Skip to content
2000
image of An Updated Review Summarizing the Pharmaceutical Efficacy of Genistein and its Nanoformulations in Ovarian Carcinoma

Abstract

Implementing lifestyle interventions as a primary prevention strategy is a cost-effective approach to reducing the occurrence of cancer, which is a significant contributor to illness and death globally. Recent advanced studies have uncovered the crucial role of nutrients in safeguarding women's health and preventing disorders. Genistein is an abundant isoflavonoid found in soybeans. Genistein functions as a chemotherapeutic drug against various forms of cancer, primarily by modifying apoptosis, the cell cycle, and angiogenesis and suppressing metastasis. Furthermore, Genistein has demonstrated diverse outcomes in women, contingent upon their physiological characteristics, such as being in the early or postmenopausal stages. The primary categories of gynecologic cancers are cervical, ovarian, uterine, vaginal, and vulvar cancers. Understanding the precise mechanism by which Genistein acts on ovarian cancer could contribute to the advancement of anti-breast cancer treatments, particularly in situations where no specific targeted therapies are currently known or accessible. Additional investigation into the molecular action of Genistein has the potential to facilitate the development of a plant-derived cancer medication that has fewer harmful effects. This research could also help overcome drug resistance and prevent the occurrence of ovarian cancers.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128332618240823044548
2024-10-01
2024-11-21
Loading full text...

Full text loading...

References

  1. Dixon R. Ferreira D. Genistein. Phytochemistry 2002 60 3 205 211 10.1016/S0031‑9422(02)00116‑4 12031439
    [Google Scholar]
  2. Shafiee G. Saidijam M. Tayebinia H. Khodadadi I. Beneficial effects of genistein in suppression of proliferation, inhibition of metastasis, and induction of apoptosis in PC3 prostate cancer cells. Arch. Physiol. Biochem. 2022 128 3 694 702 10.1080/13813455.2020.1717541 31985311
    [Google Scholar]
  3. Polkowski K. Mazurek A.P. Biological properties of genistein. A review of in vitro and in vivo data. Acta Poloniae Pliarmaceutica. Drug Res. 2000 57 2 l35 l55
    [Google Scholar]
  4. Islam A. Islam M.S. Uddin M.N. Hasan M.M.I. Akanda M.R. The potential health benefits of the isoflavone glycoside genistin. Arch. Pharm. Res. 2020 43 4 395 408 10.1007/s12272‑020‑01233‑2 32253713
    [Google Scholar]
  5. Fatima A Singh R The chemistry and pharmacology of Genistein. Nat. Prod. J. 2016 6 1 3 12 10.2174/221031550601160208122925
    [Google Scholar]
  6. Sharifi-Rad J. Quispe C. Imran M. Rauf A. Nadeem M. Gondal T.A. Ahmad B. Atif M. Mubarak M.S. Sytar O. Zhilina O.M. Garsiya E.R. Smeriglio A. Trombetta D. Pons D.G. Martorell M. Cardoso S.M. Razis A.F.A. Sunusi U. Kamal R.M. Rotariu L.S. Butnariu M. Docea A.O. Calina D. Genistein: An integrative overview of its mode of action, pharmacological properties, and health benefits. Oxid. Med. Cell. Longev. 2021 2021 1 36 10.1155/2021/3268136 34336089
    [Google Scholar]
  7. Russo M. Russo G.L. Daglia M. Kasi P.D. Ravi S. Nabavi S.F. Nabavi S.M. Understanding genistein in cancer: The “good” and the “bad” effects: A review. Food Chem. 2016 196 589 600 10.1016/j.foodchem.2015.09.085 26593532
    [Google Scholar]
  8. Chen T. Wang J. Li M. Wu Q. Cui S. Genistein inhibits proliferation and metastasis in human cervical cancer cells through the focal adhesion kinase signaling pathway: A network pharmacology-based in vitro study in HeLa cells. Molecules 2023 28 4 1919 10.3390/molecules28041919 36838908
    [Google Scholar]
  9. Saha S. Sadhukhan P. Sil P. Genistein: A phytoestrogen with multifaceted therapeutic properties. Mini Rev. Med. Chem. 2014 14 11 920 940 10.2174/1389557514666141029233442 25355592
    [Google Scholar]
  10. Aarushi G. Sahoo P.K. Tejpal A. Genistein-a potential boon for cancer therapy. Pharma Innov. 2016 5 6, Part B 81
    [Google Scholar]
  11. Mukund V. Genistein: Its role in breast cancer growth and metastasis. Curr. Drug Metab. 2020 21 1 6 10 10.2174/1389200221666200120121919 31987018
    [Google Scholar]
  12. Kamboh A.A. Zhu W.Y. Individual and combined effects of genistein and hesperidin supplementation on meat quality in meat-type broiler chickens. J. Sci. Food Agric. 2013 93 13 3362 3367 10.1002/jsfa.6185 23605817
    [Google Scholar]
  13. Katanić Stanković J.S. Mihailović N. Mihailović V. Genistein: Advances on resources, biosynthesis pathway, bioavailability, bioactivity, and pharmacology. Handbook of Dietary Flavonoids. Cham Springer International Publishing 2023 1 40 10.1007/978‑3‑030‑94753‑8_45‑1
    [Google Scholar]
  14. Yu L. Rios E. Castro L. Liu J. Yan Y. Dixon D. Genistein: Dual role in women’s health. Nutrients 2021, 13(9): 3048.
    [Google Scholar]
  15. Barreca D. Trombetta D. Smeriglio A. Mandalari G. Romeo O. Felice M.R. Gattuso G. Nabavi S.M. Food flavonols: Nutraceuticals with complex health benefits and functionalities. Trends Food Sci. Technol. 2021 117 194 204 10.1016/j.tifs.2021.03.030
    [Google Scholar]
  16. Ballard C.R. Junior M.R.M. Health benefits of flavonoids. Bioactive compounds. Woodhead Publishing 2019 185 201 10.1016/B978‑0‑12‑814774‑0.00010‑4
    [Google Scholar]
  17. Semwal R. Joshi S.K. Semwal R.B. Semwal D.K. Health benefits and limitations of rutin - A natural flavonoid with high nutraceutical value. Phytochem. Lett. 2021 46 119 128 10.1016/j.phytol.2021.10.006
    [Google Scholar]
  18. Khan J. Deb P.K. Priya S. Medina K.D. Devi R. Walode S.G. Rudrapal M. Dietary flavonoids: Cardioprotective potential with antioxidant effects and their pharmacokinetic, toxicological and therapeutic concerns. Molecules 2021 26 13 4021 10.3390/molecules26134021 34209338
    [Google Scholar]
  19. Manayi A. Soybeans and phytoestrogen rich foods (Genistein, Daidzein) against cancer. Nutraceuticals and Cancer Signaling: Clinical Aspects and Mode of Action Springer, Cham 2021 419 449
    [Google Scholar]
  20. Sandoval M.J. Cutini P.H. Rauschemberger M.B. Massheimer V.L. The soyabean isoflavone genistein modulates endothelial cell behaviour. Br. J. Nutr. 2010 104 2 171 179 10.1017/S0007114510000413 20187999
    [Google Scholar]
  21. Messina M. Soy and health update: Evaluation of the clinical and epidemiologic literature. Nutrients 2016 8 12 754 10.3390/nu8120754 27886135
    [Google Scholar]
  22. Pillow PC. Duphorne CM. Chang S. Contois J. H. Strom S. S. Spitz M. R. Hursting S. D. Development of a database for assessing dietary phytoestrogen intake. Nutr. Cancer 1999 33 1 3 19 10.1080/01635589909514742
    [Google Scholar]
  23. Kwon Y. Effect of soy isoflavones on the growth of human breast tumors: Findings from preclinical studies. Food Sci. Nutr. 2014 2 6 613 622 10.1002/fsn3.142 25493176
    [Google Scholar]
  24. Kim I.S. Current perspectives on the beneficial effects of soybean isoflavones and their metabolites for humans. Antioxidants 2021 10 7 1064 10.3390/antiox10071064 34209224
    [Google Scholar]
  25. Saha T. Makar S. Swetha R. Gutti G. Singh S.K. Estrogen signaling: An emanating therapeutic target for breast cancer treatment. Eur. J. Med. Chem. 2019 177 116 143 10.1016/j.ejmech.2019.05.023 31129450
    [Google Scholar]
  26. Mobeen I. Romero M.A. Yulaevna I.M. Attar R. Jabeen S. Fayyaz S. Regulation of cell signaling pathways by Genistein in different cancers: Progress, prospects and pitfalls. Cell. Mol. Biol. 2022 67 6 318 329 10.14715/cmb/2021.67.6.42 35818180
    [Google Scholar]
  27. Chen J. Duan Y. Zhang X. Ye Y. Ge B. Chen J. Genistein induces apoptosis by the inactivation of the IGF-1R/p-Akt signaling pathway in MCF-7 human breast cancer cells. Food Funct. 2015 6 3 995 1000 10.1039/C4FO01141D 25675448
    [Google Scholar]
  28. Yousefi H. Karimi P. Alihemmati A. Alipour M.R. Habibi P. Ahmadiasl N. Therapeutic potential of genistein in ovariectomy-induced pancreatic injury in diabetic rats: The regulation of MAPK pathway and apoptosis. Iran. J. Basic Med. Sci. 2017 20 9 1009 1015 29085595
    [Google Scholar]
  29. Shin S.B. Woo S.U. Chin Y.W. Jang Y.J. Yim H. Sensitivity of TP53-mutated cancer cells to the phytoestrogen genistein is associated with direct inhibition of Plk1 activity. J. Cell. Physiol. 2017 232 10 2818 2828 10.1002/jcp.25680 27861885
    [Google Scholar]
  30. Shin S.B. Woo S.U. Yim H. Cotargeting Plk1 and androgen receptor enhances the therapeutic sensitivity of paclitaxel-resistant prostate cancer. Ther. Adv. Med. Oncol. 2019 11 1758835919846375 10.1177/1758835919846375 31156720
    [Google Scholar]
  31. Amerizadeh A. Asgary S. Vaseghi G. Farajzadegan Z. Effect of genistein intake on some cardiovascular risk factors: An updated systematic review and meta-analysis. Curr. Probl. Cardiol. 2022 47 9 100902 10.1016/j.cpcardiol.2021.100902 34266697
    [Google Scholar]
  32. Yi X.Y. Wang Z.H. Wang Y. Genistein for glycolipid metabolism in postmenopausal women: A meta-analysis. Climacteric 2021 24 3 267 274 10.1080/13697137.2020.1859473 33410719
    [Google Scholar]
  33. Abshirini M. Omidian M. Kord-Varkaneh H. Effect of soy protein containing isoflavones on endothelial and vascular function in postmenopausal women: A systematic review and meta-analysis of randomized controlled trials. Menopause 2020 27 12 1425 1433 10.1097/GME.0000000000001622 32881829
    [Google Scholar]
  34. Nazari-Khanamiri F. Ghasemnejad-Berenji M. Cellular and molecular mechanisms of genistein in prevention and treatment of diseases: An overview. J. Food Biochem. 2021 45 11 e13972 10.1111/jfbc.13972 34664285
    [Google Scholar]
  35. de Oliveira H.P. Dias Soares J.M. Pereira Leal A.E.B. Silva J.C. Almeida J.R.G.S. Influence of flavonoids on mechanism of modulation of insulin secretion. Pharmacogn. Mag. 2017 13 52 639 646 10.4103/pm.pm_87_17 29200726
    [Google Scholar]
  36. Goswami K. Badruddeen Arif M. Akhtar J. Khan M.I. Ahmad M. Flavonoids, isoflavonoids and others bioactives for insulin sensitizations. Curr. Diabetes Rev. 2024 20 2 e270423216247 10.2174/1573399819666230427095200 37102490
    [Google Scholar]
  37. Kaufman P.B. Duke J.A. Brielmann H. Boik J. Hoyt J.E. A comparative survey of leguminous plants as sources of the isoflavones, genistein and daidzein: Implications for human nutrition and health. J. Altern. Complement. Med. 1997 3 1 7 12 10.1089/acm.1997.3.7 9395689
    [Google Scholar]
  38. Kim B.G. Biological synthesis of genistein in Escherichia coli. J. Microbiol. Biotechnol. 2020 30 5 770 776 10.4014/jmb.1911.11009 32482944
    [Google Scholar]
  39. Xiong P. Wang R. Zhang X. DeLa Torre E. Leon F. Zhang Q. Chen Q. H. Design, synthesis, and evaluation of genistein analogues as anticancer agents. Anticancer Agents Med. Chem. 2015 15 9 1197 1203
    [Google Scholar]
  40. Guan Y. Zhang Y. Zou J. Huang L.P. Chordia M.D. Yue W. Wu J.J. Pan D.F. Synthesis and biological evaluation of genistein-IR783 conjugate: Cancer cell targeted delivery in MCF-7 for superior anticancer therapy. Molecules 2019 24 22 4120 10.3390/molecules24224120 31739548
    [Google Scholar]
  41. Wang R. Zhao S. Wang Z. Koffas M.A.G. Recent advances in modular co-culture engineering for synthesis of natural products. Curr. Opin. Biotechnol. 2020 62 65 71 10.1016/j.copbio.2019.09.004 31605875
    [Google Scholar]
  42. Liu Y. Hu M. Absorption and metabolism of flavonoids in the Caco-2 cell culture model and a perused rat intestinal model. Drug Metab. Dispos. 2002 30 4 370 377 10.1124/dmd.30.4.370 11901089
    [Google Scholar]
  43. Walsh K.R. Haak S.J. Bohn T. Tian Q. Schwartz S.J. Failla M.L. Isoflavonoid glucosides are deconjugated and absorbed in the small intestine of human subjects with ileostomies. Am. J. Clin. Nutr. 2007 85 4 1050 1056 10.1093/ajcn/85.4.1050 17413104
    [Google Scholar]
  44. Bokkenheuser V.D. Shackleton C.H. Winter J. Hydrolysis of dietary flavonoid glycosides by strains of intestinal Bacteroides from humans. Biochem. J. 1987 248 3 953 956 10.1042/bj2480953 3435494
    [Google Scholar]
  45. Mattison D.R. Karyakina N. Goodman M. LaKind J.S. Pharmaco- and toxicokinetics of selected exogenous and endogenous estrogens: A review of the data and identification of knowledge gaps. Crit. Rev. Toxicol. 2014 44 8 696 724 10.3109/10408444.2014.930813 25099693
    [Google Scholar]
  46. Rozman K.K. Bhatia J. Calafat A.M. Chambers C. Culty M. Etzel R.A. Flaws J.A. Hansen D.K. Hoyer P.B. Jeffery E.H. Kesner J.S. Marty S. Thomas J.A. Umbach D. NTP-CERHR expert panel report on the reproductive and developmental toxicity of genistein. Birth Defects Res. B Dev. Reprod. Toxicol. 2006 77 6 485 638 10.1002/bdrb.20087 17186522
    [Google Scholar]
  47. Yang Z. Zhu W. Gao S. Xu H. Wu B. Kulkarni K. Singh R. Tang L. Hu M. Simultaneous determination of genistein and its four phase II metabolites in blood by a sensitive and robust UPLC–MS/MS method: Application to an oral bioavailability study of genistein in mice. J. Pharm. Biomed. Anal. 2010 53 1 81 89 10.1016/j.jpba.2010.03.011 20378296
    [Google Scholar]
  48. Setchell K.D.R. Brown N.M. Desai P. Zimmer-Nechemias L. Wolfe B.E. Brashear W.T. Kirschner A.S. Cassidy A. Heubi J.E. Bioavailability of pure isoflavones in healthy humans and analysis of commercial soy isoflavone supplements. J. Nutr. 2001 131 4 Suppl. 1362S 1375S 10.1093/jn/131.4.1362S 11285356
    [Google Scholar]
  49. Riches Z. Stanley E.L. Bloomer J.C. Coughtrie M.W.H. Quantitative evaluation of the expression and activity of five major sulfotransferases (SULTs) in human tissues: the SULT “pie”. Drug Metab. Dispos. 2009 37 11 2255 2261 10.1124/dmd.109.028399 19679676
    [Google Scholar]
  50. Boronat A. Rodriguez-Morató J. Serreli G. Fitó M. Tyndale R.F. Deiana M. de la Torre R. Contribution of biotransformations carried out by the microbiota, drug-metabolizing enzymes, and transport proteins to the biological activities of phytochemicals found in the diet. Adv. Nutr. 2021 12 6 2172 2189 10.1093/advances/nmab085 34388248
    [Google Scholar]
  51. Stewart C. Ralyea C. Lockwood S. Ovarian cancer: An integrated review. Semin. Oncol. Nurs. 2019 35 2 151 156 10.1016/j.soncn.2019.02.001 30867104
    [Google Scholar]
  52. Nash Z. Menon U. Ovarian cancer screening: Current status and future directions. Best Pract. Res. Clin. Obstet. Gynaecol. 2020 65 32 45 10.1016/j.bpobgyn.2020.02.010 32273169
    [Google Scholar]
  53. Zamwar U.M. Anjankar A.P. Aetiology, epidemiology, histopathology, classification, detailed evaluation, and treatment of ovarian cancer. Cureus 2022 14 10 e30561 10.7759/cureus.30561 36415372
    [Google Scholar]
  54. Hollis R.L. Croy I. Churchman M. Bartos C. Rye T. Gourley C. Herrington C.S. Ovarian carcinosarcoma is a distinct form of ovarian cancer with poorer survival compared to tubo-ovarian high-grade serous carcinoma. Br. J. Cancer 2022 127 6 1034 1042 10.1038/s41416‑022‑01874‑8 35715633
    [Google Scholar]
  55. Mazidimoradi A. Momenimovahed Z. Allahqoli L. Tiznobaik A. Hajinasab N. Salehiniya H. Alkatout I. The global, regional and national epidemiology, incidence, mortality, and burden of ovarian cancer. Health Sci. Rep. 2022 5 6 e936 10.1002/hsr2.936 36439044
    [Google Scholar]
  56. Malik P. Singh R. Kumar M. Malik A. Mukherjee T.K. Understanding the phytoestrogen genistein actions on breast cancer: Insights on estrogen receptor equivalence, pleiotropic essence and emerging paradigms in bioavailability modulation. Curr. Top. Med. Chem. 2023 23 15 1395 1413 10.2174/1568026623666230103163023 36597609
    [Google Scholar]
  57. Jiang H. Fan J. Cheng L. Hu P. Liu R. The anticancer activity of genistein is increased in estrogen receptor beta 1-positive breast cancer cells. OncoTargets Ther. 2018 11 8153 8163 10.2147/OTT.S182239 30532556
    [Google Scholar]
  58. Lee A.H. Su D. Pasalich M. Tang L. Binns C.W. Qiu L. Soy and isoflavone intake associated with reduced risk of ovarian cancer in southern Chinese women. Nutr. Res. 2014 34 4 302 307 10.1016/j.nutres.2014.02.005 24774066
    [Google Scholar]
  59. Wang Y. Li W. Wang Z. Ren H. Li Y. Zhang Y. Yang P. Pan S. Genistein upregulates cyclin D1 and CDK4 expression and promotes the proliferation of ovarian cancer OVCAR-5 cells. Clin. Chim. Acta 2021 512 100 105 10.1016/j.cca.2019.08.023 31465770
    [Google Scholar]
  60. Sohel M. Biswas P. Al Amin M. Hossain M.A. Sultana H. Dey D. Aktar S. Setu A. Khan M.S. Paul P. Islam M.N. Rahman M.A. Kim B. Al Mamun A. Genistein, a potential phytochemical against breast cancer treatment-insight into the molecular mechanisms. Processes 2022 10 2 415 10.3390/pr10020415
    [Google Scholar]
  61. Mukund V. Mukund D. Sharma V. Mannarapu M. Alam A. Genistein: Its role in metabolic diseases and cancer. Crit. Rev. Oncol. Hematol. 2017 119 13 22 10.1016/j.critrevonc.2017.09.004 29065980
    [Google Scholar]
  62. Carbonel A.A.F. de Oliveira Bruno L. de Paula C. Teixeira R.S.S. Girão J.H.C. de Jesus M. Effects of genistein and daidzein in female reproductive tract. Genistein and daidzein: Food sources, biological activity and health benefits. New York Nova Science 2015 11788 13619
    [Google Scholar]
  63. Malla A. Ramalingam S. Health perspectives of an isoflavonoid genistein and its quantification in economically important plants. Role of Materials Science in Food Bioengineering. Academic Press 2018 353 379 10.1016/B978‑0‑12‑811448‑3.00011‑5
    [Google Scholar]
  64. Gali-Muhtasib H. Hmadi R. Kareh M. Tohme R. Darwiche N. Cell death mechanisms of plant-derived anticancer drugs: Beyond apoptosis. Apoptosis 2015 20 12 1531 1562 10.1007/s10495‑015‑1169‑2 26362468
    [Google Scholar]
  65. Moga M. Dimienescu O. Arvatescu C. Mironescu A. Dracea L. Ples L. The role of natural polyphenols in the prevention and treatment of cervical cancer-An overview. Molecules 2016 21 8 1055 10.3390/molecules21081055 27548122
    [Google Scholar]
  66. Wang T.T.Y. Sathyamoorthy N. Phang J.M. Molecular effects of genistein on estrogen receptor mediated pathways. Carcinogenesis 1996 17 2 271 275 10.1093/carcin/17.2.271 8625449
    [Google Scholar]
  67. Dhananjaya K. Sibi G. Mallesha H. Ravikumar K.R. Awasthi S. Insilico studies of Daidzein and Genistein with human estrogen receptor α. Asian Pac. J. Trop. Biomed. 2012 2 3 S1747 S1753 10.1016/S2221‑1691(12)60489‑4
    [Google Scholar]
  68. Santoro N. Worsley R. Miller K.K. Parish S.J. Davis S.R. Role of estrogens and estrogen-like compounds in female sexual function and dysfunction. J. Sex. Med. 2016 13 3 305 316 10.1016/j.jsxm.2015.11.015 26944462
    [Google Scholar]
  69. Septadina I.S. An overview of the female reproductive system: A narrative literature review. Sriwijaya J. Obstet. Gynecol. 2023 1 1 16 23 10.59345/sjog.v1i1.25
    [Google Scholar]
  70. Amenyogbe E. Chen G. Wang Z. Lu X. Lin M. Lin A.Y. A review on sex steroid hormone estrogen receptors in mammals and fish. Int. J. Endocrinol. 2020 2020 1 9 10.1155/2020/5386193 32089683
    [Google Scholar]
  71. Hwang W.J. Lee T.Y. Kim N.S. Kwon J.S. The role of estrogen receptors and their signaling across psychiatric disorders. Int. J. Mol. Sci. 2020 22 1 373 10.3390/ijms22010373 33396472
    [Google Scholar]
  72. Patel S. Homaei A. Raju A.B. Meher B.R. Estrogen: The necessary evil for human health, and ways to tame it. Biomed. Pharmacother. 2018 102 403 411 10.1016/j.biopha.2018.03.078 29573619
    [Google Scholar]
  73. Wu Z. Liu L. The protective activity of genistein against bone and cartilage diseases. Front. Pharmacol. 2022 13 1016981 10.3389/fphar.2022.1016981 36160403
    [Google Scholar]
  74. Mas-Bargues C. Borrás C. Viña J. The multimodal action of genistein in Alzheimer’s and other age-related diseases. Free Radic. Biol. Med. 2022 183 127 137 10.1016/j.freeradbiomed.2022.03.021 35346775
    [Google Scholar]
  75. Myung S-K. Ju W. Choi H.J. Kim S.C. Korean Meta-Analysis (KORMA) Study Group Soy intake and risk of endocrine-related gynaecological cancer: A meta-analysis. BJOG 2009 116 13 1697 1705 10.1111/j.1471‑0528.2009.02322.x 19775307
    [Google Scholar]
  76. Bi C. Chng W.J. MicroRNA: important player in the pathobiology of multiple myeloma. BioMed Res. Int. 2014 2014 1 12 10.1155/2014/521586 24991558
    [Google Scholar]
  77. Liz J. Esteller M. lncRNAs and microRNAs with a role in cancer development. Biochimica et Biophysica Acta (BBA)-. Gene Regul Mech 2016 1859 1 169 176
    [Google Scholar]
  78. Loh H.Y. Norman B.P. Lai K.S. Rahman N.M.A.N.A. Alitheen N.B.M. Osman M.A. The regulatory role of microRNAs in breast cancer. Int. J. Mol. Sci. 2019 20 19 4940 10.3390/ijms20194940 31590453
    [Google Scholar]
  79. Petersen P.H.D. Lopacinska-Jørgensen J. Høgdall C.K. Høgdall E.V. Identification of stably expressed microRNAs in plasma from high-grade serous ovarian carcinoma and benign tumor patients. Mol. Biol. Rep. 2023 50 12 10235 10247 10.1007/s11033‑023‑08795‑6 37934368
    [Google Scholar]
  80. Xu L. Xiang J. Shen J. Zou X. Zhai S. Yin Y. Sun Q. Oncogenic MicroRNA-27a is a target for Genistein in ovarian cancer cells. Anticancer Agents Med. Chem. 2013 13 7 1126 1132
    [Google Scholar]
  81. Iida M. Tsuboi K. Niwa T. Ishida T. Hayashi S. Compensatory role of insulin-like growth factor 1 receptor in estrogen receptor signaling pathway and possible therapeutic target for hormone therapy-resistant breast cancer. Breast Cancer 2019 26 3 272 281 10.1007/s12282‑018‑0922‑0 30328006
    [Google Scholar]
  82. Hwang K.A. Park M.A. Kang N.H. Yi B.R. Hyun S.H. Jeung E.B. Choi K.C. Anticancer effect of genistein on BG-1 ovarian cancer growth induced by 17 β-estradiol or bisphenol A via the suppression of the crosstalk between estrogen receptor alpha and insulin-like growth factor-1 receptor signaling pathways. Toxicol. Appl. Pharmacol. 2013 272 3 637 646 10.1016/j.taap.2013.07.027 23933164
    [Google Scholar]
  83. Chimento A. De Luca A. Avena P. De Amicis F. Casaburi I. Sirianni R. Pezzi V. Estrogen receptors-mediated apoptosis in hormone-dependent cancers. Int. J. Mol. Sci. 2022 23 3 1242 10.3390/ijms23031242 35163166
    [Google Scholar]
  84. Chan K.K.L. Siu M.K.Y. Jiang Y. Wang J. Leung T.H.Y. Ngan H.Y.S. Estrogen receptor modulators genistein, daidzein and ERB-041 inhibit cell migration, invasion, proliferation and sphere formation via modulation of FAK and PI3K/AKT signaling in ovarian cancer. Cancer Cell Int. 2018 18 1 65 10.1186/s12935‑018‑0559‑2 29743815
