Skip to content
2000
Volume 31, Issue 2
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Oxidative stress is a biological stress response produced by the destruction of redox equilibrium in aerobic metabolism in organisms, which is closely related to the occurrence of many diseases. Mesenchymal stem cells (MSCs) have been found to improve oxidative stress injury in a variety of diseases, including lung injury, liver diseases, atherosclerotic diseases, diabetes and its complications, ischemia-reperfusion injury, inflammatory bowel disease. The antioxidant stress capacity of MSCs may be a breakthrough in the treatment of these diseases. This review found that MSCs have the ability to resist oxidative stress, which may be achieved through MSCs involvement in mediating the Nrf2, MAPK, NF-κB, AMPK, PI3K/AKT and Wnt4/β-catenin signaling pathways.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128308454240823074555
2024-09-10
2025-04-02
Loading full text...

Full text loading...

References

  1. DomazetovicV. MarcucciG. IantomasiT. BrandiM.L. VincenziniM.T. Oxidative stress in bone remodeling: Role of antioxidants.Clin. Cases Miner. Bone Metab.201714220921610.11138/ccmbm/2017.14.1.20929263736
    [Google Scholar]
  2. WauquierF. LeotoingL. CoxamV. GuicheuxJ. WittrantY. Oxidative stress in bone remodelling and disease.Trends Mol. Med.2009151046847710.1016/j.molmed.2009.08.00419811952
    [Google Scholar]
  3. AhmedE.A. AhmedO.M. FahimH.I. MahdiE.A. AliT.M. ElesawyB.H. AshourM.B. Combinatory effects of bone marrow-derived mesenchymal stem cells and indomethacin on adjuvant-induced arthritis in wistar rats: Roles of IL-1β, IL-4, Nrf-2, and oxidative stress.Evid. Based Complement. Alternat. Med.2021202111510.1155/2021/889914333488761
    [Google Scholar]
  4. PoytonR.O. BallK.A. CastelloP.R. Mitochondrial generation of free radicals and hypoxic signaling.Trends Endocrinol. Metab.200920733234010.1016/j.tem.2009.04.00119733481
    [Google Scholar]
  5. OhlK. TenbrockK. KippM. Oxidative stress in multiple sclerosis: Central and peripheral mode of action.Exp. Neurol.2016277586710.1016/j.expneurol.2015.11.01026626971
    [Google Scholar]
  6. TurrensJ.F. Mitochondrial formation of reactive oxygen species.J. Physiol.2003552233534410.1113/jphysiol.2003.04947814561818
    [Google Scholar]
  7. SakallıoğluA.E. BaşaranÖ. ÖzdemirB.H. AratZ. YücelM. HaberalM. Local and systemic interactions related to serum transforming growth factor-β levels in burn wounds of various depths.Burns200632898098510.1016/j.burns.2006.04.01817045746
    [Google Scholar]
  8. WangX. HaiC.X. ROS acts as a double-edged sword in the pathogenesis of type 2 diabetes mellitus: Is Nrf2 a potential target for the treatment?Mini Rev. Med. Chem.201111121082109210.2174/13895571179724776121861804
    [Google Scholar]
  9. LinY. JiangM. ChenW. ZhaoT. WeiY. Cancer and ER stress: Mutual crosstalk between autophagy, oxidative stress and inflammatory response.Biomed. Pharmacother.201911810924910.1016/j.biopha.2019.10924931351428
    [Google Scholar]
  10. TangC. LivingstonM.J. SafirsteinR. DongZ. Cisplatin nephrotoxicity: New insights and therapeutic implications.Nat. Rev. Nephrol.2023191537210.1038/s41581‑022‑00631‑736229672
    [Google Scholar]
  11. ReuterS. GuptaS.C. ChaturvediM.M. AggarwalB.B. Oxidative stress, inflammation, and cancer: How are they linked?Free Radic. Biol. Med.201049111603161610.1016/j.freeradbiomed.2010.09.00620840865
    [Google Scholar]
  12. D’AutréauxB. ToledanoM.B. ROS as signalling molecules: Mechanisms that generate specificity in ROS homeostasis.Nat. Rev. Mol. Cell Biol.200781081382410.1038/nrm225617848967
