Skip to content
2000
Volume 31, Issue 2
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Epilepsy is a persistent neurological condition that affects 60 million individuals globally, with recurrent spontaneous seizures affecting 80% of patients. Antiepileptic drugs (AEDs) are the main course of therapy for approximately 65% of epileptic patients, and the remaining 35% develop resistance to medication, which leads to drug-resistant epilepsy (DRE). DRE continues to be an important challenge in clinical epileptology. There are several theories that attempt to explain the neurological causes of pharmacoresistance in epilepsy. The theory that has been studied the most is the transporter hypothesis. Therefore, it is believed that upregulation of multidrug efflux transporters at the blood-brain barrier (BBB), such as P-glycoprotein (P-gp), which extrudes AEDs from their target location, is the major cause, leading to pharmacoresistance in epilepsy. The most effective strategies for managing this DRE are peripheral and central inhibition of P-gp and maintaining an effective concentration of the drug in the brain parenchyma. Presently, no medicinal product that inhibits P-gp is being used in clinical practice. In this review, several innovative and promising treatment methods, including gene therapy, intracranial injections, Pgp inhibitors, nanocarriers, and precision medicine, are discussed. The primary goal of this work is to review the P-gp transporter, its substrates, and the latest novel treatment methods for the management of DRE.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128332345240823111524
2024-09-13
2025-01-02
Loading full text...

Full text loading...

References

  1. McDermottD. DarwinM.L. FetrowK. CoulterI. BieseckerK. ThompsonJ.A. Cannabis use patterns in drug-resistant and pharmacoresponsive epilepsy: Single tertiary referral center survey investigation.PLoS One2023181e028104010.1371/journal.pone.028104036706124
    [Google Scholar]
  2. AbokryshaN.T. TahaN. ShamloulR. ElsayedS. OsamaW. HatemG. Clinical, radiological and electrophysiological predictors for drug-resistant epilepsy.Egypt. J. Neurol. Psychiat. Neurosurg.20235914410.1186/s41983‑023‑00647‑137009468
    [Google Scholar]
  3. NairD.R. Management of drug-resistant epilepsy.Continuum (Minneap. Minn.)201622115717210.1212/CON.000000000000029726844735
    [Google Scholar]
  4. KamelF.O. Drug-resistant epilepsy; An overview on management and treatment.IJPRAS2023124769010.51847/d3wwhHbZsW
    [Google Scholar]
  5. SchmitzB. LattanziS. VonckK. KälviäinenR. NashefL. Ben-MenachemE. Cenobamate in refractory epilepsy: Overview of treatment options and practical considerations.Epilepsia Open2023841241125510.1002/epi4.1283037743544
    [Google Scholar]
  6. Téllez-ZentenoJ.F. Hernández-RonquilloL. BuckleyS. ZahagunR. RizviS. A validation of the new definition of drug-resistant epilepsy by the international league against epilepsy.Epilepsia201455682983410.1111/epi.1263324828683
    [Google Scholar]
  7. EngelJ.Jr What can we do for people with drug-resistant epilepsy?Neurology201687232483248910.1212/WNL.000000000000340727920283
    [Google Scholar]
  8. BegleyC. WagnerR.G. AbrahamA. BeghiE. NewtonC. KwonC.S. LabinerD. WinklerA.S. The global cost of epilepsy: A systematic review and extrapolation.Epilepsia202263489290310.1111/epi.1716535195894
    [Google Scholar]
  9. RoaJ.A. AbramovaM. FieldsM. Vega-TalbottM.L. YooJ. MarcuseL. WolfS. McGoldrickP. GhatanS. PanovF. Responsive neurostimulation of the thalamus for the treatment of refractory epilepsy.Front. Hum. Neurosci.20221692633710.3389/fnhum.2022.92633735911594
    [Google Scholar]
  10. TalwarA. EstesE. AparasuR. ReddyD.S. Clinical efficacy and safety of cannabidiol for pediatric refractory epilepsy indications: A systematic review and meta-analysis.Exp. Neurol.202335911423810.1016/j.expneurol.2022.11423836206805
    [Google Scholar]
  11. WhitneyR. SharmaS. JonesK.C. RamachandranNairR. Genetics and SUDEP: Challenges and future directions.Seizure202311018819310.1016/j.seizure.2023.07.00237413779
    [Google Scholar]
  12. RinconN. BarrD. Velez-RuizN. Neuromodulation in drug resistant epilepsy.Aging Dis.20211241070108010.14336/AD.2021.021134221550
    [Google Scholar]
  13. NasiriJ. GhazzaviM. SedghiM. PirzadehZ. Causes and risk factors of drug-resistant epilepsy in children.Iran. J. Child. Neurol.2023173899737637781
    [Google Scholar]
  14. RoyP.L. RonquilloL.H. LadinoL.D. Tellez-ZentenoJ.F. Risk factors associated with drug resistant focal epilepsy in adults: A case control study.Seizure201973465010.1016/j.seizure.2019.10.02031734466
    [Google Scholar]
  15. Xue-PingW. Hai-JiaoW. Li-NaZ. XuD. LingL. Risk factors for drug-resistant epilepsy.Medicine (Baltimore)20199830e1640210.1097/MD.000000000001640231348240
    [Google Scholar]
