Skip to content
2000
image of QSAR and Molecular Docking Studies on Uracil-Based Benzoic Acid and Ester 
Derivatives to Explore Novel Dipeptidyl Peptidase-4 Inhibitors

Abstract

Background

Today, diabetes mellitus (DM) is considered a major global health problem and, especially diabetes mellitus type-2 (T2DM), which accounts for 90-95% of all diabetes cases. Among the novel glucose-lowering agents, dipeptidyl peptidase-4 DPP-4) inhibitors have been extensively studied in recent years.

Objectives

This paper integrates a QSAR study and docking analysis of a series of uracil-based benzoic acid and ester derivatives as novel DPP-4 inhibitors.

Methods

The correlation of chemical structure with the biological activity in CP-MLR led to the detection of eleven descriptors from various classes of Dragon descriptors for modeling the activity. The resulting QSAR model has been validated internally and externally using CP-MLR and PLS. Further, the applicability domain analysis revealed the acceptable predictivity of the highest significant model.

Result

The best QSAR model displays the r2 value of 0.715, Q2 value of 0.797 and Q2 value of 0.809 and this model is used to predict novel compounds with high potency. Further docking study was executed using Autodock 4.2 against DPP-4 protein (PDB ID: 2RGU) that reflects the significant binding potential in newly proposed compounds.

Conclusion

From the results, four new congeners have been predicted and validated with good inhibitory activity against DPP-4. Present work reflects that with further optimization of these scaffolds, more selective, potent, and bioavailable DPP-4 inhibitors can be developed for the treatment of T2DM.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128331664250206113701
2025-03-17
2025-03-30
Loading full text...

Full text loading...