    [Google Scholar]
  85. Ning Y.X. Luo X. Xu M. Feng X. Wang J. Let-7d increases ovarian cancer cell sensitivity to a genistein analog by targeting c-Myc. Oncotarget 2017 8 43 74836 74845 10.18632/oncotarget.20413 29088827
    [Google Scholar]
  86. Patra A. Satpathy S. Naik P.K. Kazi M. Hussain M.D. Folate receptor-targeted PLGA-PEG nanoparticles for enhancing the activity of Genistein in ovarian cancer. Artif. Cells Nanomed. Biotechnol. 2022 50 1 228 239 10.1080/21691401.2022.2118758 36330543
    [Google Scholar]
  87. Pistollato F. Calderón Iglesias R. Ruiz R. Aparicio S. Crespo J. Dzul Lopez L. Giampieri F. Battino M. The use of natural compounds for the targeting and chemoprevention of ovarian cancer. Cancer Lett. 2017 411 191 200 10.1016/j.canlet.2017.09.050 29017913
    [Google Scholar]
  88. Gercel-Taylor C. Feitelson A.K. Taylor D.D. Inhibitory effect of genistein and daidzein on ovarian cancer cell growth. Anticancer Res. 2004 24 2B 795 800 15161029
    [Google Scholar]
  89. Rucinska A. Kirko S. Gabryelak T. Effect of the phytoestrogen, genistein-8-C-glucoside, on Chinese hamster ovary cells in vitro. Cell Biol. Int. 2007 31 11 1371 1378 10.1016/j.cellbi.2007.05.012 17601753
    [Google Scholar]
  90. Choi E.J. Kim T. Lee M.S. Pro-apoptotic effect and cytotoxicity of genistein and genistin in human ovarian cancer SK-OV-3 cells. Life Sci. 2007 80 15 1403 1408 10.1016/j.lfs.2006.12.031 17291540
    [Google Scholar]
  91. Lee J.Y. Kim H.S. Song Y.S. Genistein as a potential anticancer agent against ovarian cancer. J. Tradit. Complement. Med. 2012 2 2 96 104 10.1016/S2225‑4110(16)30082‑7 24716121
    [Google Scholar]
  92. Ahmed A.A. Goldsmith J. Fokt I. Le X.F. Krzysko K.A. Lesyng B. Bast R.C. Jr Priebe W. A genistein derivative, ITB-301, induces microtubule depolymerization and mitotic arrest in multidrug-resistant ovarian cancer. Cancer Chemother. Pharmacol. 2011 68 4 1033 1044 10.1007/s00280‑011‑1575‑2 21340606
    [Google Scholar]
  93. Yang Z. Kulkarni K. Zhu W. Hu M. Bioavailability and pharmacokinetics of Genistein: Mechanistic studies on its ADME Anticancer Agents Med. Chem. 2012 12 10 1264 1280
    [Google Scholar]
  94. Huang S.L. Chang T.C. Chao C.C.K. Sun N.K. Role of the TLR4-androgen receptor axis and genistein in taxol-resistant ovarian cancer cells. Biochem. Pharmacol. 2020 177 113965 10.1016/j.bcp.2020.113965 32278794
    [Google Scholar]
  95. Mittal P. Vrdhan H. Ajmal G. Bonde G. Kapoor R. Mishra B. Formulation and characterization of genistein-loaded nanostructured lipid carriers: Pharmacokinetic, biodistribution and in vitro cytotoxicity studies. Curr. Drug Deliv. 2019 16 3 215 225 10.2174/1567201816666181120170137 30465502
    [Google Scholar]
  96. Mamagkaki A. Bouris I. Parsonidis P. Vlachou I. Gougousi M. Papasotiriou I. Genistein as a dietary supplement; Formulation, analysis and pharmacokinetics study. PLoS One 2021 16 4 e0250599 10.1371/journal.pone.0250599 33905453
    [Google Scholar]
  97. Phan V. Walters J. Brownlow B. Elbayoumi T. Enhanced cytotoxicity of optimized liposomal genistein via specific induction of apoptosis in breast, ovarian and prostate carcinomas. J. Drug Target. 2013 21 10 1001 1011 10.3109/1061186X.2013.847099 24151835
    [Google Scholar]
  98. Bindhya K.P. Uma Maheswari P. Meera Sheriffa Begum K.M. Milk protein inspired multifunctional magnetic carrier targeting progesterone receptors: Improved anticancer potential of soybean-derived genistein against breast and ovarian cancers. Mater. Chem. Phys. 2021 272 125055 10.1016/j.matchemphys.2021.125055
