Skip to content
2000
Volume 31, Issue 2
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Implementing lifestyle interventions as a primary prevention strategy is a cost-effective approach to reducing the occurrence of cancer, which is a significant contributor to illness and death globally. Recent advanced studies have uncovered the crucial role of nutrients in safeguarding women's health and preventing disorders. Genistein is an abundant isoflavonoid found in soybeans. Genistein functions as a chemotherapeutic drug against various forms of cancer, primarily by modifying apoptosis, the cell cycle, and angiogenesis and suppressing metastasis. Furthermore, Genistein has demonstrated diverse outcomes in women, contingent upon their physiological characteristics, such as being in the early or postmenopausal stages. The primary categories of gynecologic cancers are cervical, ovarian, uterine, vaginal, and vulvar cancers. Understanding the precise mechanism by which Genistein acts on ovarian cancer could contribute to the advancement of anti-breast cancer treatments, particularly in situations where no specific targeted therapies are currently known or accessible. Additional investigation into the molecular action of Genistein has the potential to facilitate the development of a plant-derived cancer medication that has fewer harmful effects. This research could also help overcome drug resistance and prevent the occurrence of ovarian cancers.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128332618240823044548
2024-10-01
2025-06-12
Loading full text...

Full text loading...

References

  1. DixonR. FerreiraD. Genistein.Phytochemistry200260320521110.1016/S0031‑9422(02)00116‑412031439
    [Google Scholar]
  2. ShafieeG. SaidijamM. TayebiniaH. KhodadadiI. Beneficial effects of genistein in suppression of proliferation, inhibition of metastasis, and induction of apoptosis in PC3 prostate cancer cells.Arch. Physiol. Biochem.2022128369470210.1080/13813455.2020.171754131985311
    [Google Scholar]
  3. PolkowskiK. MazurekA.P. Biological properties of genistein. A review of in vitro and in vivo data. Acta Poloniae Pliarmaceutica.Drug Res.2000572l35l55
    [Google Scholar]
  4. IslamA. IslamM.S. UddinM.N. HasanM.M.I. AkandaM.R. The potential health benefits of the isoflavone glycoside genistin.Arch. Pharm. Res.202043439540810.1007/s12272‑020‑01233‑232253713
    [Google Scholar]
  5. FatimaA SinghR The chemistry and pharmacology of Genistein.Nat. Prod. J.20166131210.2174/221031550601160208122925
    [Google Scholar]
  6. Sharifi-RadJ. QuispeC. ImranM. RaufA. NadeemM. GondalT.A. AhmadB. AtifM. MubarakM.S. SytarO. ZhilinaO.M. GarsiyaE.R. SmeriglioA. TrombettaD. PonsD.G. MartorellM. CardosoS.M. RazisA.F.A. SunusiU. KamalR.M. RotariuL.S. ButnariuM. DoceaA.O. CalinaD. Genistein: An integrative overview of its mode of action, pharmacological properties, and health benefits.Oxid. Med. Cell. Longev.2021202113610.1155/2021/326813634336089
    [Google Scholar]
  7. RussoM. RussoG.L. DagliaM. KasiP.D. RaviS. NabaviS.F. NabaviS.M. Understanding genistein in cancer: The “good” and the “bad” effects: A review.Food Chem.201619658960010.1016/j.foodchem.2015.09.08526593532
    [Google Scholar]
  8. ChenT. WangJ. LiM. WuQ. CuiS. Genistein inhibits proliferation and metastasis in human cervical cancer cells through the focal adhesion kinase signaling pathway: A network pharmacology-based in vitro study in HeLa cells.Molecules2023284191910.3390/molecules2804191936838908
    [Google Scholar]
  9. SahaS. SadhukhanP. SilP. Genistein: A phytoestrogen with multifaceted therapeutic properties.Mini Rev. Med. Chem.2014141192094010.2174/138955751466614102923344225355592
    [Google Scholar]
  10. AarushiG. SahooP.K. TejpalA. Genistein-a potential boon for cancer therapy.Pharma Innov.201656, Part B81
    [Google Scholar]
  11. MukundV. Genistein: Its role in breast cancer growth and metastasis.Curr. Drug Metab.202021161010.2174/138920022166620012012191931987018
    [Google Scholar]
  12. KambohA.A. ZhuW.Y. Individual and combined effects of genistein and hesperidin supplementation on meat quality in meat-type broiler chickens.J. Sci. Food Agric.201393133362336710.1002/jsfa.618523605817
    [Google Scholar]
  13. Katanić StankovićJ.S. MihailovićN. MihailovićV. Genistein: Advances on resources, biosynthesis pathway, bioavailability, bioactivity, and pharmacology.Handbook of Dietary Flavonoids.ChamSpringer International Publishing202314010.1007/978‑3‑030‑94753‑8_45‑1
    [Google Scholar]