References

  1. Ong K.L. Stafford L.K. McLaughlin S.A. Boyko E.J. Vollset S.E. Smith A.E. Dalton B.E. Duprey J. Cruz J.A. Hagins H. Lindstedt P.A. Aali A. Abate Y.H. Abate M.D. Abbasian M. Kangevari A.Z. Kangevari A.M. ElHafeez A.S. Rabu A.R. Abdulah D.M. Abdullah A.Y.M. Abedi V. Abidi H. Aboagye R.G. Abolhassani H. Gharbieh A.E. Zaid A.A. Adane T.D. Adane D.E. Addo I.Y. Adegboye O.A. Adekanmbi V. Adepoju A.V. Adnani Q.E.S. Afolabi R.F. Agarwal G. Aghdam Z.B. Botero A.M. Arriagada A.C.E. Duah A.W. Ahinkorah B.O. Ahmad D. Ahmad R. Ahmad S. Ahmad A. Ahmadi A. Ahmadi K. Ahmed A. Ahmed A. Ahmed L.A. Ahmed S.A. Ajami M. Akinyemi R.O. Hamad A.H. Hasan A.S.M. Ahdal A.T.M.A. Alalwan T.A. Aly A.Z. AlBataineh M.T. Rabanal A.J.E. Alemi S. Ali H. Alinia T. Aljunid S.M. Almustanyir S. Raddadi A.R.M. Guzman A.N. Amare F. Ameyaw E.K. Amiri S. Amusa G.A. Andrei C.L. Anjana R.M. Ansar A. Ansari G. Moghaddam A.A. Anyasodor A.E. Arabloo J. Aravkin A.Y. Areda D. Arifin H. Arkew M. Armocida B. Ärnlöv J. Artamonov A.A. Arulappan J. Aruleba R.T. Arumugam A. Aryan Z. Asemu M.T. Jafarabadi A.M. Askari E. Asmelash D. Burt A.T. Athar M. Athari S.S. Atout M.M.W. Burgos A.L. Awaisu A. Azadnajafabad S. B D.B. Babamohamadi H. Badar M. Badawi A. Badiye A.D. Baghcheghi N. Bagheri N. Bagherieh S. Bah S. Bahadory S. Bai R. Baig A.A. Baltatu O.C. Baradaran H.R. Barchitta M. Bardhan M. Barengo N.C. Bärnighausen T.W. Barone M.T.U. Adesi B.F. Barrow A. Bashiri H. Basiru A. Basu S. Basu S. Batiha A-M.M. Batra K. Bayih M.T. Bayileyegn N.S. Behnoush A.H. Bekele A.B. Belete M.A. Belgaumi U.I. Belo L. Bennett D.A. Bensenor I.M. Berhe K. Berhie A.Y. Bhaskar S. Bhat A.N. Bhatti J.S. Bikbov B. Bilal F. Bintoro B.S. Bitaraf S. Bitra V.R. Mikanovic B.V. Bodolica V. Boloor A. Brauer M. Sayavera B.J. Brenner H. Butt Z.A. Calina D. Campos L.A. Nonato C.I.R. Cao Y. Cao C. Car J. Carvalho M. Orjuela C.C.A. López C.F. Cerin E. Chadwick J. Chandrasekar E.K. Chanie G.S. Charan J. Chattu V.K. Chauhan K. Cheema H.A. Abebe C.E. Chen S. Cherbuin N. Chichagi F. Chidambaram S.B. Cho W.C.S. Choudhari S.G. Chowdhury R. Chowdhury E.K. Chu D-T. Chukwu I.S. Chung S-C. Coberly K. Columbus A. Contreras D. Cousin E. Criqui M.H. Martins C.N. Cuschieri S. Dabo B. Dadras O. Dai X. Damasceno A.A.M. Dandona R. Dandona L. Das S. Dascalu A.M. Dash N.R. Dashti M. Cervantes D.C.A. De la Cruz-Góngora V. Debele G.R. Delpasand K. Demisse F.W. Demissie G.D. Deng X. Gutiérrez D.E. Deo S.V. Dervišević E. Desai H.D. Desale A.T. Dessie A.M. Desta F. Dewan S.M.R. Dey S. Dhama K. Dhimal M. Diao N. Diaz D. Dinu M. Diress M. Djalalinia S. Doan L.P. Dongarwar D. dos Santos Figueiredo F.W. Duncan B.B. Dutta S. Dziedzic A.M. Edinur H.A. Ekholuenetale M. Ekundayo T.C. Elgendy I.Y. Elhadi M. Huneidi E.W. Elmeligy O.A.A. Elmonem M.A. Endeshaw D. Esayas H.L. Eshetu H.B. Etaee F. Fadhil I. Fagbamigbe A.F. Fahim A. Falahi S. Faris M.A.I.E.M. Farrokhpour H. Farzadfar F. Fatehizadeh A. Fazli G. Feng X. Ferede T.Y. Fischer F. Flood D. Forouhari A. Foroumadi R. Koudehi F.M. Gaidhane A.M. Gaihre S. Gaipov A. Galali Y. Ganesan B. Gordillo G.M.A. Gautam R.K. Gebrehiwot M. Gebrekidan K.G. Gebremeskel T.G. Getacher L. Ghadirian F. Ghamari S-H. Nour G.M. Ghassemi F. Golechha M. Goleij P. Golinelli D. Gopalani S.V. Guadie H.A. Guan S-Y. Gudayu T.W. Guimarães R.A. Guled R.A. Gupta R. Gupta K. Gupta V.B. Gupta V.K. Gyawali B. Haddadi R. Hadi N.R. Haile T.G. Hajibeygi R. Mirzaian H.A. Halwani R. Hamidi S. Hankey G.J. Hannan M.A. Haque S. Harandi H. Harlianto N.I. Hasan S.M.M. Hasan S.S. Hasani H. Hassanipour S. Hassen M.B. Haubold J. Hayat K. Heidari G. Heidari M. Hessami K. Hiraike Y. Holla R. Hossain S. Hossain M.S. Hosseini M-S. Hosseinzadeh M. Hosseinzadeh H. Huang J. Huda M.N. Hussain S. Huynh H-H. Hwang B-F. Ibitoye S.E. Ikeda N. Ilic I.M. Ilic M.D. Inbaraj L.R. Iqbal A. Islam S.M.S. Islam R.M. Ismail N.E. Iso H. Isola G. Itumalla R. Iwagami M. Iwu C.C.D. Iyamu I.O. Iyasu A.N. Jacob L. Jafarzadeh A. Jahrami H. Jain R. Jaja C. Jamalpoor Z. Jamshidi E. Janakiraman B. Jayanna K. Jayapal S.K. Jayaram S. Jayawardena R. Jebai R. Jeong W. Jin Y. Jokar M. Jonas J.B. Joseph N. Joseph A. Joshua C.E. Joukar F. Jozwiak J.J. Kaambwa B. Kabir A. Kabthymer R.H. Kadashetti V. Kahe F. Kalhor R. Kandel H. Karanth S.D. Karaye I.M. Karkhah S. Katoto P.D.M.C. Kaur N. Kazemian S. Kebede S.A. Khader Y.S. Khajuria H. Khalaji A. Khan M.A.B. Khan M. Khan A. Khanal S. Khatatbeh M.M. Khater A.M. Khateri S. khorashadizadeh F. Khubchandani J. Kibret B.G. Kim M.S. Kimokoti R.W. Kisa A. Kivimäki M. Kolahi A-A. Komaki S. Kompani F. Koohestani H.R. Korzh O. Kostev K. Kothari N. Koyanagi A. Krishan K. Krishnamoorthy Y. Defo K.B. Kuddus M. Kuddus M.A. Kumar R. Kumar H. Kundu S. Kurniasari M.D. Kuttikkattu A. Vecchia L.C. Lallukka T. Larijani B. Larsson A.O. Latief K. Lawal B.K. Le T.T.T. Le T.T.B. Lee S.W.H. Lee M. Lee W-C. Lee P.H. Lee S. Lee S.W. Legesse S.M. Lenzi J. Li Y. Li M-C. Lim S.S. Lim L-L. Liu X. Liu C. Lo C-H. Lopes G. Lorkowski S. Lozano R. Lucchetti G. Maghazachi A.A. Mahasha P.W. Mahjoub S. Mahmoud M.A. Mahmoudi R. Mahmoudimanesh M. Mai A.T. Majeed A. Sanaye M.P. Makris K.C. Malhotra K. Malik A.A. Malik I. Mallhi T.H. Malta D.C. Mamun A.A. Mansouri B. Marateb H.R. Mardi P. Martini S. Martorell M. Marzo R.R. Masoudi R. Masoudi S. Mathews E. Maugeri A. Mazzaglia G. Mekonnen T. Meshkat M. Mestrovic T. Jonasson M.J. Miazgowski T. Michalek I.M. Minh L.H.N. Mini G.K. