Skip to content
2000
image of Potential Signal Pathways and Therapeutic Effects of Mesenchymal Stem Cell on Oxidative Stress in Diseases

Abstract

Oxidative stress is a biological stress response produced by the destruction of redox equilibrium in aerobic metabolism in organisms, which is closely related to the occurrence of many diseases. Mesenchymal stem cells (MSCs) have been found to improve oxidative stress injury in a variety of diseases, including arthritis, chronic obstructive pulmonary disease, asthma, multiple sclerosis, focal segmental glomerulosclerosis, diabetic nephropathy, ischemia-reperfusion injury, hepatic fibrosis, myocardial infarction, diabetes, inflammatory bowel disease, . The antioxidant stress capacity of MSCs may be a breakthrough in the treatment of these diseases. This review found that MSCs have the ability to resist oxidative stress, which may be achieved through MSCs involvement in mediating the Nrf2, MAPK, NF-κB, AMPK, PI3K/AKT and Wnt/b-catenin signaling pathways.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128308454240823074555
2024-09-10
2024-10-09
Loading full text...

Full text loading...

References

  1. Domazetovic V. Marcucci G. Iantomasi T. Brandi M.L. Vincenzini M.T. Oxidative stress in bone remodeling: Role of antioxidants. Clin. Cases Miner. Bone Metab. 2017 14 2 209 216 10.11138/ccmbm/2017.14.1.209 29263736
    [Google Scholar]
  2. Wauquier F. Leotoing L. Coxam V. Guicheux J. Wittrant Y. Oxidative stress in bone remodelling and disease. Trends Mol. Med. 2009 15 10 468 477 10.1016/j.molmed.2009.08.004 19811952
    [Google Scholar]
  3. Ahmed E.A. Ahmed O.M. Fahim H.I. Mahdi E.A. Ali T.M. Elesawy B.H. Ashour M.B. Combinatory effects of bone marrow-derived mesenchymal stem cells and indomethacin on adjuvant-induced arthritis in wistar rats: Roles of IL-1β, IL-4, Nrf-2, and oxidative stress. Evid. Based Complement. Alternat. Med. 2021 2021 1 15 10.1155/2021/8899143 33488761
    [Google Scholar]
  4. Poyton R.O. Ball K.A. Castello P.R. Mitochondrial generation of free radicals and hypoxic signaling. Trends Endocrinol. Metab. 2009 20 7 332 340 10.1016/j.tem.2009.04.001 19733481
    [Google Scholar]
  5. Ohl K. Tenbrock K. Kipp M. Oxidative stress in multiple sclerosis: Central and peripheral mode of action. Exp. Neurol. 2016 277 58 67 10.1016/j.expneurol.2015.11.010 26626971
    [Google Scholar]
  6. Turrens J.F. Mitochondrial formation of reactive oxygen species. J. Physiol. 2003 552 2 335 344 10.1113/jphysiol.2003.049478 14561818
    [Google Scholar]
  7. Sakallıoğlu A.E. Başaran Ö. Özdemir B.H. Arat Z. Yücel M. Haberal M. Local and systemic interactions related to serum transforming growth factor-β levels in burn wounds of various depths. Burns 2006 32 8 980 985 10.1016/j.burns.2006.04.018 17045746
    [Google Scholar]
  8. Wang X. Hai C.X. ROS acts as a double-edged sword in the pathogenesis of type 2 diabetes mellitus: Is Nrf2 a potential target for the treatment? Mini Rev. Med. Chem. 2011 11 12 1082 1092 10.2174/138955711797247761 21861804
    [Google Scholar]
  9. Lin Y. Jiang M. Chen W. Zhao T. Wei Y. Cancer and ER stress: Mutual crosstalk between autophagy, oxidative stress and inflammatory response. Biomed. Pharmacother. 2019 118 109249 10.1016/j.biopha.2019.109249 31351428
    [Google Scholar]
  10. Tang C. Livingston M.J. Safirstein R. Dong Z. Cisplatin nephrotoxicity: New insights and therapeutic implications. Nat. Rev. Nephrol. 2023 19 1 53 72 10.1038/s41581‑022‑00631‑7 36229672
    [Google Scholar]
  11. Reuter S. Gupta S.C. Chaturvedi M.M. Aggarwal B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010 49 11 1603 1616 10.1016/j.freeradbiomed.2010.09.006 20840865
    [Google Scholar]