  16. ReddyD.S. Therapeutic and clinical foundations of cannabidiol therapy for difficult-to-treat seizures in children and adults with refractory epilepsies.Exp. Neurol.202335911423710.1016/j.expneurol.2022.11423736206806
    [Google Scholar]
  17. ChallalS. SkibaA. LangloisM. EsguerraC.V. WolfenderJ.L. CrawfordA.D. Skalicka-WoźniakK. Natural product-derived therapies for treating drug-resistant epilepsies: From ethnopharmacology to evidence-based medicine.J. Ethnopharmacol.202331711674010.1016/j.jep.2023.11674037315641
    [Google Scholar]
  18. FattorussoA. MatricardiS. MencaroniE. Dell’IsolaG.B. Di CaraG. StrianoP. VerrottiA. The pharmacoresistant epilepsy: An overview on existant and new emerging therapies.Front. Neurol.20211267448310.3389/fneur.2021.67448334239494
    [Google Scholar]
  19. MaoH. ChenY. GeQ. YeL. ChengH. Short-and long-term response of vagus nerve stimulation therapy in drug-resistant epilepsy: A systematic review and meta-analysis.Neuromodulation202225332734210.1111/ner.1350935396068
    [Google Scholar]
  20. HuangY. ZhangZ. ChenL. Diagnosis and prognosis of serum Fut8 for epilepsy and refractory epilepsy in children.PLoS One2023184e028423910.1371/journal.pone.028423937053181
    [Google Scholar]
  21. GueryD. RheimsS. Clinical management of drug resistant epilepsy: A review on current strategies.Neuropsychiatr. Dis. Treat.2021172229224210.2147/NDT.S25669934285484
    [Google Scholar]
  22. ShengJ. LiuS. QinH. LiB. ZhangX. Drug-resistant epilepsy and surgery.Curr. Neuropharmacol.2018161172828474565
    [Google Scholar]
  23. MehdizadehA. BarzegarM. NegargarS. YahyaviA. RaeisiS. The current and emerging therapeutic approaches in drug-resistant epilepsy management.Acta Neurol. Belg.2019119215516210.1007/s13760‑019‑01120‑830868468
    [Google Scholar]
  24. ZarnowskaI.M. Therapeutic use of the ketogenic diet in refractory epilepsy: what we know and what still needs to be learned.Nutrients2020129261610.3390/nu1209261632867258
    [Google Scholar]
  25. GhoshS. SinhaJ.K. KhanT. DevarajuK.S. SinghP. VaibhavK. GaurP. Pharmacological and therapeutic approaches in the treatment of epilepsy.Biomedicines20219547010.3390/biomedicines905047033923061
    [Google Scholar]
  26. LercheH. Drug-resistant epilepsy - Time to target mechanisms.Nat. Rev. Neurol.2020161159559610.1038/s41582‑020‑00419‑y33024326
    [Google Scholar]
  27. LöscherW. KleinP. New approaches for developing multi-targeted drug combinations for disease modification of complex brain disorders. Does epilepsy prevention become a realistic goal?Pharmacol. Ther.202222910793410.1016/j.pharmthera.2021.10793434216705
    [Google Scholar]
  28. FarrellyA.M. VlachouS. GrintzalisK. Efficacy of phytocannabinoids in epilepsy treatment: Novel approaches and recent advances.Int. J. Environ. Res. Public Health2021188399310.3390/ijerph1808399333920188
    [Google Scholar]
  29. HoreshN. RubinsteinM. Ben-ZeevB. ParetG. A forgotten alternative: Bromides for refractory status epilepticus.J. Pediatr. Intensive Care.201322858810.3233/PIC‑13055.
    [Google Scholar]
  30. AwadR. AvitalA. SosnikA. Polymeric nanocarriers for nose- to-brain drug delivery in neurodegenerative diseases and neurodevelopmental disorders.Acta Pharm. Sin. B20231351866188610.1016/j.apsb.2022.07.00337250152
    [Google Scholar]
  31. ChenW. ZhangJ. ZhangY. ZhangJ. LiW. ShaL. XiaY. ChenL. Pharmacological modulation of autophagy for epilepsy therapy: Opportunities and obstacles.Drug Discov. Today202328610360010.1016/j.drudis.2023.10360037119963
    [Google Scholar]
  32. LöscherW. PotschkaH. SisodiyaS.M. VezzaniA. Drug resistance in epilepsy: Clinical impact, potential mechanisms, and new innovative treatment options.Pharmacol. Rev.202072360663810.1124/pr.120.01953932540959
    [Google Scholar]
  33. Santana-GomezC.E. EngelJ.Jr StabaR. Drug-resistant epilepsy and the hypothesis of intrinsic severity: What about the high-frequency oscillations?Epilepsia Open20227S1S59S6710.1002/epi4.1256534861102
    [Google Scholar]
  34. BazhanovaE.D. KozlovA.A. LitovchenkoA.V. Mechanisms of drug resistance in the pathogenesis of epilepsy: Role of neuroinflammation. A literature review.Brain Sci.202111566310.3390/brainsci1105066334069567
    [Google Scholar]
  35. LiuS. YangS. HoP.C. Intranasal administration of carbamazepine-loaded carboxymethyl chitosan nanoparticles for drug delivery to the brain.Asian J. Pharm. Sci.2018131728110.1016/j.ajps.2017.09.00132104380
    [Google Scholar]
  36. Fonseca-BarriendosD. Frías-SoriaC.L. Pérez-PérezD. Gómez-LópezR. Borroto EscuelaD.O. RochaL. Drug-resistant epilepsy: Drug target hypothesis and beyond the receptors.Epilepsia Open20227S1S23S3310.1002/epi4.1253934542940
    [Google Scholar]
  37. Campos-BedollaP. Feria-RomeroI. Orozco-SuárezS. Factors not considered in the study of drug-resistant epilepsy: Drug-resistant epilepsy: Assessment of neuroinflammation.Epilepsia Open20227S1S68S8010.1002/epi4.1259035247028
    [Google Scholar]