  14. YuL. RiosE. CastroL. LiuJ. YanY. DixonD. Genistein: Dual role in women’s health. Nutrients 2021, 13(9): 3048.
    [Google Scholar]
  15. BarrecaD. TrombettaD. SmeriglioA. MandalariG. RomeoO. FeliceM.R. GattusoG. NabaviS.M. Food flavonols: Nutraceuticals with complex health benefits and functionalities.Trends Food Sci. Technol.202111719420410.1016/j.tifs.2021.03.030
    [Google Scholar]
  16. BallardC.R. JuniorM.R.M. Health benefits of flavonoids.Bioactive compounds.Woodhead Publishing201918520110.1016/B978‑0‑12‑814774‑0.00010‑4
    [Google Scholar]
  17. SemwalR. JoshiS.K. SemwalR.B. SemwalD.K. Health benefits and limitations of rutin - A natural flavonoid with high nutraceutical value.Phytochem. Lett.20214611912810.1016/j.phytol.2021.10.006
    [Google Scholar]
  18. KhanJ. DebP.K. PriyaS. MedinaK.D. DeviR. WalodeS.G. RudrapalM. Dietary flavonoids: Cardioprotective potential with antioxidant effects and their pharmacokinetic, toxicological and therapeutic concerns.Molecules20212613402110.3390/molecules2613402134209338
    [Google Scholar]
  19. ManayiA. Soybeans and phytoestrogen rich foods (Genistein, Daidzein) against cancer.Nutraceuticals and Cancer Signaling: Clinical Aspects and Mode of ActionSpringer, Cham2021419449
    [Google Scholar]
  20. SandovalM.J. CutiniP.H. RauschembergerM.B. MassheimerV.L. The soyabean isoflavone genistein modulates endothelial cell behaviour.Br. J. Nutr.2010104217117910.1017/S000711451000041320187999
    [Google Scholar]
  21. MessinaM. Soy and health update: Evaluation of the clinical and epidemiologic literature.Nutrients201681275410.3390/nu812075427886135
    [Google Scholar]
  22. PillowPC. DuphorneCM. ChangS. ContoisJ. H. StromS. S. SpitzM. R. HurstingS. D. Development of a database for assessing dietary phytoestrogen intake.Nutr. Cancer199933131910.1080/01635589909514742
    [Google Scholar]
  23. KwonY. Effect of soy isoflavones on the growth of human breast tumors: Findings from preclinical studies.Food Sci. Nutr.20142661362210.1002/fsn3.14225493176
    [Google Scholar]
  24. KimI.S. Current perspectives on the beneficial effects of soybean isoflavones and their metabolites for humans.Antioxidants2021107106410.3390/antiox1007106434209224
    [Google Scholar]
  25. SahaT. MakarS. SwethaR. GuttiG. SinghS.K. Estrogen signaling: An emanating therapeutic target for breast cancer treatment.Eur. J. Med. Chem.201917711614310.1016/j.ejmech.2019.05.02331129450
    [Google Scholar]
  26. MobeenI. RomeroM.A. YulaevnaI.M. AttarR. JabeenS. FayyazS. Regulation of cell signaling pathways by Genistein in different cancers: Progress, prospects and pitfalls.Cell. Mol. Biol.202267631832910.14715/cmb/2021.67.6.4235818180
    [Google Scholar]
  27. ChenJ. DuanY. ZhangX. YeY. GeB. ChenJ. Genistein induces apoptosis by the inactivation of the IGF-1R/p-Akt signaling pathway in MCF-7 human breast cancer cells.Food Funct.201563995100010.1039/C4FO01141D25675448
    [Google Scholar]
  28. YousefiH. KarimiP. AlihemmatiA. AlipourM.R. HabibiP. AhmadiaslN. Therapeutic potential of genistein in ovariectomy-induced pancreatic injury in diabetic rats: The regulation of MAPK pathway and apoptosis.Iran. J. Basic Med. Sci.20172091009101529085595
    [Google Scholar]
  29. ShinS.B. WooS.U. ChinY.W. JangY.J. YimH. Sensitivity of TP53-mutated cancer cells to the phytoestrogen genistein is associated with direct inhibition of Plk1 activity.J. Cell. Physiol.2017232102818282810.1002/jcp.2568027861885