    [Google Scholar]
  13. MendesS. SáR. MagalhãesM. MarquesF. SousaM. SilvaE. The role of ROS as a double-edged sword in (In)fertility: The impact of cancer treatment.Cancers2022146158510.3390/cancers1406158535326736
    [Google Scholar]
  14. HybertsonB.M. GaoB. BoseS.K. McCordJ.M. Oxidative stress in health and disease: The therapeutic potential of Nrf2 activation.Mol. Aspects Med.2011324-623424610.1016/j.mam.2011.10.00622020111
    [Google Scholar]
  15. FormanH.J. ZhangH. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy.Nat. Rev. Drug Discov.202120968970910.1038/s41573‑021‑00233‑134194012
    [Google Scholar]
  16. DominiciM. Le BlancK. MuellerI. Slaper-CortenbachI. MariniF.C. KrauseD.S. DeansR.J. KeatingA. ProckopD.J. HorwitzE.M. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy Position Statement.Cytotherapy20068431531710.1080/1465324060085590516923606
    [Google Scholar]
  17. UccelliA. MorettaL. PistoiaV. Mesenchymal stem cells in health and disease.Nat. Rev. Immunol.20088972673610.1038/nri239519172693
    [Google Scholar]
  18. TrounsonA. McDonaldC. Stem cell therapies in clinical trials: Progress and challenges.Cell Stem Cell2015171112210.1016/j.stem.2015.06.00726140604
    [Google Scholar]
  19. SongN. ScholtemeijerM. ShahK. Mesenchymal stem cell immunomodulation: Mechanisms and therapeutic potential.Trends Pharmacol. Sci.202041965366410.1016/j.tips.2020.06.00932709406
    [Google Scholar]
  20. LouG. ChenZ. ZhengM. LiuY. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases.Exp. Mol. Med.2017496e34610.1038/emm.2017.6328620221
    [Google Scholar]
  21. WuR. FanX. WangY. ShenM. ZhengY. ZhaoS. YangL. Mesenchymal stem cell-derived extracellular vesicles in liver immunity and therapy.Front. Immunol.20221383387810.3389/fimmu.2022.83387835309311
    [Google Scholar]
  22. YaoJ. ZhengJ. CaiJ. ZengK. ZhouC. ZhangJ. LiS. LiH. ChenL. HeL. ChenH. FuH. ZhangQ. ChenG. YangY. ZhangY. Extracellular vesicles derived from human umbilical cord mesenchymal stem cells alleviate rat hepatic ischemia-reperfusion injury by suppressing oxidative stress and neutrophil inflammatory response.FASEB J.20193321695171010.1096/fj.201800131RR30226809
    [Google Scholar]
  23. DengL. DuC. SongP. ChenT. RuiS. ArmstrongD.G. DengW. The role of oxidative stress and antioxidants in diabetic wound healing.Oxid. Med. Cell. Longev.2021202111110.1155/2021/885275933628388
    [Google Scholar]
  24. DamianiC.R. BenettonC.A.F. StoffelC. BardiniK.C. CardosoV.H. Di GiuntaG. PinhoR.A. Dal-PizzolF. StreckE.L. Oxidative stress and metabolism in animal model of colitis induced by dextran sulfate sodium.J. Gastroenterol. Hepatol.200722111846185110.1111/j.1440‑1746.2007.04890.x17489966
    [Google Scholar]
  25. ItohK. WakabayashiN. KatohY. IshiiT. IgarashiK. EngelJ.D. YamamotoM. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain.Genes Dev.1999131768610.1101/gad.13.1.769887101
    [Google Scholar]
  26. KenslerT.W. WakabayashiN. BiswalS. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway.Annu. Rev. Pharmacol. Toxicol.20074718911610.1146/annurev.pharmtox.46.120604.14104616968214
    [Google Scholar]
  27. EgglerA.L. LiuG. PezzutoJ.M. van BreemenR.B. MesecarA.D. Modifying specific cysteines of the electrophile-sensing human Keap1 protein is insufficient to disrupt binding to the Nrf2 domain Neh2.Proc. Natl. Acad. Sci. USA200510229100701007510.1073/pnas.050240210216006525
    [Google Scholar]