  38. ŁukawskiK. CzuczwarS.J. Understanding mechanisms of drug resistance in epilepsy and strategies for overcoming it.Expert Opin. Drug Metab. Toxicol.20211791075109010.1080/17425255.2021.195991234310255
    [Google Scholar]
  39. LeA. ThomasM. StallmanB. MeadowsK. BhargavaV. Refractory epilepsy: Mechanisms of pharmacoresistance.GSR J2021119911010.48091/UWYG8998
    [Google Scholar]
  40. VázquezM. FagiolinoP. The role of efflux transporters and metabolizing enzymes in brain and peripheral organs to explain drug-resistant epilepsy.Epilepsia Open20227S1S47S5810.1002/epi4.1254234560816
    [Google Scholar]
  41. LöscherW. SchmidtD. Modern antiepileptic drug development has failed to deliver: Ways out of the current dilemma.Epilepsia201152465767810.1111/j.1528‑1167.2011.03024.x21426333
    [Google Scholar]
  42. Perez-PerezD. Luna-MunguiaH. PotschkaH. Modulating P-glycoprotein regulation as a therapeutic strategy for pharmacoresistant epilepsy.Pharmacoresistance Epilepsy.202349951110.1007/978‑3‑031‑36526‑3_23
    [Google Scholar]
  43. KarthikaC. SureshkumarR. P-glycoprotein efflux transporters and its resistance its inhibitors and therapeutic aspects.Biomarkers and bioanalysis overview.IntechOpen202010.5772/intechopen.90430.
    [Google Scholar]
  44. GargN. JoshiR. MedhiB. A novel approach of targeting refractory epilepsy: Need of an hour.Brain Res. Bull.2020163142010.1016/j.brainresbull.2020.07.01232679059
    [Google Scholar]
  45. TangF. HartzA.M.S. BauerB. Drug-resistant epilepsy: Multiple hypotheses, few answers.Front. Neurol.2017830110.3389/fneur.2017.0030128729850
    [Google Scholar]
  46. AminML. P-glycoprotein inhibition for optimal drug delivery.Drug Target Insights.20137273410.4137/DTI.S12519.
    [Google Scholar]
  47. SmolarzB. MakowskaM. RomanowiczH. Pharmacogenetics of drug-resistant epilepsy (review of literature).Int. J. Mol. Sci.202122211169610.3390/ijms22211169634769124
    [Google Scholar]
  48. TishlerD.M. WeinbergK.I. HintonD.R. BarbaroN. AnnettG.M. RaffelC. MDR1 gene expression in brain of patients with medically intractable epilepsy.Epilepsia19953611610.1111/j.1528‑1157.1995.tb01657.x8001500
    [Google Scholar]
  49. LazarowskiA. RiverosD. SevleverG. MasssaroM. RabinowiczA. High expression of multidrug resistance gene (MDR-1) and persistant low levels of phenytoin (PHT) on a patient with refractary epilepsy due to tuberous sclerosis (TS). J Neurol Sci 1997; p. S28. Available from: https://www.academia.edu/31850126/1_17_22_ High_expression_of_multidrug_resistance_gene_MDR_1_and_persistant_low_levels_of_phenytoin_PHT_on_a_patient_with_refractary_epilepsy_due_to_tuberous_sclerosis_TS_
    [Google Scholar]
  50. LazarowskiA. CzornyjL. LubieniekiF. GirardiE. VazquezS. D'GianoC. ABC transporters during epilepsy and mechanisms underlying multidrug resistance in refractory epilepsy.Epilepsia.200748140910.1111/j.1528‑1167.2007.01302.x.
    [Google Scholar]
  51. LangehU. ChawlaP. GuptaGD. SinghS. A novel approach to refractory epilepsy by targeting pgp peripherally and centrally: Therapeutic targets and future perspectives.CNS Neurol Disord Drug Targets.2020191074174910.2174/1871527319999200819093109.
    [Google Scholar]
  52. Luna-TortósC. FedrowitzM. LöscherW. Several major antiepileptic drugs are substrates for human P-glycoprotein.Neuropharmacology20085581364137510.1016/j.neuropharm.2008.08.03218824002
    [Google Scholar]
  53. BehmardE. BarzegariE. NajafipourS. KouhpayehA. GhasemiY. Asadi-PooyaA.A. Efflux dynamics of the antiseizure drug, levetiracetam, through the P-glycoprotein channel revealed by advanced comparative molecular simulations.Sci. Rep.20221211367410.1038/s41598‑022‑17994‑335953704
    [Google Scholar]
  54. ZhangC. ZuoZ. KwanP. BaumL. In vitro transport profile of carbamazepine, oxcarbazepine, eslicarbazepine acetate, and their active metabolites by human P-glycoprotein.Epilepsia201152101894190410.1111/j.1528‑1167.2011.03140.x21692796
    [Google Scholar]
  55. GhoshS. SinhaJ.K. GhoshS. SharmaH. BhaskarR. NarayananK.B. A comprehensive review of emerging trends and innovative therapies in epilepsy management.Brain Sci.2023139130510.3390/brainsci1309130537759906
    [Google Scholar]
  56. TaleviA. Bruno-BlanchL.E. RochaL. CavalheiroE. On the development of new antiepileptic drugs for the treatment of pharmacoresistant epilepsy: Different approaches to different hypothesis.Pharmacoresistance in Epilepsy.New York, NYSpringer201310.1007/978‑1‑4614‑6464‑8_14
    [Google Scholar]
  57. BalestriniS. MeiD. SisodiyaS.M. GuerriniR. Steps to improve precision medicine in epilepsy.Mol. Diagn. Ther.202327666167210.1007/s40291‑023‑00676‑937755653
    [Google Scholar]
  58. FisherR.S. HoJ. Potential new methods for antiepileptic drug delivery.CNS Drugs200216957959310.2165/00023210‑200216090‑0000112153331
    [Google Scholar]
  59. BaumertC. HilgerothA. Recent advances in the development of P-gp inhibitors.Anticancer Agents Med Chem.2009944153610.2174/1871520610909040415.