    [Google Scholar]
  30. ShinS.B. WooS.U. YimH. Cotargeting Plk1 and androgen receptor enhances the therapeutic sensitivity of paclitaxel-resistant prostate cancer.Ther. Adv. Med. Oncol.201911175883591984637510.1177/175883591984637531156720
    [Google Scholar]
  31. AmerizadehA. AsgaryS. VaseghiG. FarajzadeganZ. Effect of genistein intake on some cardiovascular risk factors: An updated systematic review and meta-analysis.Curr. Probl. Cardiol.202247910090210.1016/j.cpcardiol.2021.10090234266697
    [Google Scholar]
  32. YiX.Y. WangZ.H. WangY. Genistein for glycolipid metabolism in postmenopausal women: A meta-analysis.Climacteric202124326727410.1080/13697137.2020.185947333410719
    [Google Scholar]
  33. AbshiriniM. OmidianM. Kord-VarkanehH. Effect of soy protein containing isoflavones on endothelial and vascular function in postmenopausal women: A systematic review and meta-analysis of randomized controlled trials.Menopause202027121425143310.1097/GME.000000000000162232881829
    [Google Scholar]
  34. Nazari-KhanamiriF. Ghasemnejad-BerenjiM. Cellular and molecular mechanisms of genistein in prevention and treatment of diseases: An overview.J. Food Biochem.20214511e1397210.1111/jfbc.1397234664285
    [Google Scholar]
  35. de OliveiraH.P. Dias SoaresJ.M. Pereira LealA.E.B. SilvaJ.C. AlmeidaJ.R.G.S. Influence of flavonoids on mechanism of modulation of insulin secretion.Pharmacogn. Mag.2017135263964610.4103/pm.pm_87_1729200726
    [Google Scholar]
  36. GoswamiK. Badruddeen ArifM. AkhtarJ. KhanM.I. AhmadM. Flavonoids, isoflavonoids and others bioactives for insulin sensitizations.Curr. Diabetes Rev.2024202e27042321624710.2174/157339981966623042709520037102490
    [Google Scholar]
  37. KaufmanP.B. DukeJ.A. BrielmannH. BoikJ. HoytJ.E. A comparative survey of leguminous plants as sources of the isoflavones, genistein and daidzein: Implications for human nutrition and health.J. Altern. Complement. Med.19973171210.1089/acm.1997.3.79395689
    [Google Scholar]
  38. KimB.G. Biological synthesis of genistein in Escherichia coli.J. Microbiol. Biotechnol.202030577077610.4014/jmb.1911.1100932482944
    [Google Scholar]
  39. XiongP. WangR. ZhangX. DeLa TorreE. LeonF. ZhangQ. ChenQ. H. Design, synthesis, and evaluation of genistein analogues as anticancer agents.Anticancer Agents Med. Chem.201515911971203
    [Google Scholar]
  40. GuanY. ZhangY. ZouJ. HuangL.P. ChordiaM.D. YueW. WuJ.J. PanD.F. Synthesis and biological evaluation of genistein-IR783 conjugate: Cancer cell targeted delivery in MCF-7 for superior anticancer therapy.Molecules20192422412010.3390/molecules2422412031739548
    [Google Scholar]
  41. WangR. ZhaoS. WangZ. KoffasM.A.G. Recent advances in modular co-culture engineering for synthesis of natural products.Curr. Opin. Biotechnol.202062657110.1016/j.copbio.2019.09.00431605875
    [Google Scholar]
  42. LiuY. HuM. Absorption and metabolism of flavonoids in the Caco-2 cell culture model and a perused rat intestinal model.Drug Metab. Dispos.200230437037710.1124/dmd.30.4.37011901089
    [Google Scholar]
  43. WalshK.R. HaakS.J. BohnT. TianQ. SchwartzS.J. FaillaM.L. Isoflavonoid glucosides are deconjugated and absorbed in the small intestine of human subjects with ileostomies.Am. J. Clin. Nutr.20078541050105610.1093/ajcn/85.4.105017413104