  28. ShawP. ChattopadhyayA. Nrf2–ARE signaling in cellular protection: Mechanism of action and the regulatory mechanisms.J. Cell. Physiol.202023543119313010.1002/jcp.2921931549397
    [Google Scholar]
  29. DaiX. YanX. WintergerstK.A. CaiL. KellerB.B. TanY. Nrf2: Redox and metabolic regulator of stem cell state and function.Trends Mol. Med.202026218520010.1016/j.molmed.2019.09.00731679988
    [Google Scholar]
  30. HayesJ.D. Dinkova-KostovaA.T. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism.Trends Biochem. Sci.201439419921810.1016/j.tibs.2014.02.00224647116
    [Google Scholar]
  31. HeF. RuX. WenT. NRF2, a transcription factor for stress response and beyond.Int. J. Mol. Sci.20202113477710.3390/ijms2113477732640524
    [Google Scholar]
  32. MaQ. Role of Nrf2 in oxidative stress and toxicity.Annu. Rev. Pharmacol. Toxicol.201353140142610.1146/annurev‑pharmtox‑011112‑14032023294312
    [Google Scholar]
  33. HeF. AntonucciL. KarinM. Nrf2 as a regulator of cell metabolism and inflammation in cancer.Carcinogenesis202041440541610.1093/carcin/bgaa03932347301
    [Google Scholar]
  34. LiuY. UrunoA. SaitoR. MatsukawaN. HishinumaE. SaigusaD. LiuH. YamamotoM. Nrf2 deficiency deteriorates diabetic kidney disease in Akita model mice.Redox Biol.20225810252510.1016/j.redox.2022.10252536335764
    [Google Scholar]
  35. LiX. XieX. LianW. ShiR. HanS. ZhangH. LuL. LiM. Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model.Exp. Mol. Med.201850411410.1038/s12276‑018‑0058‑529651102
    [Google Scholar]
  36. ShenK. JiaY. WangX. ZhangJ. LiuK. WangJ. CaiW. LiJ. LiS. ZhaoM. WangY. HuD. Exosomes from adipose-derived stem cells alleviate the inflammation and oxidative stress via regulating Nrf2/HO-1 axis in macrophages.Free Radic. Biol. Med.2021165546610.1016/j.freeradbiomed.2021.01.02333476797
    [Google Scholar]
  37. GaoY. HuangX. LinH. ZhaoM. LiuW. LiW. HanL. MaQ. DongC. LiY. HuY. JinF. Adipose mesenchymal stem cell-derived antioxidative extracellular vesicles exhibit anti-oxidative stress and immunomodulatory effects under PM2.5 exposure.Toxicology202144715262710.1016/j.tox.2020.15262733161053
    [Google Scholar]
  38. GongC. GuZ. ZhangX. XuQ. MaoG. PeiZ. MengW. CenJ. LiuJ. HeX. SunM. XiaoK. HMSCs exosome-derived miR-199a-5p attenuates sulfur mustard-associated oxidative stress via the CAV1/NRF2 signalling pathway.J. Cell. Mol. Med.202327152165218210.1111/jcmm.1780337386746
    [Google Scholar]
  39. KangY. SongY. LuoY. SongJ. LiC. YangS. GuoJ. YuJ. ZhangX. Exosomes derived from human umbilical cord mesenchymal stem cells ameliorate experimental non-alcoholic steatohepatitis via Nrf2/NQO-1 pathway.Free Radic. Biol. Med.2022192253610.1016/j.freeradbiomed.2022.08.03736096356
    [Google Scholar]
  40. LiuP. CaoB. ZhouY. ZhangH. WangC. Human umbilical cord-derived mesenchymal stem cells alleviate oxidative stress-induced islet impairment via the Nrf2/HO-1 axis.J. Mol. Cell Biol.2023155mjad03510.1093/jmcb/mjad03537245063
    [Google Scholar]
  41. LiuP. XieX. WuH. LiH. ChiJ. LiuX. LuoJ. TangY. XuC. Mesenchymal stem cells promote intestinal mucosal repair by positively regulating the Nrf2/Keap1/ARE signaling pathway in acute experimental colitis.Dig. Dis. Sci.20236851835184610.1007/s10620‑022‑07722‑236459293
    [Google Scholar]
  42. JohnsonG.L. LapadatR. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases.Science200229856001911191210.1126/science.107268212471242
    [Google Scholar]
  43. FangJ.Y. RichardsonB.C. The MAPK signalling pathways and colorectal cancer.Lancet Oncol.20056532232710.1016/S1470‑2045(05)70168‑615863380
    [Google Scholar]