    [Google Scholar]
  60. MedhiB. GargN. JoshiR. BhatiaA. BansalS. ChakrabartiA. PrakashA. SaikiaB. ModiM. Study of fingolimod, nitric oxide inhibitor, and P-glycoprotein inhibitor in modulating the P-glycoprotein expression via an endothelin–sphingolipid pathway in an animal model of pharmacoresistant epilepsy.Indian J. Pharmacol.202355530731410.4103/ijp.ijp_100_2337929409
    [Google Scholar]
  61. SobiśJ Use of verapamil as a P-glycoprotein inhibitor in patients with drug-resistant depression.Psychiatry2022192
    [Google Scholar]
  62. HankeN. TürkD. SelzerD. WiebeS. FernandezÉ. StopferP. NockV. LehrT. A mechanistic, Enantioselective, physiologically based pharmacokinetic model of verapamil and Norverapamil, built and evaluated for drug–drug interaction studies.Pharmaceutics202012655610.3390/pharmaceutics1206055632560124
    [Google Scholar]
  63. DastvanR. MishraS. PeskovaY.B. NakamotoR.K. MchaourabH.S. Mechanism of allosteric modulation of P-glycoprotein by transport substrates and inhibitors.Science2019364644168969210.1126/science.aav940631097669
    [Google Scholar]
  64. ZhangH. XuH. AshbyC.R.Jr AssarafY.G. ChenZ.S. LiuH.M. Chemical molecular-based approach to overcome multidrug resistance in cancer by targeting P-glycoprotein (P-gp).Med. Res. Rev.202141152555510.1002/med.2173933047304
    [Google Scholar]
  65. DongJ. QinZ. ZhangW.D. ChengG. YehudaA.G. AshbyC.R.Jr ChenZ.S. ChengX.D. QinJ.J. Medicinal chemistry strategies to discover P-glycoprotein inhibitors: An update.Drug Resist. Updat.20204910068110.1016/j.drup.2020.10068132014648
    [Google Scholar]
  66. SyedS.B. LinS.Y. AryaH. FuI.H. YehT.K. CharlesM.R.C. PeriyasamyL. HsiehH.P. CoumarM.S. Overcoming vincristine resistance in cancer: Computational design and discovery of piperine-inspired P-glycoprotein inhibitors.Chem. Biol. Drug Des.2021971516610.1111/cbdd.1375832633857
    [Google Scholar]
  67. YadavS.S. SinghM.K. HussainS. DwivediP. KhattriS. SinghK. Therapeutic spectrum of piperine for clinical practice: A scoping review.Crit. Rev. Food Sci. Nutr.202363225813584010.1080/10408398.2021.202479234996326
    [Google Scholar]
  68. KumarA. JaitakV. Natural products as multidrug resistance modulators in cancer.Eur. J. Med. Chem.201917626829110.1016/j.ejmech.2019.05.02731103904
    [Google Scholar]
  69. HeX. ChenX. YangY. XieY. LiuY. Medicinal plants for epileptic seizures: Phytoconstituents, pharmacology and mechanisms revisited.J. Ethnopharmacol.202432011738610.1016/j.jep.2023.11738637956914
    [Google Scholar]
  70. KhadkaB. LeeJ.Y. ParkE.K. KimK.T. BaeJ.S. Impacts of drug interactions on pharmacokinetics and the brain transporters: A recent review of natural compound-drug interactions in brain disorders.Int. J. Mol. Sci.2021224180910.3390/ijms2204180933670407
    [Google Scholar]
  71. MoussaviN. van der EntW. DialloD. SanogoR. MalterudK.E. EsguerraC.V. WangensteenH. Inhibition of seizure- like paroxysms and toxicity effects of Securidaca longepedunculata extracts and constituents in zebrafish Danio rerio.ACS Chem. Neurosci.202415361762810.1021/acschemneuro.3c0064238270158
    [Google Scholar]
  72. PathanN. ShendeP. Tailoring of P-glycoprotein for effective transportation of actives across blood-brain-barrier.J. Control. Release202133539840710.1016/j.jconrel.2021.05.04634087246
    [Google Scholar]
  73. Ravikumar ReddyD. KhuranaA. BaleS. RaviralaR. Samba Siva ReddyV. MohankumarM. GoduguC. Natural flavonoids silymarin and quercetin improve the brain distribution of co-administered P-gp substrate drugs.Springerplus201651161810.1186/s40064‑016‑3267‑127652191
    [Google Scholar]
  74. FerreiraA. SantosA.O. FalcãoA. AlvesG. In vitro screening of dual flavonoid combinations for reversing P-glycoprotein-mediated multidrug resistance: Focus on antiepileptic drugs.Food Chem. Toxicol.2018111849310.1016/j.fct.2017.11.00429122665