    [Google Scholar]
  44. BokkenheuserV.D. ShackletonC.H. WinterJ. Hydrolysis of dietary flavonoid glycosides by strains of intestinal Bacteroides from humans.Biochem. J.1987248395395610.1042/bj24809533435494
    [Google Scholar]
  45. MattisonD.R. KaryakinaN. GoodmanM. LaKindJ.S. Pharmaco- and toxicokinetics of selected exogenous and endogenous estrogens: A review of the data and identification of knowledge gaps.Crit. Rev. Toxicol.201444869672410.3109/10408444.2014.93081325099693
    [Google Scholar]
  46. RozmanK.K. BhatiaJ. CalafatA.M. ChambersC. CultyM. EtzelR.A. FlawsJ.A. HansenD.K. HoyerP.B. JefferyE.H. KesnerJ.S. MartyS. ThomasJ.A. UmbachD. NTP-CERHR expert panel report on the reproductive and developmental toxicity of genistein.Birth Defects Res. B Dev. Reprod. Toxicol.200677648563810.1002/bdrb.2008717186522
    [Google Scholar]
  47. YangZ. ZhuW. GaoS. XuH. WuB. KulkarniK. SinghR. TangL. HuM. Simultaneous determination of genistein and its four phase II metabolites in blood by a sensitive and robust UPLC–MS/MS method: Application to an oral bioavailability study of genistein in mice.J. Pharm. Biomed. Anal.2010531818910.1016/j.jpba.2010.03.01120378296
    [Google Scholar]
  48. SetchellK.D.R. BrownN.M. DesaiP. Zimmer-NechemiasL. WolfeB.E. BrashearW.T. KirschnerA.S. CassidyA. HeubiJ.E. Bioavailability of pure isoflavones in healthy humans and analysis of commercial soy isoflavone supplements.J. Nutr.20011314Suppl.1362S1375S10.1093/jn/131.4.1362S11285356
    [Google Scholar]
  49. RichesZ. StanleyE.L. BloomerJ.C. CoughtrieM.W.H. Quantitative evaluation of the expression and activity of five major sulfotransferases (SULTs) in human tissues: the SULT “pie”.Drug Metab. Dispos.200937112255226110.1124/dmd.109.02839919679676
    [Google Scholar]
  50. BoronatA. Rodriguez-MoratóJ. SerreliG. FitóM. TyndaleR.F. DeianaM. de la TorreR. Contribution of biotransformations carried out by the microbiota, drug-metabolizing enzymes, and transport proteins to the biological activities of phytochemicals found in the diet.Adv. Nutr.20211262172218910.1093/advances/nmab08534388248
    [Google Scholar]
  51. StewartC. RalyeaC. LockwoodS. Ovarian cancer: An integrated review.Semin. Oncol. Nurs.201935215115610.1016/j.soncn.2019.02.00130867104
    [Google Scholar]
  52. NashZ. MenonU. Ovarian cancer screening: Current status and future directions.Best Pract. Res. Clin. Obstet. Gynaecol.202065324510.1016/j.bpobgyn.2020.02.01032273169
    [Google Scholar]
  53. ZamwarU.M. AnjankarA.P. Aetiology, epidemiology, histopathology, classification, detailed evaluation, and treatment of ovarian cancer.Cureus20221410e3056110.7759/cureus.3056136415372
    [Google Scholar]
  54. HollisR.L. CroyI. ChurchmanM. BartosC. RyeT. GourleyC. HerringtonC.S. Ovarian carcinosarcoma is a distinct form of ovarian cancer with poorer survival compared to tubo-ovarian high-grade serous carcinoma.Br. J. Cancer202212761034104210.1038/s41416‑022‑01874‑835715633
    [Google Scholar]
  55. MazidimoradiA. MomenimovahedZ. AllahqoliL. TiznobaikA. HajinasabN. SalehiniyaH. AlkatoutI. The global, regional and national epidemiology, incidence, mortality, and burden of ovarian cancer.Health Sci. Rep.202256e93610.1002/hsr2.93636439044
    [Google Scholar]
  56. MalikP. SinghR. KumarM. MalikA. MukherjeeT.K. Understanding the phytoestrogen genistein actions on breast cancer: Insights on estrogen receptor equivalence, pleiotropic essence and emerging paradigms in bioavailability modulation.Curr. Top. Med. Chem.202323151395141310.2174/156802662366623010316302336597609
    [Google Scholar]
  57. JiangH. FanJ. ChengL. HuP. LiuR. The anticancer activity of genistein is increased in estrogen receptor beta 1-positive breast cancer cells.OncoTargets Ther.2018118153816310.2147/OTT.S18223930532556
    [Google Scholar]
  58. LeeA.H. SuD. PasalichM. TangL. BinnsC.W. QiuL. Soy and isoflavone intake associated with reduced risk of ovarian cancer in southern Chinese women.Nutr. Res.201434430230710.1016/j.nutres.2014.02.00524774066
    [Google Scholar]
  59. WangY. LiW. WangZ. RenH. LiY. ZhangY. YangP. PanS. Genistein upregulates cyclin D1 and CDK4 expression and promotes the proliferation of ovarian cancer OVCAR-5 cells.Clin. Chim. Acta202151210010510.1016/j.cca.2019.08.02331465770
    [Google Scholar]
  60. SohelM. BiswasP. Al AminM. HossainM.A. SultanaH. DeyD. AktarS. SetuA. KhanM.S. PaulP. IslamM.N. RahmanM.A. KimB. Al MamunA. Genistein, a potential phytochemical against breast cancer treatment-insight into the molecular mechanisms.Processes202210241510.3390/pr10020415
    [Google Scholar]
  61. MukundV. MukundD. SharmaV. MannarapuM. AlamA. Genistein: Its role in metabolic diseases and cancer.Crit. Rev. Oncol. Hematol.2017119132210.1016/j.critrevonc.2017.09.00429065980
    [Google Scholar]
  62. CarbonelA.A.F. de Oliveira BrunoL. de PaulaC. TeixeiraR.S.S. GirãoJ.H.C. de JesusM. Effects of genistein and daidzein in female reproductive tract.Genistein and daidzein: Food sources, biological activity and health benefits.New YorkNova Science20151178813619
    [Google Scholar]
  63. MallaA. RamalingamS. Health perspectives of an isoflavonoid genistein and its quantification in economically important plants.Role of Materials Science in Food Bioengineering.Academic Press201835337910.1016/B978‑0‑12‑811448‑3.00011‑5
    [Google Scholar]
  64. Gali-MuhtasibH. HmadiR. KarehM. TohmeR. DarwicheN. Cell death mechanisms of plant-derived anticancer drugs: Beyond apoptosis.Apoptosis201520121531156210.1007/s10495‑015‑1169‑226362468
    [Google Scholar]
  65. MogaM. DimienescuO. ArvatescuC. MironescuA. DraceaL. PlesL. The role of natural polyphenols in the prevention and treatment of cervical cancer-An overview.Molecules2016218105510.3390/molecules2108105527548122
    [Google Scholar]
  66. WangT.T.Y. SathyamoorthyN. PhangJ.M. Molecular effects of genistein on estrogen receptor mediated pathways.Carcinogenesis199617227127510.1093/carcin/17.2.2718625449
    [Google Scholar]
  67. DhananjayaK. SibiG. MalleshaH. RavikumarK.R. AwasthiS. Insilico studies of Daidzein and Genistein with human estrogen receptor α.Asian Pac. J. Trop. Biomed.201223S1747S175310.1016/S2221‑1691(12)60489‑4
    [Google Scholar]
  68. SantoroN. WorsleyR. MillerK.K. ParishS.J. DavisS.R. Role of estrogens and estrogen-like compounds in female sexual function and dysfunction.J. Sex. Med.201613330531610.1016/j.jsxm.2015.11.01526944462
    [Google Scholar]
  69. SeptadinaI.S. An overview of the female reproductive system: A narrative literature review.Sriwijaya J. Obstet. Gynecol.202311162310.59345/sjog.v1i1.25
    [Google Scholar]
  70. AmenyogbeE. ChenG. WangZ. LuX. LinM. LinA.Y. A review on sex steroid hormone estrogen receptors in mammals and fish.Int. J. Endocrinol.202020201910.1155/2020/538619332089683
    [Google Scholar]
  71. HwangW.J. LeeT.Y. KimN.S. KwonJ.S. The role of estrogen receptors and their signaling across psychiatric disorders.Int. J. Mol. Sci.202022137310.3390/ijms2201037333396472
    [Google Scholar]
  72. PatelS. HomaeiA. RajuA.B. MeherB.R. Estrogen: The necessary evil for human health, and ways to tame it.Biomed. Pharmacother.201810240341110.1016/j.biopha.2018.03.07829573619
    [Google Scholar]
  73. WuZ. LiuL. The protective activity of genistein against bone and cartilage diseases.Front. Pharmacol.202213101698110.3389/fphar.2022.101698136160403
    [Google Scholar]
  74. Mas-BarguesC. BorrásC. ViñaJ. The multimodal action of genistein in Alzheimer’s and other age-related diseases.Free Radic. Biol. Med.202218312713710.1016/j.freeradbiomed.2022.03.02135346775
    [Google Scholar]
  75. MyungS-K. JuW. ChoiH.J. KimS.C. Korean Meta-Analysis (KORMA) Study Group Soy intake and risk of endocrine-related gynaecological cancer: A meta-analysis.BJOG2009116131697170510.1111/j.1471‑0528.2009.02322.x19775307
    [Google Scholar]
  76. BiC. ChngW.J. MicroRNA: important player in the pathobiology of multiple myeloma.BioMed Res. Int.2014201411210.1155/2014/52158624991558
    [Google Scholar]
  77. LizJ. EstellerM. lncRNAs and microRNAs with a role in cancer development. Biochimica et Biophysica Acta (BBA)-.Gene Regul Mech201618591169176
    [Google Scholar]
  78. LohH.Y. NormanB.P. LaiK.S. RahmanN.M.A.N.A. AlitheenN.B.M. OsmanM.A. The regulatory role of microRNAs in breast cancer.Int. J. Mol. Sci.20192019494010.3390/ijms2019494031590453
    [Google Scholar]
  79. PetersenP.H.D. Lopacinska-JørgensenJ. HøgdallC.K. HøgdallE.V. Identification of stably expressed microRNAs in plasma from high-grade serous ovarian carcinoma and benign tumor patients.Mol. Biol. Rep.20235012102351024710.1007/s11033‑023‑08795‑637934368
    [Google Scholar]
  80. XuL. XiangJ. ShenJ. ZouX. ZhaiS. YinY. SunQ. Oncogenic MicroRNA-27a is a target for Genistein in ovarian cancer cells.Anticancer Agents Med. Chem.201313711261132
    [Google Scholar]
  81. IidaM. TsuboiK. NiwaT. IshidaT. HayashiS. Compensatory role of insulin-like growth factor 1 receptor in estrogen receptor signaling pathway and possible therapeutic target for hormone therapy-resistant breast cancer.Breast Cancer201926327228110.1007/s12282‑018‑0922‑030328006
    [Google Scholar]
  82. HwangK.A. ParkM.A. KangN.H. YiB.R. HyunS.H. JeungE.B. ChoiK.C. Anticancer effect of genistein on BG-1 ovarian cancer growth induced by 17 β-estradiol or bisphenol A via the suppression of the crosstalk between estrogen receptor alpha and insulin-like growth factor-1 receptor signaling pathways.Toxicol. Appl. Pharmacol.2013272363764610.1016/j.taap.2013.07.02723933164
    [Google Scholar]
  83. ChimentoA. De LucaA. AvenaP. De AmicisF. CasaburiI. SirianniR. PezziV. Estrogen receptors-mediated apoptosis in hormone-dependent cancers.Int. J. Mol. Sci.2022233124210.3390/ijms2303124235163166
    [Google Scholar]
  84. ChanK.K.L. SiuM.K.Y. JiangY. WangJ. LeungT.H.Y. NganH.Y.S. Estrogen receptor modulators genistein, daidzein and ERB-041 inhibit cell migration, invasion, proliferation and sphere formation via modulation of FAK and PI3K/AKT signaling in ovarian cancer.Cancer Cell Int.20181816510.1186/s12935‑018‑0559‑229743815