  12. D’Autréaux B. Toledano M.B. ROS as signalling molecules: Mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 2007 8 10 813 824 10.1038/nrm2256 17848967
    [Google Scholar]
  13. Mendes S. Sá R. Magalhães M. Marques F. Sousa M. Silva E. The role of ROS as a double-edged sword in (In)fertility: The impact of cancer treatment. Cancers 2022 14 6 1585 10.3390/cancers14061585 35326736
    [Google Scholar]
  14. Hybertson B.M. Gao B. Bose S.K. McCord J.M. Oxidative stress in health and disease: The therapeutic potential of Nrf2 activation. Mol. Aspects Med. 2011 32 4-6 234 246 10.1016/j.mam.2011.10.006 22020111
    [Google Scholar]
  15. Forman H.J. Zhang H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021 20 9 689 709 10.1038/s41573‑021‑00233‑1 34194012
    [Google Scholar]
  16. Dominici M. Le Blanc K. Mueller I. Slaper-Cortenbach I. Marini F.C. Krause D.S. Deans R.J. Keating A. Prockop D.J. Horwitz E.M. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006 8 4 315 317 10.1080/14653240600855905 16923606
    [Google Scholar]
  17. Uccelli A. Moretta L. Pistoia V. Mesenchymal stem cells in health and disease. Nat. Rev. Immunol. 2008 8 9 726 736 10.1038/nri2395 19172693
    [Google Scholar]
  18. Trounson A. McDonald C. Stem cell therapies in clinical trials: Progress and challenges. Cell Stem Cell 2015 17 1 11 22 10.1016/j.stem.2015.06.007 26140604
    [Google Scholar]
  19. Song N. Scholtemeijer M. Shah K. Mesenchymal stem cell immunomodulation: Mechanisms and therapeutic potential. Trends Pharmacol. Sci. 2020 41 9 653 664 10.1016/j.tips.2020.06.009 32709406
    [Google Scholar]
  20. Lou G. Chen Z. Zheng M. Liu Y. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases. Exp. Mol. Med. 2017 49 6 e346 10.1038/emm.2017.63 28620221
    [Google Scholar]
  21. Wu R. Fan X. Wang Y. Shen M. Zheng Y. Zhao S. Yang L. Mesenchymal stem cell-derived extracellular vesicles in liver immunity and therapy. Front. Immunol. 2022 13 833878 10.3389/fimmu.2022.833878 35309311
    [Google Scholar]
  22. Yao J. Zheng J. Cai J. Zeng K. Zhou C. Zhang J. Li S. Li H. Chen L. He L. Chen H. Fu H. Zhang Q. Chen G. Yang Y. Zhang Y. Extracellular vesicles derived from human umbilical cord mesenchymal stem cells alleviate rat hepatic ischemia-reperfusion injury by suppressing oxidative stress and neutrophil inflammatory response. FASEB J. 2019 33 2 1695 1710 10.1096/fj.201800131RR 30226809
    [Google Scholar]
  23. Deng L. Du C. Song P. Chen T. Rui S. Armstrong D.G. Deng W. The role of oxidative stress and antioxidants in diabetic wound healing. Oxid. Med. Cell. Longev. 2021 2021 1 11 10.1155/2021/8852759 33628388
    [Google Scholar]
  24. Damiani C.R. Benetton C.A.F. Stoffel C. Bardini K.C. Cardoso V.H. Di Giunta G. Pinho R.A. Dal-Pizzol F. Streck E.L. Oxidative stress and metabolism in animal model of colitis induced by dextran sulfate sodium. J. Gastroenterol. Hepatol. 2007 22 11 1846 1851 10.1111/j.1440‑1746.2007.04890.x 17489966
    [Google Scholar]
  25. Itoh K. Wakabayashi N. Katoh Y. Ishii T. Igarashi K. Engel J.D. Yamamoto M. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 1999 13 1 76 86 10.1101/gad.13.1.76 9887101
    [Google Scholar]
  26. Kensler T.W. Wakabayashi N. Biswal S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol. 2007 47 1 89 116 10.1146/annurev.pharmtox.46.120604.141046 16968214
    [Google Scholar]
  27. Eggler A.L. Liu G. Pezzuto J.M. van Breemen R.B. Mesecar A.D. Modifying specific cysteines of the electrophile-sensing human Keap1 protein is insufficient to disrupt binding to the Nrf2 domain Neh2. Proc. Natl. Acad. Sci. USA 2005 102 29 10070 10075 10.1073/pnas.0502402102 16006525
    [Google Scholar]
  28. Shaw P. Chattopadhyay A. Nrf2–ARE signaling in cellular protection: Mechanism of action and the regulatory mechanisms. J. Cell. Physiol. 2020 235 4 3119 3130 10.1002/jcp.29219 31549397