  44. RunchelC. MatsuzawaA. IchijoH. Mitogen-activated protein kinases in mammalian oxidative stress responses.Antioxid. Redox Signal.201115120521810.1089/ars.2010.373321050144
    [Google Scholar]
  45. DongC. DavisR.J. FlavellR.A. MAP kinases in the immune response.Annu. Rev. Immunol.2002201557210.1146/annurev.immunol.20.091301.13113311861597
    [Google Scholar]
  46. WestonC.R. DavisR.J. The JNK signal transduction pathway.Curr. Opin. Cell Biol.200719214214910.1016/j.ceb.2007.02.00117303404
    [Google Scholar]
  47. ZarubinT. HanJ. Activation and signaling of the p38 MAP kinase pathway.Cell Res.2005151111810.1038/sj.cr.729025715686620
    [Google Scholar]
  48. CuadradoA. NebredaA.R. Mechanisms and functions of p38 MAPK signalling.Biochem. J.2010429340341710.1042/BJ2010032320626350
    [Google Scholar]
  49. KimE.K. ChoiE.J. Compromised MAPK signaling in human diseases: An update.Arch. Toxicol.201589686788210.1007/s00204‑015‑1472‑225690731
    [Google Scholar]
  50. TangC. LiangJ. QianJ. JinL. DuM. LiM. LiD. Opposing role of JNK-p38 kinase and ERK1/2 in hydrogen peroxide-induced oxidative damage of human trophoblast-like JEG-3 cells.Int. J. Clin. Exp. Pathol.20147395996824695490
    [Google Scholar]
  51. LeeM.H. HanM.H. LeeD.S. ParkC. HongS.H. KimG.Y. HongS.H. SongK.S. ChoiI.W. ChaH.J. ChoiY.H. Morin exerts cytoprotective effects against oxidative stress in C2C12 myoblasts via the upregulation of Nrf2-dependent HO-1 expression and the activation of the ERK pathway.Int. J. Mol. Med.201739239940610.3892/ijmm.2016.283728035409
    [Google Scholar]
  52. QiZ. CiX. HuangJ. LiuQ. YuQ. ZhouJ. DengX. Asiatic acid enhances Nrf2 signaling to protect HepG2 cells from oxidative damage through Akt and ERK activation.Biomed. Pharmacother.20178825225910.1016/j.biopha.2017.01.06728110191
    [Google Scholar]
  53. GaoX. LiS. LiuX. CongC. ZhaoL. LiuH. XuL. Neuroprotective effects of Tiaogeng decoction against H2O2-induced oxidative injury and apoptosis in PC12 cells via Nrf2 and JNK signaling pathways.J. Ethnopharmacol.202127911437910.1016/j.jep.2021.11437934216727
    [Google Scholar]
  54. FengJ. LiY. JinX. GongR. XiaZ. ATF3 regulates oxidative stress and extracellular matrix degradation via p38/Nrf2 signaling pathway in pelvic organ prolapse.Tissue Cell20217310166010.1016/j.tice.2021.10166034666282
    [Google Scholar]
  55. XiaoQ. Orientin-mediated Nrf2/HO-1 signal alleviates H2O2-induced oxidative damage via induction of JNK and PI3K/AKT activation.Int J Biol Macromol2018118Pt A747755
    [Google Scholar]
  56. WangY. LiuJ. YuB. JinY. LiJ. MaX. YuJ. NiuJ. LiangX. Umbilical cord-derived mesenchymal stem cell conditioned medium reverses neuronal oxidative injury by inhibition of TRPM2 activation and the JNK signaling pathway.Mol. Biol. Rep.20224987337734510.1007/s11033‑022‑07524‑935585377
    [Google Scholar]
  57. CenY. LouG. QiJ. LiM. ZhengM. LiuY. Adipose-derived mesenchymal stem cells inhibit jnk-mediated mitochondrial retrograde pathway to alleviate acetaminophen-induced liver injury.Antioxidants202312115810.3390/antiox1201015836671020
    [Google Scholar]
  58. FangY. TianX. BaiS. FanJ. HouW. TongH. LiD. Autologous transplantation of adipose-derived mesenchymal stem cells ameliorates streptozotocin-induced diabetic nephropathy in rats by inhibiting oxidative stress, pro-inflammatory cytokines and the p38 MAPK signaling pathway.Int. J. Mol. Med.2012301859222552764
    [Google Scholar]
  59. ArslanF. LaiR.C. SmeetsM.B. AkeroydL. ChooA. AguorE.N.E. TimmersL. van RijenH.V. DoevendansP.A. PasterkampG. LimS.K. de KleijnD.P. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury.Stem Cell Res.201310330131210.1016/j.scr.2013.01.00223399448
