkY.J. QbD consideration for developing a double-layered tablet into a single-layered tablet with telmisartan and amlodipine.Pharmaceutics202214237710.3390/pharmaceutics1402037735214109
    [Google Scholar]
  140. LaracuenteM.L. YuM.H. McHughK.J. Zero-order drug delivery: State of the art and future prospects.J. Control. Release202032783485610.1016/j.jconrel.2020.09.02032931897
    [Google Scholar]
  141. JanczuraM. SipS. Cielecka-PiontekJ. The development of innovative dosage forms of the fixed-dose combination of active pharmaceutical ingredients.Pharmaceutics202214483410.3390/pharmaceutics1404083435456668
    [Google Scholar]
  142. ShendeP. ShrawneC. GaudR. Multi-layer tablet: Current scenario and recent advances.Int. J. Drug Deliv.20124418426
    [Google Scholar]
  143. EfentakisM. PeponakiC. Formulation study and evaluation of matrix and three-layer tablet sustained drug delivery systems based on Carbopols with isosorbite mononitrate.AAPS PharmSciTech20089391792310.1208/s12249‑008‑9084‑218686040
    [Google Scholar]
  144. RafieeM.H. Abdul RasoolB.K. An overview of microparticulate drug delivery system and its extensive therapeutic applications in diabetes.Adv. Pharm. Bull.202212473074636415632
    [Google Scholar]
  145. CetinM. SahinS. Microparticulate and nanoparticulate drug delivery systems for metformin hydrochloride.Drug Deliv.20162382796280510.3109/10717544.2015.108995726394019
    [Google Scholar]
  146. da SilvaR.Y.P. de MenezesD.L.B. OliveiraV.S. ConvertiA. de LimaÁ.A.N. Microparticles in the development and improvement of pharmaceutical formulations: An analysis of in vitro and in vivo studies.Int. J. Mol. Sci.2023246544110.3390/ijms2406544136982517
    [Google Scholar]
  147. NidhiR.M. RashidM. KaurV. HallanS.S. SharmaS. MishraN. Microparticles as controlled drug delivery carrier for the treatment of ulcerative colitis: A brief review.Saudi Pharm. J.201624445847210.1016/j.jsps.2014.10.00127330377
    [Google Scholar]
  148. LengyelM. Kállai-SzabóN. AntalV. LakiA.J. AntalI. Microparticles, microspheres, and microcapsules for advanced drug delivery.Sci. Pharm.20198732010.3390/scipharm87030020
    [Google Scholar]
  149. DateA.A. DesaiN. DixitR. NagarsenkerM. Self-nanoemulsifying drug delivery systems: Formulation insights, applications and advances.Nanomedicine20105101595161610.2217/nnm.10.12621143036
    [Google Scholar]
  150. SalawiA. Self-emulsifying drug delivery systems: A novel approach to deliver drugs.Drug Deliv.20222911811182310.1080/10717544.2022.208372435666090
    [Google Scholar]
  151. BuyaA.B. BeloquiA. MemvangaP.B. PréatV. Self-nano-emulsifying drug-delivery systems: From the development to the current applications and challenges in oral drug delivery.Pharmaceutics20201212119410.3390/pharmaceutics1212119433317067
    [Google Scholar]
  152. AdepuS. RamakrishnaS. Controlled drug delivery systems: Current status and future directions.Molecules20212619590510.3390/molecules2619590534641447
    [Google Scholar]
  153. NokhodchiA. RajaS. PatelP. Asare-AddoK. The role of oral controlled release matrix tablets in drug delivery systems.Bioimpacts20122417518723678458
    [Google Scholar]
  154. SahooC.K. SahooN.K. RaoS.R.M. SudhakarM. SatyanarayanaK. A review on controlled porosity osmotic pump tablets and its evaluation.Bull. Fac. Pharm. Cairo Univ.201553219520510.1016/j.bfopcu.2015.10.004
    [Google Scholar]
  155. Al HanbaliO.A. KhanH.M.S. SarfrazM. ArafatM. IjazS. HameedA. Transdermal patches: Design and current approaches to painless drug delivery.Acta Pharm.201969219721510.2478/acph‑2019‑001631259729
    [Google Scholar]
  156. StanojevićG. MedarevićD. AdamovI. PešićN. KovačevićJ. IbrićS. Tailoring atomoxetine release rate from DLP 3D-printed tablets using artificial neural networks: Influence of tablet thickness and drug loading.Molecules202026111110.3390/molecules2601011133383691
    [Google Scholar]
  157. KaurG. GrewalJ. JyotiK. JainU.K. ChandraR. MadanJ. Oral controlled and sustained drug delivery systems: Concepts, advances, preclinical, and clinical status.Drug Targeting and Stimuli Sensitive Drug Delivery Systems.Chapter 15 GrumezescuA.M. William Andrew Publishing201856762610.1016/B978‑0‑12‑813689‑8.00015‑X
    [Google Scholar]
  158. HuaS. Advances in nanoparticulate drug delivery approaches for sublingual and buccal administration.Front. Pharmacol.201910132810.3389/fphar.2019.0132831827435
    [Google Scholar]
  159. DuP. LiP. LiuH. ZhaoR. ZhaoZ. YuW. ZhouX. LiuL. Open-label, randomized, single-dose, 2-period, 2-sequence crossover, comparative pharmacokinetic study to evaluate bioequivalence of 2 oral formulations of olanzapine under fasting and fed conditions.Clin. Pharmacol. Drug Dev.20209562162810.1002/cpdd.74331595704
    [Google Scholar]
  160. EasaN. AlanyR.G. CarewM. VangalaA. A review of non-invasive insulin delivery systems for diabetes therapy in clinical trials over the past decade.Drug Discov. Today201924244045110.1016/j.drudis.2018.11.01030465877
    [Google Scholar]
  161. OlorunsolaE.O. UdohI.E. EkottM.B. AlozieM.F. DaviesK.G. Biopharmaceutics and clinical outcomes of emerging dosage forms of insulin: A systematic review.Diabetes Epidemiol. Manage.2023910012010.1016/j.deman.2022.100120
    [Google Scholar]
  162. LintzerisN. LeungS.Y. DunlopA.J. LaranceB. WhiteN. RivasG.R. HollandR.M. DegenhardtL. MuhleisenP. HurleyM. AliR. A randomised controlled trial of sublingual buprenorphine–naloxone film versus tablets in the management of opioid dependence.Drug Alcohol Depend.20131311-211912610.1016/j.drugalcdep.2012.12.00923317685
    [Google Scholar]
  163. NagpalK. SinghSK. MishraDN. Patent innovations in fast dissolving/disintegrating dosage forms.Current Adv Drug Delivery Through Fast Dissolving/Disintegrating Dosage Forms.2017119
    [Google Scholar]
  164. RuizPSL SerafiniMR AlvesIA NovoaDMA Recent progress in self-emulsifying drug delivery systems: A systematic patent review (2011-2020).Crit Rev™ Ther Drug Carrier Syst.2022392
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128338560240923073357
Loading
/content/journals/cpd/10.2174/0113816128338560240923073357
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test