    [Google Scholar]
  29. Dai X. Yan X. Wintergerst K.A. Cai L. Keller B.B. Tan Y. Nrf2: Redox and metabolic regulator of stem cell state and function. Trends Mol. Med. 2020 26 2 185 200 10.1016/j.molmed.2019.09.007 31679988
    [Google Scholar]
  30. Hayes J.D. Dinkova-Kostova A.T. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem. Sci. 2014 39 4 199 218 10.1016/j.tibs.2014.02.002 24647116
    [Google Scholar]
  31. He F. Ru X. Wen T. NRF2, a transcription factor for stress response and beyond. Int. J. Mol. Sci. 2020 21 13 4777 10.3390/ijms21134777 32640524
    [Google Scholar]
  32. Ma Q. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol. 2013 53 1 401 426 10.1146/annurev‑pharmtox‑011112‑140320 23294312
    [Google Scholar]
  33. He F. Antonucci L. Karin M. NRF2 as a regulator of cell metabolism and inflammation in cancer. Carcinogenesis 2020 41 4 405 416 10.1093/carcin/bgaa039 32347301
    [Google Scholar]
  34. Liu Y. Uruno A. Saito R. Matsukawa N. Hishinuma E. Saigusa D. Liu H. Yamamoto M. Nrf2 deficiency deteriorates diabetic kidney disease in Akita model mice. Redox Biol. 2022 58 102525 10.1016/j.redox.2022.102525 36335764
    [Google Scholar]
  35. Li X. Xie X. Lian W. Shi R. Han S. Zhang H. Lu L. Li M. Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model. Exp. Mol. Med. 2018 50 4 1 14 10.1038/s12276‑018‑0058‑5 29651102
    [Google Scholar]
  36. Shen K. Jia Y. Wang X. Zhang J. Liu K. Wang J. Cai W. Li J. Li S. Zhao M. Wang Y. Hu D. Exosomes from adipose-derived stem cells alleviate the inflammation and oxidative stress via regulating Nrf2/HO-1 axis in macrophages. Free Radic. Biol. Med. 2021 165 54 66 10.1016/j.freeradbiomed.2021.01.023 33476797
    [Google Scholar]
  37. Gao Y. Huang X. Lin H. Zhao M. Liu W. Li W. Han L. Ma Q. Dong C. Li Y. Hu Y. Jin F. Adipose mesenchymal stem cell-derived antioxidative extracellular vesicles exhibit anti-oxidative stress and immunomodulatory effects under PM2.5 exposure. Toxicology 2021 447 152627 10.1016/j.tox.2020.152627 33161053
    [Google Scholar]
  38. Gong C. Gu Z. Zhang X. Xu Q. Mao G. Pei Z. Meng W. Cen J. Liu J. He X. Sun M. Xiao K. HMSCs exosome-derived miR -199a-5p attenuates sulfur mustard-associated oxidative stress via the CAV1 / NRF2 signalling pathway. J. Cell. Mol. Med. 2023 27 15 2165 2182 10.1111/jcmm.17803 37386746
    [Google Scholar]
  39. Kang Y. Song Y. Luo Y. Song J. Li C. Yang S. Guo J. Yu J. Zhang X. Exosomes derived from human umbilical cord mesenchymal stem cells ameliorate experimental non-alcoholic steatohepatitis via Nrf2/NQO-1 pathway. Free Radic. Biol. Med. 2022 192 25 36 10.1016/j.freeradbiomed.2022.08.037 36096356
    [Google Scholar]
  40. Liu P. Cao B. Zhou Y. Zhang H. Wang C. Human umbilical cord-derived mesenchymal stem cells alleviate oxidative stress-induced islet impairment via the Nrf2/HO-1 axis. J. Mol. Cell Biol. 2023 15 5 mjad035 10.1093/jmcb/mjad035 37245063
    [Google Scholar]
  41. Liu P. Xie X. Wu H. Li H. Chi J. Liu X. Luo J. Tang Y. Xu C. Mesenchymal stem cells promote intestinal mucosal repair by positively regulating the Nrf2/Keap1/ARE signaling pathway in acute experimental colitis. Dig. Dis. Sci. 2023 68 5 1835 1846 10.1007/s10620‑022‑07722‑2 36459293
    [Google Scholar]
  42. Johnson G.L. Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 2002 298 5600 1911 1912 10.1126/science.1072682 12471242
    [Google Scholar]
  43. Fang J.Y. Richardson B.C. The MAPK signalling pathways and colorectal cancer. Lancet Oncol. 2005 6 5 322 327 10.1016/S1470‑2045(05)70168‑6 15863380
    [Google Scholar]
  44. Runchel C. Matsuzawa A. Ichijo H. Mitogen-activated protein kinases in mammalian oxidative stress responses. Antioxid. Redox Signal. 2011 15 1 205 218 10.1089/ars.2010.3733 21050144