    [Google Scholar]
  60. WuH.Y. ZhangX.C. JiaB.B. CaoY. YanK. LiJ.Y. TaoL. JieZ.G. LiuQ.W. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate acetaminophen-induced acute liver failure through activating ERK and IGF-1R/PI3K/AKT signaling pathway.J. Pharmacol. Sci.2021147114315510.1016/j.jphs.2021.06.00834294366
    [Google Scholar]
  61. TanY. NieW. ChenC. HeX. XuY. MaX. ZhangJ. TanM. RongP. WangW. Mesenchymal stem cells alleviate hypoxia-induced oxidative stress and enhance the pro-survival pathways in porcine islets.Exp. Biol. Med.2019244978178810.1177/153537021984447231042075
    [Google Scholar]
  62. AndersonM.T. StaalF.J. GitlerC. HerzenbergL.A. HerzenbergL.A. Separation of oxidant-initiated and redox-regulated steps in the NF-kappa B signal transduction pathway.Proc. Natl. Acad. Sci. USA19949124115271153110.1073/pnas.91.24.115277526398
    [Google Scholar]
  63. GloireG. PietteJ. Redox regulation of nuclear post-translational modifications during NF-kappaB activation.Antioxid. Redox Signal.20091192209222210.1089/ars.2009.246319203223
    [Google Scholar]
  64. MaL. GengJ. ChenW. QinM. WangL. ZengY. Effects of TLR9/NF-κB on oxidative stress and inflammation in IPEC-J2 cells.Genes Genomics202244101149115810.1007/s13258‑022‑01271‑835900696
    [Google Scholar]
  65. MitchellS. VargasJ. HoffmannA. Signaling via the NFκB system.Wiley Interdiscip. Rev. Syst. Biol. Med.20168322724110.1002/wsbm.133126990581
    [Google Scholar]
  66. MariappanN. ElksC.M. SriramulaS. GuggilamA. LiuZ. BorkhseniousO. FrancisJ. NF-κB-induced oxidative stress contributes to mitochondrial and cardiac dysfunction in type II diabetes.Cardiovasc. Res.201085347348310.1093/cvr/cvp30519729361
    [Google Scholar]
  67. MorganM.J. LiuZ. Crosstalk of reactive oxygen species and NF-κB signaling.Cell Res.201121110311510.1038/cr.2010.17821187859
    [Google Scholar]
  68. SongI.H. JungK.J. LeeT.J. KimJ.Y. SungE.G. BaeY.C. ParkY.H. Mesenchymal stem cells attenuate adriamycin-induced nephropathy by diminishing oxidative stress and inflammation via downregulation of the NF-kB.Nephrology201823548349210.1111/nep.1304728326639
    [Google Scholar]
  69. LlacunaL. MaríM. LluisJ.M. García-RuizC. Fernández-ChecaJ.C. MoralesA. Reactive oxygen species mediate liver injury through parenchymal nuclear factor-kappaB inactivation in prolonged ischemia/reperfusion.Am. J. Pathol.200917451776178510.2353/ajpath.2009.08085719349371
    [Google Scholar]
  70. YangJ. LiuX.X. FanH. TangQ. ShouZ.X. ZuoD.M. ZouZ. XuM. ChenQ.Y. PengY. DengS.J. LiuY.J. Extracellular vesicles derived from bone marrow mesenchymal stem cells protect against experimental colitis via attenuating colon inflammation, oxidative stress and apoptosis.PLoS One20151010e014055110.1371/journal.pone.014055126469068
    [Google Scholar]
  71. ZhangL. WangY. ShenH. ZhaoM. Combined signaling of NF-kappaB and IL-17 contributes to mesenchymal stem cells-mediated protection for Paraquat-induced acute lung injury.BMC Pulm. Med.202020119510.1186/s12890‑020‑01232‑532680482
    [Google Scholar]
  72. LiW. JinL. CuiY. NieA. XieN. LiangG. Bone marrow mesenchymal stem cells-induced exosomal microRNA-486-3p protects against diabetic retinopathy through TLR4/NF-κB axis repression.J. Endocrinol. Invest.20214461193120710.1007/s40618‑020‑01405‑332979189
    [Google Scholar]
  73. CaoD. QiaoH. HeD. QinX. ZhangQ. ZhouY. Mesenchymal stem cells inhibited the inflammation and oxidative stress in LPS-activated microglial cells through AMPK pathway.J. Neural Transm.2019126121589159710.1007/s00702‑019‑02102‑z31707461