    [Google Scholar]
  85. NingY.X. LuoX. XuM. FengX. WangJ. Let-7d increases ovarian cancer cell sensitivity to a genistein analog by targeting c-Myc.Oncotarget2017843748367484510.18632/oncotarget.2041329088827
    [Google Scholar]
  86. PatraA. SatpathyS. NaikP.K. KaziM. HussainM.D. Folate receptor-targeted PLGA-PEG nanoparticles for enhancing the activity of Genistein in ovarian cancer.Artif. Cells Nanomed. Biotechnol.202250122823910.1080/21691401.2022.211875836330543
    [Google Scholar]
  87. PistollatoF. Calderón IglesiasR. RuizR. AparicioS. CrespoJ. Dzul LopezL. GiampieriF. BattinoM. The use of natural compounds for the targeting and chemoprevention of ovarian cancer.Cancer Lett.201741119120010.1016/j.canlet.2017.09.05029017913
    [Google Scholar]
  88. Gercel-TaylorC. FeitelsonA.K. TaylorD.D. Inhibitory effect of genistein and daidzein on ovarian cancer cell growth.Anticancer Res.2004242B79580015161029
    [Google Scholar]
  89. RucinskaA. KirkoS. GabryelakT. Effect of the phytoestrogen, genistein-8-C-glucoside, on Chinese hamster ovary cells in vitro .Cell Biol. Int.200731111371137810.1016/j.cellbi.2007.05.01217601753
    [Google Scholar]
  90. ChoiE.J. KimT. LeeM.S. Pro-apoptotic effect and cytotoxicity of genistein and genistin in human ovarian cancer SK-OV-3 cells.Life Sci.200780151403140810.1016/j.lfs.2006.12.03117291540
    [Google Scholar]
  91. LeeJ.Y. KimH.S. SongY.S. Genistein as a potential anticancer agent against ovarian cancer.J. Tradit. Complement. Med.2012229610410.1016/S2225‑4110(16)30082‑724716121
    [Google Scholar]
  92. AhmedA.A. GoldsmithJ. FoktI. LeX.F. KrzyskoK.A. LesyngB. BastR.C.Jr PriebeW. A genistein derivative, ITB-301, induces microtubule depolymerization and mitotic arrest in multidrug-resistant ovarian cancer.Cancer Chemother. Pharmacol.20116841033104410.1007/s00280‑011‑1575‑221340606
    [Google Scholar]
  93. YangZ. KulkarniK. ZhuW. HuM. Bioavailability and pharmacokinetics of Genistein: Mechanistic studies on its ADMEAnticancer Agents Med. Chem.2012121012641280
    [Google Scholar]
  94. HuangS.L. ChangT.C. ChaoC.C.K. SunN.K. Role of the TLR4-androgen receptor axis and genistein in taxol-resistant ovarian cancer cells.Biochem. Pharmacol.202017711396510.1016/j.bcp.2020.11396532278794
    [Google Scholar]
  95. MittalP. VrdhanH. AjmalG. BondeG. KapoorR. MishraB. Formulation and characterization of genistein-loaded nanostructured lipid carriers: Pharmacokinetic, biodistribution and in vitro cytotoxicity studies.Curr. Drug Deliv.201916321522510.2174/156720181666618112017013730465502
    [Google Scholar]
  96. MamagkakiA. BourisI. ParsonidisP. VlachouI. GougousiM. PapasotiriouI. Genistein as a dietary supplement; Formulation, analysis and pharmacokinetics study.PLoS One2021164e025059910.1371/journal.pone.025059933905453
    [Google Scholar]
  97. PhanV. WaltersJ. BrownlowB. ElbayoumiT. Enhanced cytotoxicity of optimized liposomal genistein via specific induction of apoptosis in breast, ovarian and prostate carcinomas.J. Drug Target.201321101001101110.3109/1061186X.2013.84709924151835
    [Google Scholar]
  98. BindhyaK.P. Uma MaheswariP. Meera Sheriffa BegumK.M. Milk protein inspired multifunctional magnetic carrier targeting progesterone receptors: Improved anticancer potential of soybean-derived genistein against breast and ovarian cancers.Mater. Chem. Phys.202127212505510.1016/j.matchemphys.2021.125055