    [Google Scholar]
  75. FerreiraA. RodriguesM. MeirinhoS. FortunaA. FalcãoA. AlvesG. Silymarin as a flavonoid-type P-glycoprotein inhibitor with impact on the pharmacokinetics of carbamazepine, oxcarbazepine and phenytoin in rats.Drug Chem. Toxicol.202144545846910.1080/01480545.2019.160173631020859
    [Google Scholar]
  76. ZhangC. FanQ. ChenS.L. MaH. Reversal of P-glycoprotein overexpression by Ginkgo biloba extract in the brains of pentylenetetrazole-kindled and phenytoin-treated mice.Kaohsiung J. Med. Sci.201531839840410.1016/j.kjms.2015.05.00726228278
    [Google Scholar]
  77. SinghD.V. GodboleM.M. MisraK. A plausible explanation for enhanced bioavailability of P-gp substrates in presence of piperine: Simulation for next generation of P-gp inhibitors.J. Mol. Model.201319122723810.1007/s00894‑012‑1535‑822864626
    [Google Scholar]
  78. BhardwajR.K. GlaeserH. BecquemontL. KlotzU. GuptaS.K. FrommM.F. Piperine, a major constituent of black pepper, inhibits human P-glycoprotein and CYP3A4.J. Pharmacol. Exp. Ther.2002302264565010.1124/jpet.102.03472812130727
    [Google Scholar]
  79. ShuklaS. ZaherH. HartzA. BauerB. WareJ.A. AmbudkarS.V. Curcumin inhibits the activity of ABCG2/BCRP1, a multidrug resistance-linked ABC drug transporter in mice.Pharm. Res.200926248048710.1007/s11095‑008‑9735‑818841445
    [Google Scholar]
  80. RaishM. AhmadA. AnsariM.A. AlkharfyK.M. AhadA. Al-JenoobiF.I. Al-MohizeaA.M. KhanA. AliN. Effects of sinapic acid on hepatic cytochrome P450 3A2, 2C11, and intestinal P-glycoprotein on the pharmacokinetics of oral carbamazepine in rats: Potential food/herb-drug interaction.Epilepsy Res.2019153141810.1016/j.eplepsyres.2019.03.01230927680
    [Google Scholar]
  81. GernertM. FejaM. Bypassing the blood–brain barrier: Direct intracranial drug delivery in epilepsies.Pharmaceutics20201212113410.3390/pharmaceutics1212113433255396
    [Google Scholar]
  82. IkramM. RasheedS. Genetics of dravet syndrome and its targeted therapy by nanomedicine: A roadmap for future treatment of drug resistant seizures.Curr. Mol. Pharmacol.202316447549310.2174/187446721566622081914310535986530
    [Google Scholar]
  83. ZhangY. ZouZ. LiuS. MiaoS. LiuH. Nanogels as novel nanocarrier systems for efficient delivery of CNS therapeutics.Front. Bioeng. Biotechnol.20221095447010.3389/fbioe.2022.95447035928954
    [Google Scholar]
  84. MovahedpourA. TaghvaeefarR. Asadi-PooyaA.A. KaramiY. TavasolianR. KhatamiS.H. Soltani FardE. TaghvimiS. KaramiN. Rahimi JaberiK. Taheri-AnganehM. GhasemiH. Nano-delivery systems as a promising therapeutic potential for epilepsy: Current status and future perspectives.CNS Neurosci. Ther.202329113150315910.1111/cns.1435537452477
    [Google Scholar]
  85. FatimaI. ZeinalilathoriS. QindeelM. KharabaZ. SahebzadeM.S. RahdarA. ZeinaliS. Fathi-karkanS. KhanA. GhazyE. PandeyS. Advances in targeted nano-delivery of bevacizumab using nanoparticles: Current insights, innovations, and future perspectives.J. Drug Deliv. Sci. Technol.20249810585010.1016/j.jddst.2024.105850
    [Google Scholar]
  86. HashemianM. AnissianD. Ghasemi-KasmanM. AkbariA. Khalili-FomeshiM. GhasemiS. AhmadiF. MoghadamniaA.A. EbrahimpourA. Curcumin-loaded chitosan-alginate-STPP nanoparticles ameliorate memory deficits and reduce glial activation in pentylenetetrazol-induced kindling model of epilepsy.Prog. Neuropsychopharmacol. Biol. Psychiatry201779Pt B46247110.1016/j.pnpbp.2017.07.02528778407
    [Google Scholar]
  87. BakhshiS. ShoariA. AlibolandiP. GanjiM. GhazyE. RahdarA. Emerging innovations in vincristine-encapsulated nanoparticles: Pioneering a new era in oncological therapeutics.J. Drug Deliv. Sci. Technol.202391410527010.1016/j.jddst.2023.105270.