    [Google Scholar]
  74. YangL. CaoH. SunD. LinL. ZhengW.P. ShenZ.Y. SongH.L. Normothermic machine perfusion combined with bone marrow mesenchymal stem cells improves the oxidative stress response and mitochondrial function in rat donation after circulatory death livers.Stem Cells Dev.2020291383585210.1089/scd.2019.030132253985
    [Google Scholar]
  75. CarlingD. AMPK signalling in health and disease.Curr. Opin. Cell Biol.201745313710.1016/j.ceb.2017.01.00528232179
    [Google Scholar]
  76. HerzigS. ShawR.J. AMPK: Guardian of metabolism and mitochondrial homeostasis.Nat. Rev. Mol. Cell Biol.201819212113510.1038/nrm.2017.9528974774
    [Google Scholar]
  77. MihaylovaM.M. ShawR.J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism.Nat. Cell Biol.20111391016102310.1038/ncb232921892142
    [Google Scholar]
  78. RabinovitchR.C. SamborskaB. FaubertB. MaE.H. GravelS.P. AndrzejewskiS. RaissiT.C. PauseA. St-PierreJ. JonesR.G. AMPK maintains cellular metabolic homeostasis through regulation of mitochondrial reactive oxygen species.Cell Rep.20172111910.1016/j.celrep.2017.09.02628978464
    [Google Scholar]
  79. BaroneE. Di DomenicoF. PerluigiM. ButterfieldD.A. The interplay among oxidative stress, brain insulin resistance and AMPK dysfunction contribute to neurodegeneration in type 2 diabetes and Alzheimer disease.Free Radic. Biol. Med.2021176163310.1016/j.freeradbiomed.2021.09.00634530075
    [Google Scholar]
  80. GravandiM.M. FakhriS. ZarneshanS.N. YarmohammadiA. KhanH. Flavonoids modulate AMPK/PGC-1α and interconnected pathways toward potential neuroprotective activities.Metab. Brain Dis.20213671501152110.1007/s11011‑021‑00750‑333988807
    [Google Scholar]
  81. SongJ. LiuJ. CuiC. HuH. ZangN. YangM. YangJ. ZouY. LiJ. WangL. HeQ. GuoX. ZhaoR. YanF. LiuF. HouX. SunZ. ChenL. Mesenchymal stromal cells ameliorate diabetes-induced muscle atrophy through exosomes by enhancing AMPK/ULK1-mediated autophagy.J. Cachexia Sarcopenia Muscle202314291592910.1002/jcsm.1317736708027
    [Google Scholar]
  82. ChenH. LiuX. ChenH. CaoJ. ZhangL. HuX. WangJ. Role of SIRT1 and AMPK in mesenchymal stem cells differentiation.Ageing Res. Rev.201413556410.1016/j.arr.2013.12.00224333965
    [Google Scholar]
  83. ChenM. JingD. YeR. YiJ. ZhaoZ. PPARβ/δ accelerates bone regeneration in diabetic mellitus by enhancing AMPK/mTOR pathway-mediated autophagy.Stem Cell Res. Ther.202112156610.1186/s13287‑021‑02628‑834736532
    [Google Scholar]
  84. NageebM.M. SaadawyS.F. AttiaS.H. Breast milk mesenchymal stem cells abate cisplatin-induced cardiotoxicity in adult male albino rats via modulating the AMPK pathway.Sci. Rep.20221211755410.1038/s41598‑022‑22095‑236266413
    [Google Scholar]
  85. FrumanD.A. ChiuH. HopkinsB.D. BagrodiaS. CantleyL.C. AbrahamR.T. The PI3K pathway in human disease.Cell2017170460563510.1016/j.cell.2017.07.02928802037
    [Google Scholar]
  86. ManningB.D. TokerA. AKT/PKB signaling: Navigating the network.Cell2017169338140510.1016/j.cell.2017.04.00128431241
    [Google Scholar]
  87. YangJ. NieJ. MaX. WeiY. PengY. WeiX. Targeting PI3K in cancer: Mechanisms and advances in clinical trials.Mol. Cancer20191812610.1186/s12943‑019‑0954‑x30782187
    [Google Scholar]
  88. ShiauJ.P. ChuangY.T. TangJ.Y. YangK.H. ChangF.R. HouM.F. YenC.Y. ChangH.W. The impact of oxidative stress and AKT pathway on cancer cell functions and its application to natural products.Antioxidants2022119184510.3390/antiox1109184536139919
    [Google Scholar]
  89. RenB. ZhangY. LiuS. ChengX. YangX. CuiX. ZhaoX. ZhaoH. HaoM. LiM. TieY. QuL. LiX. Curcumin alleviates oxidative stress and inhibits apoptosis in diabetic cardiomyopathy via Sirt1-FoxO1 and PI3K-Akt signalling pathways.J. Cell. Mol. Med.20202421123551236710.1111/jcmm.1572532961025
    [Google Scholar]
  90. ZhengS. MaM. ChenY. LiM. Effects of quercetin on ovarian function and regulation of the ovarian PI3K/Akt/FoxO3a signalling pathway and oxidative stress in a rat model of cyclophosphamide-induced premature ovarian failure.Basic Clin. Pharmacol. Toxicol.2022130224025310.1111/bcpt.1369634841658
    [Google Scholar]
  91. LeeM.Y. LucianoA.K. AckahE. Rodriguez-VitaJ. BancroftT.A. EichmannA. SimonsM. KyriakidesT.R. Morales-RuizM. SessaW.C. Endothelial Akt1 mediates angiogenesis by phosphorylating multiple angiogenic substrates.Proc. Natl. Acad. Sci. USA201411135128651287010.1073/pnas.140847211125136137
    [Google Scholar]
  92. ZengH. YangY. TouF. ZhanY. LiuS. ZouP. ChenY. ShaoL. Bone marrow stromal cell-derived exosomes improve oxidative stress and pyroptosis in doxorubicin-induced myocardial injury in vitro by regulating the transcription of GSDMD through the PI3K-AKT-FoxO1 pathway.Immun. Inflamm. Dis.2023113e81010.1002/iid3.81036988259
    [Google Scholar]
  93. WuY. LiJ. YuanR. DengZ. WuX. Bone marrow mesenchymal stem cell-derived exosomes alleviate hyperoxia-induced lung injury via the manipulation of microRNA-425.Arch. Biochem. Biophys.202169710871210.1016/j.abb.2020.10871233264631
    [Google Scholar]
  94. HeJ. LiuJ. HuangY. TangX. XiaoH. LiuZ. JiangZ. ZengL. HuZ. LuM. OM-MSCs alleviate the golgi apparatus stress response following cerebral ischemia/reperfusion injury via the PEDF-PI3K/Akt/mTOR signaling pathway.Oxid. Med. Cell. Longev.2021202111910.1155/2021/480504034815829
    [Google Scholar]
  95. AboulhodaB.E. RashedL.A. AhmedH. ObayaE.M.M. IbrahimW. AlkafassM.A.L. Abd El-AalS.A. ShamsEldeenA.M. Hydrogen sulfide and mesenchymal stem cells-extracted microvesicles attenuate LPS-induced Alzheimer’s disease.J. Cell. Physiol.202123685994601010.1002/jcp.3028333481268
    [Google Scholar]
  96. EbrahimN. Al SaihatiH.A. AlaliZ. AlenizF.Q. MahmoudS.Y.M. BadrO.A. DessoukyA.A. MostafaO. HussienN.I. FaridA.S. El-SherbinyM. SalimR.F. ForsythN.R. AliF.E.M. AlsabeelahN.F. Exploring the molecular mechanisms of MSC-derived exosomes in Alzheimer’s disease: Autophagy, insulin and the PI3K/Akt/mTOR signaling pathway.Biomed. Pharmacother.202417611683610.1016/j.biopha.2024.11683638850660
    [Google Scholar]
  97. WangL. QingL. LiuH. LiuN. QiaoJ. CuiC. HeT. ZhaoR. LiuF. YanF. WangC. LiangK. GuoX. ShenY.H. HouX. ChenL. Mesenchymal stromal cells ameliorate oxidative stress-induced islet endothelium apoptosis and functional impairment via Wnt4-β-catenin signaling.Stem Cell Res. Ther.20178118810.1186/s13287‑017‑0640‑028807051
    [Google Scholar]
  98. SteinhartZ. AngersS. Wnt signaling in development and tissue homeostasis.Development201814511dev14658910.1242/dev.14658929884654
    [Google Scholar]
  99. MacDonaldB.T. TamaiK. HeX. Wnt/beta-catenin signaling: Components, mechanisms, and diseases.Dev. Cell200917192610.1016/j.devcel.2009.06.01619619488
    [Google Scholar]
  100. CleversH. NusseR. Wnt/β-catenin signaling and disease.Cell201214961192120510.1016/j.cell.2012.05.01222682243
    [Google Scholar]
  101. NusseR. CleversH. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities.Cell2017169698599910.1016/j.cell.2017.05.01628575679
    [Google Scholar]