    [Google Scholar]
  99. WeiY. XinX. HuangY. ShaoJ. DuanH. Effect of Genistein on increasing apoptosis of drug-resistant ovarian cancer cell SKOV-3 induced by cisplatin.Xiandai Shengwu Yixue Jinzhan2010102344464450
    [Google Scholar]
  100. LiuH. LeeG. LeeJ.I. AhnT.G. KimS.A. Effects of genistein on anti-tumor activity of cisplatin in human cervical cancer cell lines.Obstet. Gynecol. Sci.201962532232810.5468/ogs.2019.62.5.32231538075
    [Google Scholar]
  101. MaheriH. HashemzadehF. ShakibapourN. KamelniyaE. Malaekeh-NikoueiB. MokaberiP. ChamaniJ. Glucokinase activity enhancement by cellulose nanocrystals isolated from jujube seed: A novel perspective for type II diabetes mellitus treatment (In vitro).J. Mol. Struct.2022126913380310.1016/j.molstruc.2022.133803
    [Google Scholar]
  102. KalhoriF. YazdyaniH. KhademorezaeianF. HamzkanlooN. MokaberiP. HosseiniS. ChamaniJ. Enzyme activity inhibition properties of new cellulose nanocrystals from Citrus medica L. pericarp: A perspective of cholesterol lowering.Luminescence202237111836184510.1002/bio.436035946171
    [Google Scholar]
  103. ArmanS. HadaviM. Rezvani-NoghaniA. BakhtparvarA. FotouhiM. FarhangA. MokaberiP. TaheriR. ChamaniJ. Cellulose nanocrystals from celery stalk as quercetin scaffolds: A novel perspective of human holo-transferrin adsorption and digestion behaviours.Luminescence2024391e463410.1002/bio.463438286605
    [Google Scholar]
  104. JouyaeianP. Kamkar-VatanparastM. Tehranian-TorghabehF. HoseinpoorS. SaberiM.R. ChamaniJ. New perspective into the interaction behavior explore of nano-berberine with alpha-lactalbumin in the presence of beta-lactoglobulin: Multi-spectroscopic and molecular dynamic investigations.J. Mol. Struct.2024131613902010.1016/j.molstruc.2024.139020
    [Google Scholar]
  105. ChenH.H. ChenS.P. ZhengQ.L. NieS.P. LiW.J. HuX.J. XieM.Y. Genistein promotes proliferation of human cervical cancer cells through estrogen receptor-mediated PI3K/Akt-NF-κB pathway.J. Cancer20189228829510.7150/jca.2049929344275
    [Google Scholar]
  106. PuriA. MohiteP. AnsariY. MukerjeeN. AlharbiH.M. UpaganlawarA. ThoratN. Plant-derived selenium nanoparticles: Investigating unique morphologies, enhancing therapeutic uses, and leading the way in tailored medical treatments.Mat Adv2024593602362810.1039/D3MA01126G
    [Google Scholar]
  107. PuriA. MohiteP. MaitraS. SubramaniyanV. KumarasamyV. UtiD.E. SayedA.A. El-DemerdashF.M. AlgahtaniM. El-kottA.F. ShatiA.A. AlbaikM. Abdel-DaimM.M. AtangwhoI.J. From nature to nanotechnology: The interplay of traditional medicine, green chemistry, and biogenic metallic phytonanoparticles in modern healthcare innovation and sustainability.Biomed. Pharmacother.202417011608310.1016/j.biopha.2023.11608338163395
    [Google Scholar]
  108. PuriA. MohiteP. PatilS. ChidrawarV.R. UshirY.V. DodiyaR. SinghS. Facile green synthesis and characterization of Terminalia arjuna bark phenolic–selenium nanogel: A biocompatible and green nano-biomaterial for multifaceted biological applications.Front Chem.202311127336010.3389/fchem.2023.127336037810585
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128332618240823044548
Loading
/content/journals/cpd/10.2174/0113816128332618240823044548
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test