    [Google Scholar]
  99. Wei Y. Xin X. Huang Y. Shao J. Duan H. Effect of Genistein on increasing apoptosis of drug-resistant ovarian cancer cell SKOV-3 induced by cisplatin. Xiandai Shengwu Yixue Jinzhan 2010 10 23 4446 4450
    [Google Scholar]
  100. Liu H. Lee G. Lee J.I. Ahn T.G. Kim S.A. Effects of genistein on anti-tumor activity of cisplatin in human cervical cancer cell lines. Obstet. Gynecol. Sci. 2019 62 5 322 328 10.5468/ogs.2019.62.5.322 31538075
    [Google Scholar]
  101. Maheri H. Hashemzadeh F. Shakibapour N. Kamelniya E. Malaekeh-Nikouei B. Mokaberi P. Chamani J. Glucokinase activity enhancement by cellulose nanocrystals isolated from jujube seed: A novel perspective for type II diabetes mellitus treatment (In vitro). J. Mol. Struct. 2022 1269 133803 10.1016/j.molstruc.2022.133803
    [Google Scholar]
  102. Kalhori F. Yazdyani H. Khademorezaeian F. Hamzkanloo N. Mokaberi P. Hosseini S. Chamani J. Enzyme activity inhibition properties of new cellulose nanocrystals from Citrus medica L. pericarp: A perspective of cholesterol lowering. Luminescence 2022 37 11 1836 1845 10.1002/bio.4360 35946171
    [Google Scholar]
  103. Arman S. Hadavi M. Rezvani-Noghani A. Bakhtparvar A. Fotouhi M. Farhang A. Mokaberi P. Taheri R. Chamani J. Cellulose nanocrystals from celery stalk as quercetin scaffolds: A novel perspective of human holo-transferrin adsorption and digestion behaviours. Luminescence 2024 39 1 e4634 10.1002/bio.4634 38286605
    [Google Scholar]
  104. Jouyaeian P. Kamkar-Vatanparast M. Tehranian-Torghabeh F. Hoseinpoor S. Saberi M.R. Chamani J. New perspective into the interaction behavior explore of nano-berberine with alpha-lactalbumin in the presence of beta-lactoglobulin: Multi-spectroscopic and molecular dynamic investigations. J. Mol. Struct. 2024 1316 139020 10.1016/j.molstruc.2024.139020
    [Google Scholar]
  105. Chen H.H. Chen S.P. Zheng Q.L. Nie S.P. Li W.J. Hu X.J. Xie M.Y. Genistein promotes proliferation of human cervical cancer cells through estrogen receptor-mediated PI3K/Akt-NF-κB pathway. J. Cancer 2018 9 2 288 295 10.7150/jca.20499 29344275
    [Google Scholar]
  106. Puri A. Mohite P. Ansari Y. Mukerjee N. Alharbi H.M. Upaganlawar A. Thorat N. Plant-derived selenium nanoparticles: Investigating unique morphologies, enhancing therapeutic uses, and leading the way in tailored medical treatments. Materials Advances 2024 5 9 3602 3628 10.1039/D3MA01126G
    [Google Scholar]
  107. Puri A. Mohite P. Maitra S. Subramaniyan V. Kumarasamy V. Uti D.E. Sayed A.A. El-Demerdash F.M. Algahtani M. El-kott A.F. Shati A.A. Albaik M. Abdel-Daim M.M. Atangwho I.J. From nature to nanotechnology: The interplay of traditional medicine, green chemistry, and biogenic metallic phytonanoparticles in modern healthcare innovation and sustainability. Biomed. Pharmacother. 2024 170 116083 10.1016/j.biopha.2023.116083 38163395
    [Google Scholar]
  108. Puri A. Mohite P. Patil S. Chidrawar V.R. Ushir Y.V. Dodiya R. Singh S. Facile green synthesis and characterization of Terminalia arjuna bark phenolic–selenium nanogel: A biocompatible and green nano-biomaterial for multifaceted biological applications. Front Chem. 2023 11 1273360 10.3389/fchem.2023.1273360 37810585
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128332618240823044548
Loading
/content/journals/cpd/10.2174/0113816128332618240823044548
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test