    [Google Scholar]
  45. Dong C. Davis R.J. Flavell R.A. MAP kinases in the immune response. Annu. Rev. Immunol. 2002 20 1 55 72 10.1146/annurev.immunol.20.091301.131133 11861597
    [Google Scholar]
  46. Weston C.R. Davis R.J. The JNK signal transduction pathway. Curr. Opin. Cell Biol. 2007 19 2 142 149 10.1016/j.ceb.2007.02.001 17303404
    [Google Scholar]
  47. Zarubin T. Han J. Activation and signaling of the p38 MAP kinase pathway. Cell Res. 2005 15 1 11 18 10.1038/sj.cr.7290257 15686620
    [Google Scholar]
  48. Cuadrado A. Nebreda A.R. Mechanisms and functions of p38 MAPK signalling. Biochem. J. 2010 429 3 403 417 10.1042/BJ20100323 20626350
    [Google Scholar]
  49. Kim E.K. Choi E.J. Compromised MAPK signaling in human diseases: An update. Arch. Toxicol. 2015 89 6 867 882 10.1007/s00204‑015‑1472‑2 25690731
    [Google Scholar]
  50. Tang C. Liang J. Qian J. Jin L. Du M. Li M. Li D. Opposing role of JNK-p38 kinase and ERK1/2 in hydrogen peroxide-induced oxidative damage of human trophoblast-like JEG-3 cells. Int. J. Clin. Exp. Pathol. 2014 7 3 959 968 24695490
    [Google Scholar]
  51. Lee M.H. Han M.H. Lee D.S. Park C. Hong S.H. Kim G.Y. Hong S.H. Song K.S. Choi I.W. Cha H.J. Choi Y.H. Morin exerts cytoprotective effects against oxidative stress in C2C12 myoblasts via the upregulation of Nrf2-dependent HO-1 expression and the activation of the ERK pathway. Int. J. Mol. Med. 2017 39 2 399 406 10.3892/ijmm.2016.2837 28035409
    [Google Scholar]
  52. Qi Z. Ci X. Huang J. Liu Q. Yu Q. Zhou J. Deng X. Asiatic acid enhances Nrf2 signaling to protect HepG2 cells from oxidative damage through Akt and ERK activation. Biomed. Pharmacother. 2017 88 252 259 10.1016/j.biopha.2017.01.067 28110191
    [Google Scholar]
  53. Gao X. Li S. Liu X. Cong C. Zhao L. Liu H. Xu L. Neuroprotective effects of Tiaogeng decoction against H2O2-induced oxidative injury and apoptosis in PC12 cells via Nrf2 and JNK signaling pathways. J. Ethnopharmacol. 2021 279 114379 10.1016/j.jep.2021.114379 34216727
    [Google Scholar]
  54. Feng J. Li Y. Jin X. Gong R. Xia Z. ATF3 regulates oxidative stress and extracellular matrix degradation via p38/Nrf2 signaling pathway in pelvic organ prolapse. Tissue Cell 2021 73 101660 10.1016/j.tice.2021.101660 34666282
    [Google Scholar]
  55. Xiao Q. Orientin-mediated Nrf2/HO-1 signal alleviates H2O2-induced oxidative damage via induction of JNK and PI3K/AKT activation. Int J Biol Macromol 2018 118 Pt A 747 755
    [Google Scholar]
  56. Wang Y. Liu J. Yu B. Jin Y. Li J. Ma X. Yu J. Niu J. Liang X. Umbilical cord-derived mesenchymal stem cell conditioned medium reverses neuronal oxidative injury by inhibition of TRPM2 activation and the JNK signaling pathway. Mol. Biol. Rep. 2022 49 8 7337 7345 10.1007/s11033‑022‑07524‑9 35585377
    [Google Scholar]
  57. Cen Y. Lou G. Qi J. Li M. Zheng M. Liu Y. Adipose-derived mesenchymal stem cells inhibit jnk-mediated mitochondrial retrograde pathway to alleviate acetaminophen-induced liver injury. Antioxidants 2023 12 1 158 10.3390/antiox12010158 36671020
    [Google Scholar]
  58. Fang Y. Tian X. Bai S. Fan J. Hou W. Tong H. Li D. Autologous transplantation of adipose-derived mesenchymal stem cells ameliorates streptozotocin-induced diabetic nephropathy in rats by inhibiting oxidative stress, pro-inflammatory cytokines and the p38 MAPK signaling pathway. Int. J. Mol. Med. 2012 30 1 85 92 22552764
    [Google Scholar]
  59. Arslan F. Lai R.C. Smeets M.B. Akeroyd L. Choo A. Aguor E.N.E. Timmers L. van Rijen H.V. Doevendans P.A. Pasterkamp G. Lim S.K. de Kleijn D.P. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res. 2013 10 3 301 312 10.1016/j.scr.2013.01.002 23399448
    [Google Scholar]