    [Google Scholar]
  88. SatapathyM.K. YenT.L. JanJ.S. TangR.D. WangJ.Y. TaliyanR. YangC.H. Solid lipid nanoparticles (SLNs): An advanced drug delivery system targeting brain through BBB.Pharmaceutics2021138118310.3390/pharmaceutics1308118334452143
    [Google Scholar]
  89. Scioli MontotoS. SbaragliniM.L. TaleviA. CouyoupetrouM. Di IanniM. PesceG.O. AlvarezV.A. Bruno-BlanchL.E. CastroG.R. RuizM.E. IslanG.A. Carbamazepine-loaded solid lipid nanoparticles and nanostructured lipid carriers: Physicochemical characterization and in vitro/in vivo evaluation.Colloids Surf. B Biointerfaces2018167738110.1016/j.colsurfb.2018.03.05229627680
    [Google Scholar]
  90. PourmadadiM. GeramiS.E. AjalliN. YazdianF. RahdarA. Fathi-karkanS. AboudzadehM.A. Novel pH-responsive hybrid hydrogels for controlled delivery of curcumin: Overcoming conventional constraints and enhancing cytotoxicity in MCF-7 cells.Hybrid Advances2024610021010.1016/j.hybadv.2024.100210
    [Google Scholar]
  91. YangY. JiangY. LiB. Green supported of silver nanoparticles on the surface of reduced graphene oxide: Investigation of its anti-epileptic activity on experimental models of epilepsy in mice.Inorg. Chem. Commun.202416611260310.1016/j.inoche.2024.112603
    [Google Scholar]
  92. PathanS.A. JainG.K. AkhterS. VohoraD. AhmadF.J. KharR.K. Insights into the novel three ‘D’s of epilepsy treatment: drugs, delivery systems and devices.Drug Discov. Today20101517-1871773210.1016/j.drudis.2010.06.01420603226
    [Google Scholar]
  93. van TienderenG.S. BerthelM. YueZ. CookM. LiuX. BeirneS. WallaceG.G. Advanced fabrication approaches to controlled delivery systems for epilepsy treatment.Expert Opin. Drug Deliv.201815991592510.1080/17425247.2018.151774530169981
    [Google Scholar]
  94. HallidayA.J. MoultonS.E. WallaceG.G. CookM.J. Novel methods of antiepileptic drug delivery - Polymer-based implants.Adv. Drug Deliv. Rev.2012641095396410.1016/j.addr.2012.04.00422564384
    [Google Scholar]
  95. CookM. MurphyM. BullussK. D’SouzaW. PlummerC. PriestE. WilliamsC. SharanA. FisherR. PincusS. DistadE. AnchordoquyT. AbramsD. Anti-seizure therapy with a long-term, implanted intra-cerebroventricular delivery system for drug-resistant epilepsy: A first-in-man study.EClinicalMedicine20202210032610.1016/j.eclinm.2020.10032632395709
    [Google Scholar]
  96. Van DyckeA. RaedtR. VonckK. BoonP. Local delivery strategies in epilepsy; A focus on adenosine.Seizure201120537638210.1016/j.seizure.2011.03.00321514852
    [Google Scholar]
  97. KurawattimathV. WilsonB. GeethaKM. Nanoparticle-based drug delivery across the blood-brain barrier for treating malignant brain glioma.OpenNano20231010012810.1016/j.onano.2023.100128
    [Google Scholar]
  98. AbdelkaderH. FathallaZ. SeyfoddinA. FarahaniM. ThrimawithanaT. AllahhamA. AlaniA.W.G. Al-KinaniA.A. AlanyR.G. Polymeric long-acting drug delivery systems (LADDS) for treatment of chronic diseases: Inserts, patches, wafers, and implants.Adv. Drug Deliv. Rev.202117711395710.1016/j.addr.2021.11395734481032
    [Google Scholar]
  99. ThakurA. SiduR.K. GauravI. SwetaK. ChakrabortyP. ThakurS. Modified biopolymer-based systems for drug delivery to the brain.Tailor-Made and Functionalized Biopolymer Systems.Woodhead Publishing202157161110.1016/B978‑0‑12‑821437‑4.00016‑5
    [Google Scholar]
  100. ŁukawskiK. CzuczwarS.J. Emerging therapeutic targets for epilepsy: Preclinical insights.Expert Opin. Ther. Targets202226319320610.1080/14728222.2022.203912035130119
    [Google Scholar]
  101. KleinstiverB.P. PattanayakV. PrewM.S. TsaiS.Q. NguyenN.T. ZhengZ. JoungJ.K. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects.Nature2016529758749049510.1038/nature1652626735016
    [Google Scholar]
  102. GoldbergE.M. CoulterD.A. Mechanisms of epileptogenesis: A convergence on neural circuit dysfunction.Nat. Rev. Neurosci.201314533734910.1038/nrn348223595016
    [Google Scholar]
  103. JensenT.L. GøtzscheC.R. WoldbyeD.P.D. Current and future prospects for gene therapy for rare genetic diseases affecting the brain and spinal cord.Front. Mol. Neurosci.20211469593710.3389/fnmol.2021.69593734690692
    [Google Scholar]
  104. DhuriyaY.K. NaikA.A. CRISPR: A tool with potential for genomic reprogramming in neurological disorders.Mol. Biol. Rep.20235021845185610.1007/s11033‑022‑08136‑z36507966
    [Google Scholar]
  105. BoileauC. DeforgesS. PeretA. ScavardaD. BartolomeiF. GilesA. PartoucheN. GautronJ. ViottiJ. JanowitzH. PenchetG. MarchalC. LagardeS. TrebuchonA. VilleneuveN. RumiJ. MarissalT. KhazipovR. KhalilovI. MartineauF. MaréchalM. LepineA. MilhM. Figarella-BrangerD. DougyE. TongS. AppayR. BaudouinS. MercerA. SmithJ.B. DanosO. PorterR. MulleC. CrépelV. GluK2 is a target for gene therapy in drug-resistant temporal lobe epilepsy.Ann. Neurol.202394474576110.1002/ana.2672337341588
    [Google Scholar]
  106. AgostinhoA.S. MietzschM. ZangrandiL. KmiecI. MuttiA. KrausL. FidzinskiP. SchneiderU.C. HoltkampM. HeilbronnR. SchwarzerC. Dynorphin-based “release on demand” gene therapy for drug-resistant temporal lobe epilepsy.EMBO Mol. Med.20191110e996310.15252/emmm.20180996331486590
    [Google Scholar]
  107. WeinbergM.S. McCownT.J. Current prospects and challenges for epilepsy gene therapy.Exp. Neurol.2013244273510.1016/j.expneurol.2011.10.00322008258
    [Google Scholar]
  108. MesraouaB. DeleuD. KullmannD.M. ShettyA.K. BoonP. PeruccaE. MikatiM.A. Asadi-PooyaA.A. Novel therapies for epilepsy in the pipeline.Epilepsy Behav.20199728229010.1016/j.yebeh.2019.04.04231284159
    [Google Scholar]
  109. StaleyK. Gene therapy for epilepsy.Science2022378661947147210.1126/science.ade883636378973
    [Google Scholar]
  110. Toward precision medicine: Building a knowledge network for biomedical research and a new taxonomy of disease.National Academies Press (US) Washington (DC) 201122536618
    [Google Scholar]
  111. DemarestS.T. Brooks-KayalA. From molecules to medicines: The dawn of targeted therapies for genetic epilepsies.Nat. Rev. Neurol.2018141273574510.1038/s41582‑018‑0099‑330448857
    [Google Scholar]
  112. FalsaperlaR. SortinoV. StrianoP. KlugerG. RamantaniG. RuggieriM. Is ketogenic diet a ‘precision medicine’? Recent developments and future challenges.Eur. J. Paediatr. Neurol.202448131610.1016/j.ejpn.2023.11.00237984007
    [Google Scholar]
  113. NaimoG.D. GuarnacciaM. SprovieriT. UngaroC. ConfortiF.L. AndòS. CavallaroS. A systems biology approach for personalized medicine in refractory epilepsy.Int. J. Mol. Sci.20192015371710.3390/ijms2015371731366017
    [Google Scholar]
  114. Marstrand-JoergensenM.R. DamV.H. VinterK. IpC.T. JensenK.R. JørgensenM.B. Hoei-HansenC.E. OzenneB. FisherP.M. KnudsenG.M. PinborgL.H. The BrainDrugs-epilepsy study: A prospective open-label cohort precision medicine study in epilepsy.Neurosci Appl2023210113610.1016/j.nsa.2023.101136
    [Google Scholar]
  115. SisodiyaS.M. Precision medicine and therapies of the future.Epilepsia202162S2S90S10510.1111/epi.1653932776321
    [Google Scholar]
  116. ZybinaA. AnshakovaA. MalinovskayaJ. MelnikovP. BaklaushevV. ChekhoninV. MaksimenkoO. TitovS. BalabanyanV. KreuterJ. GelperinaS. AbbasovaK. Nanoparticle-based delivery of carbamazepine: A promising approach for the treatment of refractory epilepsy.Int. J. Pharm.20185471-2102310.1016/j.ijpharm.2018.05.02329751140
    [Google Scholar]
  117. MihailovaL. TchekalarovaJ. ShalabalijaD. GeskovskiN. Stoilkovska GjorgievskaV. StefkovG. KrastevaP. Simonoska CrcarevskaM. Glavas DodovM. Lipid nano-carriers loaded with Cannabis sativa extract for epilepsy treatment – in vitro characterization and in vivo efficacy studies.J. Pharm. Sci.2022111123384339610.1016/j.xphs.2022.09.01236189477
    [Google Scholar]
  118. WuD. FeiF. ZhangQ. WangX. GongY. ChenX. ZhengY. TanB. XuC. XieH. FangW. ChenZ. WangY. Nanoengineered on-demand drug delivery system improves efficacy of pharmacotherapy for epilepsy.Sci. Adv.202282eabm338110.1126/sciadv.abm338135020438
    [Google Scholar]
  119. Ugur YilmazC. EmikS. OrhanN. TemizyurekA. AtisM. AkcanU. KhodadustR. AricanN. KucukM. GursesC. AhishaliB. KayaM. Targeted delivery of lacosamide-conjugated gold nanoparticles into the brain in temporal lobe epilepsy in rats.Life Sci.202025711808110.1016/j.lfs.2020.11808132663576
    [Google Scholar]
  120. YousfanA. RubioN. NatoufA.H. DaherA. Al-KafryN. VennerK. KafaH. Preparation and characterisation of PHT-loaded chitosan lecithin nanoparticles for intranasal drug delivery to the brain.RSC Advances20201048289922900910.1039/D0RA04890A35520085
    [Google Scholar]
  121. SleziaA. ProctorC.M. KaszasA. MalliarasG.G. WilliamsonA. Electrophoretic delivery of γ-aminobutyric acid (GABA) into epileptic focus prevents seizures in mice.J. Vis. Exp.2019147147e5926831157762
    [Google Scholar]
  122. WangX. LiuY. LiM. JuY. TangJ. ChenT. LinX. GuN. YangF. Neuroinflammation catching nanobubbles for microglia-neuron unit modulation against epilepsy.Biomaterials202330212230210.1016/j.biomaterials.2023.12230237666103
    [Google Scholar]
  123. AthalyeM. TeliD. ChorawalaM. SharmaA. PatelR. DuaK. SinghS.K. GuptaG. PatelM. Apolipoprotein E3 functionalized lipid-drug conjugated nanoparticles of Levetiracetam for enhanced delivery to the brain: In vitro cell line studies and in vivo study.Int. J. Biol. Macromol.2024254Pt 212779910.1016/j.ijbiomac.2023.12779937923037
    [Google Scholar]
  124. MeirinhoS. RodriguesM. FerreiraC.L. OliveiraR.C. FortunaA. SantosA.O. FalcãoA. AlvesG. Intranasal delivery of lipid-based nanosystems as a promising approach for brain targeting of the new-generation antiepileptic drug perampanel.Int. J. Pharm.202262212185310.1016/j.ijpharm.2022.12185335623483
    [Google Scholar]
  125. Abou-TalebB.A. El-GanainyS.O. Thermoresponsive gel-loaded oxcarbazepine nanosystems for nose-to-brain delivery: Enhanced antiepileptic activity in rats.Pharm. Res.20234071835185210.1007/s11095‑023‑03552‑737353628
    [Google Scholar]
  126. MusumeciT. SerapideM.F. PellitteriR. DalpiazA. FerraroL. Dal MagroR. BonaccorsoA. CarboneC. VeigaF. SanciniG. PuglisiG. Oxcarbazepine free or loaded PLGA nanoparticles as effective intranasal approach to control epileptic seizures in rodents.Eur. J. Pharm. Biopharm.201813330932010.1016/j.ejpb.2018.11.00230399400
    [Google Scholar]
  127. FangZ. ChenS. QinJ. ChenB. NiG. ChenZ. ZhouJ. LiZ. NingY. WuC. ZhouL. Pluronic P85-coated poly(butylcyanoacrylate) nanoparticles overcome phenytoin resistance in P-glycoprotein overexpressing rats with lithium-pilocarpine-induced chronic temporal lobe epilepsy.Biomaterials20169711012110.1016/j.biomaterials.2016.04.02127162079
    [Google Scholar]
  128. LiuJ. HeY. ZhangJ. LiJ. YuX. CaoZ. MengF. ZhaoY. WuX. ShenT. HongZ. Functionalized nanocarrier combined seizure-specific vector with P-glycoprotein modulation property for antiepileptic drug delivery.Biomaterials201674647610.1016/j.biomaterials.2015.09.04126447556
    [Google Scholar]
  129. AhmadN. AhmadR. AlrasheedR. AlmatarH. Al-RamadanA. AmirM. SarafrozM. Quantification and evaluations of catechin hydrate polymeric nanoparticles used in brain targeting for the treatment of epilepsy.Pharmaceutics202012320310.3390/pharmaceutics1203020332120778
    [Google Scholar]
  130. CanoA. EttchetoM. EspinaM. AuladellC. CalpenaA.C. FolchJ. BarenysM. Sánchez-LópezE. CaminsA. GarcíaM.L. Epigallocatechin-3-gallate loaded PEGylated-PLGA nanoparticles: A new anti-seizure strategy for temporal lobe epilepsy.Nanomedicine20181441073108510.1016/j.nano.2018.01.01929454994
    [Google Scholar]
  131. RivaA. GoldaA. BalaguraG. AmadoriE. VariM.S. PiccoloG. IacominoM. LattanziS. SalpietroV. MinettiC. StrianoP. New trends and most promising therapeutic strategies for epilepsy treatment.Front. Neurol.20211275375310.3389/fneur.2021.75375334950099
    [Google Scholar]
  132. LöscherW. Luna-TortósC. RömermannK. FedrowitzM. Do ATP-binding cassette transporters cause pharmacoresistance in epilepsy? Problems and approaches in determining which antiepileptic drugs are affected.Curr. Pharm. Des.201117262808282810.2174/13816121179744021221827408
    [Google Scholar]
  133. MatiasM. SantosA.O. SilvestreS. AlvesG. Fighting epilepsy with nanomedicines-is this the right weapon?Pharmaceutics202315230610.3390/pharmaceutics1502030636839629
    [Google Scholar]
  134. OpertiM.C. BernhardtA. GrimmS. EngelA. FigdorC.G. TagitO. PLGA-based nanomedicines manufacturing: Technologies overview and challenges in industrial scale-up.Int. J. Pharm.202160512080710.1016/j.ijpharm.2021.12080734144133
    [Google Scholar]
  135. GoelS. SinghR. TonkM. Polymersomes as next generation nanocarriers for drug delivery: Recent advances, patents, synthesis and characterization.Curr. Nanosci.202420675376810.2174/0115734137271094231101062844
    [Google Scholar]
  136. MustafaG. HassanD. ZeeshanM. Ruiz-PulidoG. EbrahimiN. MobasharA. PourmadadiM. RahdarA. SargaziS. Fathi-karkanS. MedinaD.I. Díez-PascualA.M. Advances in nanotechnology versus stem cell therapy for the theranostics of Huntington’s disease.J. Drug Deliv. Sci. Technol.20238710477410.1016/j.jddst.2023.104774
    [Google Scholar]
  137. YouG. ShaZ. JiangT. Clinical diagnosis and perioperative management of glioma-related epilepsy.Front. Oncol.20211055035310.3389/fonc.2020.55035333520690
    [Google Scholar]
  138. AronicaE. CiusaniE. CoppolaA. CostaC. RussoE. SalmaggiA. PerversiF. MaschioM. Epilepsy and brain tumors: Two sides of the same coin.J. Neurol. Sci.202344612058410.1016/j.jns.2023.12058436842341
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128332345240823111524
Loading
/content/journals/cpd/10.2174/0113816128332345240823111524
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test