  102. EbrahimN. El-HalimH.E.A. HelalO.K. El-AzabN.E.E. BadrO.A.M. HassounaA. SaihatiH.A.A. AborayahN.H. EmamH.T. El-wakeelH.S. AljasirM. El-SherbinyM. SargN.A.S. ShakerG.A. MostafaO. SabryD. FoulyM.A.K. ForsythN.R. ElsherbinyN.M. SalimR.F. Effect of bone marrow mesenchymal stem cells-derived exosomes on diabetes-induced retinal injury: Implication of Wnt/β-catenin signaling pathway.Biomed. Pharmacother.202215411355410.1016/j.biopha.2022.11355435987163
    [Google Scholar]
  103. ZhouL. ChenX. LuM. WuQ. YuanQ. HuC. MiaoJ. ZhangY. LiH. HouF.F. NieJ. LiuY. Wnt/β-catenin links oxidative stress to podocyte injury and proteinuria.Kidney Int.201995483084510.1016/j.kint.2018.10.03230770219
    [Google Scholar]
  104. AnR. WangX. YangL. ZhangJ. WangN. XuF. HouY. ZhangH. ZhangL. Polystyrene microplastics cause granulosa cells apoptosis and fibrosis in ovary through oxidative stress in rats.Toxicology202144915266510.1016/j.tox.2020.15266533359712
    [Google Scholar]
  105. ValléeA. Neuroinflammation in Schizophrenia: The key role of the Wnt/β-catenin pathway.Int. J. Mol. Sci.2022235281010.3390/ijms2305281035269952
    [Google Scholar]
  106. ValléeA. LecarpentierY. Crosstalk between peroxisome proliferator-activated receptor gamma and the canonical Wnt/β-catenin pathway in chronic inflammation and oxidative stress during carcinogenesis.Front. Immunol.2018974510.3389/fimmu.2018.0074529706964
    [Google Scholar]
  107. BellezzaI. GiambancoI. MinelliA. DonatoR. Nrf2-Keap1 signaling in oxidative and reductive stress.Biochim. Biophys. Acta Mol. Cell Res.20181865572173310.1016/j.bbamcr.2018.02.01029499228
    [Google Scholar]
  108. GaoW. GuoL. YangY. WangY. XiaS. GongH. ZhangB.K. YanM. Dissecting the crosstalk between Nrf2 and NF-κB response pathways in drug-induced toxicity.Front. Cell Dev. Biol.2022980995210.3389/fcell.2021.80995235186957
    [Google Scholar]
  109. YuanJ. DongX. YapJ. HuJ. The MAPK and AMPK signalings: Interplay and implication in targeted cancer therapy.J. Hematol. Oncol.202013111310.1186/s13045‑020‑00949‑432807225
    [Google Scholar]
  110. DinsmoreC.J. SorianoP. MAPK and PI3K signaling: At the crossroads of neural crest development.Dev Biol2018444Suppl 1S79S9710.1016/j.ydbio.2018.02.003
    [Google Scholar]
  111. ShorningB.Y. DassM.S. SmalleyM.J. PearsonH.B. The PI3K-AKT-mTOR pathway and prostate cancer: At the crossroads of AR, MAPK, and Wnt signaling.Int. J. Mol. Sci.20202112450710.3390/ijms2112450732630372
    [Google Scholar]
  112. KhadrawyS.M. MohamedH.M. MahmoudA.M. Mesenchymal stem cells ameliorate oxidative stress, inflammation, and hepatic fibrosis via Nrf2/HO-1 signaling pathway in rats.Environ. Sci. Pollut. Res. Int.20212822019203010.1007/s11356‑020‑10637‑y32865681
    [Google Scholar]
  113. ZhangL. LiQ. LiuW. LiuZ. ShenH. ZhaoM. Mesenchymal stem cells alleviate acute lung injury and inflammatory responses induced by paraquat poisoning.Med. Sci. Monit.2019252623263210.12659/MSM.91580430967525
    [Google Scholar]
  114. ZhangT.Y. ZhangH. DengJ.Y. GongH.R. YanY. ZhangZ. LeiC. BMMSC-derived exosomes attenuate cardiopulmonary bypass-related acute lung injury by reducing inflammatory response and oxidative stress.Curr. Stem Cell Res. Ther.202318572072810.2174/1574888X1766622082212364335996241
    [Google Scholar]
  115. TangY. DingF. WuC. LiuB. hucMSC conditioned medium ameliorate lipopolysaccharide-induced acute lung injury by suppressing oxidative stress and inflammation via Nrf2/NF-κB signaling pathway.Anal. Cell. Pathol.2021202111110.1155/2021/665368134426780
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128308454240823074555
Loading
/content/journals/cpd/10.2174/0113816128308454240823074555
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test