  60. Wu H.Y. Zhang X.C. Jia B.B. Cao Y. Yan K. Li J.Y. Tao L. Jie Z.G. Liu Q.W. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate acetaminophen-induced acute liver failure through activating ERK and IGF-1R/PI3K/AKT signaling pathway. J. Pharmacol. Sci. 2021 147 1 143 155 10.1016/j.jphs.2021.06.008 34294366
    [Google Scholar]
  61. Tan Y. Nie W. Chen C. He X. Xu Y. Ma X. Zhang J. Tan M. Rong P. Wang W. Mesenchymal stem cells alleviate hypoxia-induced oxidative stress and enhance the pro-survival pathways in porcine islets. Exp. Biol. Med. 2019 244 9 781 788 10.1177/1535370219844472 31042075
    [Google Scholar]
  62. Anderson M.T. Staal F.J. Gitler C. Herzenberg L.A. Herzenberg L.A. Separation of oxidant-initiated and redox-regulated steps in the NF-kappa B signal transduction pathway. Proc. Natl. Acad. Sci. USA 1994 91 24 11527 11531 10.1073/pnas.91.24.11527 7526398
    [Google Scholar]
  63. Gloire G. Piette J. Redox regulation of nuclear post-translational modifications during NF-kappaB activation. Antioxid. Redox Signal. 2009 11 9 2209 2222 10.1089/ars.2009.2463 19203223
    [Google Scholar]
  64. Ma L. Geng J. Chen W. Qin M. Wang L. Zeng Y. Effects of TLR9/NF-κB on oxidative stress and inflammation in IPEC-J2 cells. Genes Genomics 2022 44 10 1149 1158 10.1007/s13258‑022‑01271‑8 35900696
    [Google Scholar]
  65. Mitchell S. Vargas J. Hoffmann A. Signaling via the NFκB system. Wiley Interdiscip. Rev. Syst. Biol. Med. 2016 8 3 227 241 10.1002/wsbm.1331 26990581
    [Google Scholar]
  66. Mariappan N. Elks C.M. Sriramula S. Guggilam A. Liu Z. Borkhsenious O. Francis J. NF-κB-induced oxidative stress contributes to mitochondrial and cardiac dysfunction in type II diabetes. Cardiovasc. Res. 2010 85 3 473 483 10.1093/cvr/cvp305 19729361
    [Google Scholar]
  67. Morgan M.J. Liu Z. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 2011 21 1 103 115 10.1038/cr.2010.178 21187859
    [Google Scholar]
  68. Song I.H. Jung K.J. Lee T.J. Kim J.Y. Sung E.G. Bae Y.C. Park Y.H. Mesenchymal stem cells attenuate adriamycin-induced nephropathy by diminishing oxidative stress and inflammation via downregulation of the NF-kB. Nephrology 2018 23 5 483 492 10.1111/nep.13047 28326639
    [Google Scholar]
  69. Llacuna L. Marí M. Lluis J.M. García-Ruiz C. Fernández-Checa J.C. Morales A. Reactive oxygen species mediate liver injury through parenchymal nuclear factor-kappaB inactivation in prolonged ischemia/reperfusion. Am. J. Pathol. 2009 174 5 1776 1785 10.2353/ajpath.2009.080857 19349371
    [Google Scholar]
  70. Yang J. Liu X.X. Fan H. Tang Q. Shou Z.X. Zuo D.M. Zou Z. Xu M. Chen Q.Y. Peng Y. Deng S.J. Liu Y.J. Extracellular vesicles derived from bone marrow mesenchymal stem cells protect against experimental colitis via attenuating colon inflammation, oxidative stress and apoptosis. PLoS One 2015 10 10 e0140551 10.1371/journal.pone.0140551 26469068
    [Google Scholar]
  71. Zhang L. Wang Y. Shen H. Zhao M. Combined signaling of NF-kappaB and IL-17 contributes to Mesenchymal stem cells-mediated protection for Paraquat-induced acute lung injury. BMC Pulm. Med. 2020 20 1 195 10.1186/s12890‑020‑01232‑5 32680482
    [Google Scholar]
  72. Li W. Jin L. Cui Y. Nie A. Xie N. Liang G. Bone marrow mesenchymal stem cells-induced exosomal microRNA-486-3p protects against diabetic retinopathy through TLR4/NF-κB axis repression. J. Endocrinol. Invest. 2021 44 6 1193 1207 10.1007/s40618‑020‑01405‑3 32979189
    [Google Scholar]
  73. Cao D. Qiao H. He D. Qin X. Zhang Q. Zhou Y. Mesenchymal stem cells inhibited the inflammation and oxidative stress in LPS-activated microglial cells through AMPK pathway. J. Neural Transm. 2019 126 12 1589 1597 10.1007/s00702‑019‑02102‑z 31707461
    [Google Scholar]
  74. Yang L. Cao H. Sun D. Lin L. Zheng W.P. Shen Z.Y. Song H.L. Normothermic machine perfusion combined with bone marrow mesenchymal stem cells improves the oxidative stress response and mitochondrial function in rat donation after circulatory death livers. Stem Cells Dev. 2020 29 13 835 852 10.1089/scd.2019.0301 32253985
    [Google Scholar]
  75. Carling D. AMPK signalling in health and disease. Curr. Opin. Cell Biol. 2017 45 31 37 10.1016/j.ceb.2017.01.005 28232179
    [Google Scholar]
  76. Herzig S. Shaw R.J. AMPK: Guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 2018 19 2 121 135 10.1038/nrm.2017.95 28974774
    [Google Scholar]
  77. Mihaylova M.M. Shaw R.J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 2011 13 9 1016 1023 10.1038/ncb2329 21892142
    [Google Scholar]
  78. Rabinovitch R.C. Samborska B. Faubert B. Ma E.H. Gravel S.P. Andrzejewski S. Raissi T.C. Pause A. St-Pierre J. Jones R.G. AMPK maintains cellular metabolic homeostasis through regulation of mitochondrial reactive oxygen species. Cell Rep. 2017 21 1 1 9 10.1016/j.celrep.2017.09.026 28978464
    [Google Scholar]
  79. Barone E. Di Domenico F. Perluigi M. Butterfield D.A. The interplay among oxidative stress, brain insulin resistance and AMPK dysfunction contribute to neurodegeneration in type 2 diabetes and Alzheimer disease. Free Radic. Biol. Med. 2021 176 16 33 10.1016/j.freeradbiomed.2021.09.006 34530075
    [Google Scholar]
  80. Gravandi M.M. Fakhri S. Zarneshan S.N. Yarmohammadi A. Khan H. Flavonoids modulate AMPK/PGC-1α and interconnected pathways toward potential neuroprotective activities. Metab. Brain Dis. 2021 36 7 1501 1521 10.1007/s11011‑021‑00750‑3 33988807
    [Google Scholar]
  81. Song J. Liu J. Cui C. Hu H. Zang N. Yang M. Yang J. Zou Y. Li J. Wang L. He Q. Guo X. Zhao R. Yan F. Liu F. Hou X. Sun Z. Chen L. Mesenchymal stromal cells ameliorate diabetes-induced muscle atrophy through exosomes by enhancing AMPK/ULK1-mediated autophagy. J. Cachexia Sarcopenia Muscle 2023 14 2 915 929 10.1002/jcsm.13177 36708027
    [Google Scholar]
  82. Chen H. Liu X. Chen H. Cao J. Zhang L. Hu X. Wang J. Role of SIRT1 and AMPK in mesenchymal stem cells differentiation. Ageing Res. Rev. 2014 13 55 64 10.1016/j.arr.2013.12.002 24333965
    [Google Scholar]
  83. Chen M. Jing D. Ye R. Yi J. Zhao Z. PPARβ/δ accelerates bone regeneration in diabetic mellitus by enhancing AMPK/mTOR pathway-mediated autophagy. Stem Cell Res. Ther. 2021 12 1 566 10.1186/s13287‑021‑02628‑8 34736532
    [Google Scholar]
  84. Nageeb M.M. Saadawy S.F. Attia S.H. Breast milk mesenchymal stem cells abate cisplatin-induced cardiotoxicity in adult male albino rats via modulating the AMPK pathway. Sci. Rep. 2022 12 1 17554 10.1038/s41598‑022‑22095‑2 36266413
    [Google Scholar]
  85. Fruman D.A. Chiu H. Hopkins B.D. Bagrodia S. Cantley L.C. Abraham R.T. The PI3K pathway in human disease. Cell 2017 170 4 605 635 10.1016/j.cell.2017.07.029 28802037
    [Google Scholar]
  86. Manning B.D. Toker A. AKT/PKB signaling: Navigating the network. Cell 2017 169 3 381 405 10.1016/j.cell.2017.04.001 28431241
    [Google Scholar]
  87. Yang J. Nie J. Ma X. Wei Y. Peng Y. Wei X. Targeting PI3K in cancer: Mechanisms and advances in clinical trials. Mol. Cancer 2019 18 1 26 10.1186/s12943‑019‑0954‑x 30782187
    [Google Scholar]
  88. Shiau J.P. Chuang Y.T. Tang J.Y. Yang K.H. Chang F.R. Hou M.F. Yen C.Y. Chang H.W. The impact of oxidative stress and AKT pathway on cancer cell functions and its application to natural products. Antioxidants 2022 11 9 1845 10.3390/antiox11091845 36139919
    [Google Scholar]
  89. Ren B. Zhang Y. Liu S. Cheng X. Yang X. Cui X. Zhao X. Zhao H. Hao M. Li M. Tie Y. Qu L. Li X. Curcumin alleviates oxidative stress and inhibits apoptosis in diabetic cardiomyopathy via Sirt1-Foxo1 and PI3K-Akt signalling pathways. J. Cell. Mol. Med. 2020 24 21 12355 12367 10.1111/jcmm.15725 32961025
    [Google Scholar]
  90. Zheng S. Ma M. Chen Y. Li M. Effects of quercetin on ovarian function and regulation of the ovarian PI3K/Akt/FoxO3a signalling pathway and oxidative stress in a rat model of cyclophosphamide-induced premature ovarian failure. Basic Clin. Pharmacol. Toxicol. 2022 130 2 240 253 10.1111/bcpt.13696 34841658
    [Google Scholar]
  91. Lee M.Y. Luciano A.K. Ackah E. Rodriguez-Vita J. Bancroft T.A. Eichmann A. Simons M. Kyriakides T.R. Morales-Ruiz M. Sessa W.C. Endothelial Akt1 mediates angiogenesis by phosphorylating multiple angiogenic substrates. Proc. Natl. Acad. Sci. USA 2014 111 35 12865 12870 10.1073/pnas.1408472111 25136137
    [Google Scholar]
  92. Zeng H. Yang Y. Tou F. Zhan Y. Liu S. Zou P. Chen Y. Shao L. Bone marrow stromal cell-derived exosomes improve oxidative stress and pyroptosis in doxorubicin-induced myocardial injury in vitro by regulating the transcription of GSDMD through the PI3K-AKT-Foxo1 pathway. Immun. Inflamm. Dis. 2023 11 3 e810 10.1002/iid3.810 36988259
    [Google Scholar]
  93. Wu Y. Li J. Yuan R. Deng Z. Wu X. Bone marrow mesenchymal stem cell-derived exosomes alleviate hyperoxia-induced lung injury via the manipulation of microRNA-425. Arch. Biochem. Biophys. 2021 697 108712 10.1016/j.abb.2020.108712 33264631
    [Google Scholar]
  94. He J. Liu J. Huang Y. Tang X. Xiao H. Liu Z. Jiang Z. Zeng L. Hu Z. Lu M. OM-MSCs alleviate the golgi apparatus stress response following cerebral ischemia/reperfusion injury via the PEDF-PI3K/Akt/mTOR signaling pathway. Oxid. Med. Cell. Longev. 2021 2021 1 19 10.1155/2021/4805040 34815829
    [Google Scholar]
  95. Aboulhoda B.E. Rashed L.A. Ahmed H. Obaya E.M.M. Ibrahim W. Alkafass M.A.L. Abd El-Aal S.A. ShamsEldeen A.M. Hydrogen sulfide and mesenchymal stem cells-extracted microvesicles attenuate LPS-induced Alzheimer’s disease. J. Cell. Physiol. 2021 236 8 5994 6010 10.1002/jcp.30283 33481268
    [Google Scholar]
  96. Ebrahim N. Al Saihati H.A. Alali Z. Aleniz F.Q. Mahmoud S.Y.M. Badr O.A. Dessouky A.A. Mostafa O. Hussien N.I. Farid A.S. El-Sherbiny M. Salim R.F. Forsyth N.R. Ali F.E.M. Alsabeelah N.F. Exploring the molecular mechanisms of MSC-derived exosomes in Alzheimer’s disease: Autophagy, insulin and the PI3K/Akt/mTOR signaling pathway. Biomed. Pharmacother. 2024 176 116836 10.1016/j.biopha.2024.116836 38850660
    [Google Scholar]
  97. Wang L. Qing L. Liu H. Liu N. Qiao J. Cui C. He T. Zhao R. Liu F. Yan F. Wang C. Liang K. Guo X. Shen Y.H. Hou X. Chen L. Mesenchymal stromal cells ameliorate oxidative stress-induced islet endothelium apoptosis and functional impairment via Wnt4-β-catenin signaling. Stem Cell Res. Ther. 2017 8 1 188 10.1186/s13287‑017‑0640‑0 28807051
    [Google Scholar]
  98. Steinhart Z. Angers S. Wnt signaling in development and tissue homeostasis. Development 2018 145 11 dev146589 10.1242/dev.146589 29884654
    [Google Scholar]
  99. MacDonald B.T. Tamai K. He X. Wnt/beta-catenin signaling: Components, mechanisms, and diseases. Dev. Cell 2009 17 1 9 26 10.1016/j.devcel.2009.06.016 19619488
    [Google Scholar]
  100. Clevers H. Nusse R. Wnt/β-catenin signaling and disease. Cell 2012 149 6 1192 1205 10.1016/j.cell.2012.05.012 22682243
    [Google Scholar]
  101. Nusse R. Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell 2017 169 6 985 999 10.1016/j.cell.2017.05.016 28575679
    [Google Scholar]
  102. Ebrahim N. El-Halim H.E.A. Helal O.K. El-Azab N.E.E. Badr O.A.M. Hassouna A. Saihati H.A.A. Aborayah N.H. Emam H.T. El-wakeel H.S. Aljasir M. El-Sherbiny M. Sarg N.A.S. Shaker G.A. Mostafa O. Sabry D. Fouly M.A.K. Forsyth N.R. Elsherbiny N.M. Salim R.F. Effect of bone marrow mesenchymal stem cells-derived exosomes on diabetes-induced retinal injury: Implication of Wnt/ b-catenin signaling pathway. Biomed. Pharmacother. 2022 154 113554 10.1016/j.biopha.2022.113554 35987163
    [Google Scholar]
  103. Zhou L. Chen X. Lu M. Wu Q. Yuan Q. Hu C. Miao J. Zhang Y. Li H. Hou F.F. Nie J. Liu Y. Wnt/β-catenin links oxidative stress to podocyte injury and proteinuria. Kidney Int. 2019 95 4 830 845 10.1016/j.kint.2018.10.032 30770219
    [Google Scholar]
  104. An R. Wang X. Yang L. Zhang J. Wang N. Xu F. Hou Y. Zhang H. Zhang L. Polystyrene microplastics cause granulosa cells apoptosis and fibrosis in ovary through oxidative stress in rats. Toxicology 2021 449 152665 10.1016/j.tox.2020.152665 33359712
    [Google Scholar]
  105. Vallée A. Neuroinflammation in Schizophrenia: The key role of the WNT/β-catenin pathway. Int. J. Mol. Sci. 2022 23 5 2810 10.3390/ijms23052810 35269952
    [Google Scholar]
  106. Vallée A. Lecarpentier Y. Crosstalk between peroxisome proliferator-activated receptor gamma and the canonical WNT/β-catenin pathway in chronic inflammation and oxidative stress during carcinogenesis. Front. Immunol. 2018 9 745 10.3389/fimmu.2018.00745 29706964
    [Google Scholar]
  107. Bellezza I. Giambanco I. Minelli A. Donato R. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim. Biophys. Acta Mol. Cell Res. 2018 1865 5 721 733 10.1016/j.bbamcr.2018.02.010 29499228
    [Google Scholar]
  108. Gao W. Guo L. Yang Y. Wang Y. Xia S. Gong H. Zhang B.K. Yan M. Dissecting the crosstalk between Nrf2 and NF-κB response pathways in drug-induced toxicity. Front. Cell Dev. Biol. 2022 9 809952 10.3389/fcell.2021.809952 35186957
    [Google Scholar]
  109. Yuan J. Dong X. Yap J. Hu J. The MAPK and AMPK signalings: Interplay and implication in targeted cancer therapy. J. Hematol. Oncol. 2020 13 1 113 10.1186/s13045‑020‑00949‑4 32807225
    [Google Scholar]
  110. Dinsmore C.J. Soriano P. MAPK and PI3K signaling: At the crossroads of neural crest development. Dev Biol 2018 444 Suppl 1 S79 S97 10.1016/j.ydbio.2018.02.003
    [Google Scholar]
  111. Shorning B.Y. Dass M.S. Smalley M.J. Pearson H.B. The PI3K-AKT-mTOR pathway and prostate cancer: At the crossroads of AR, MAPK, and WNT signaling. Int. J. Mol. Sci. 2020 21 12 4507 10.3390/ijms21124507 32630372
    [Google Scholar]
  112. Khadrawy S.M. Mohamed H.M. Mahmoud A.M. Mesenchymal stem cells ameliorate oxidative stress, inflammation, and hepatic fibrosis via Nrf2/HO-1 signaling pathway in rats. Environ. Sci. Pollut. Res. Int. 2021 28 2 2019 2030 10.1007/s11356‑020‑10637‑y 32865681
    [Google Scholar]
  113. Zhang L. Li Q. Liu W. Liu Z. Shen H. Zhao M. Mesenchymal stem cells alleviate acute lung injury and inflammatory responses induced by paraquat poisoning. Med. Sci. Monit. 2019 25 2623 2632 10.12659/MSM.915804 30967525
    [Google Scholar]
  114. Zhang T.Y. Zhang H. Deng J.Y. Gong H.R. Yan Y. Zhang Z. Lei C. BMMSC-derived exosomes attenuate cardiopulmonary bypass-related acute lung injury by reducing inflammatory response and oxidative stress. Curr. Stem Cell Res. Ther. 2023 18 5 720 728 10.2174/1574888X17666220822123643 35996241
    [Google Scholar]
  115. Tang Y. Ding F. Wu C. Liu B. hucMSC conditioned medium ameliorate lipopolysaccharide-induced acute lung injury by suppressing oxidative stress and inflammation via Nrf2/NF-κB signaling pathway. Anal. Cell. Pathol. 2021 2021 1 11 10.1155/2021/6653681 34426780
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128308454240823074555
Loading
/content/journals/cpd/10.2174/0113816128308454240823074555
Loading

Data & Media loading...

  • Article Type: Review Article
Keywords: Mesenchymal stem cell ; signal pathways ; oxidative stress
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test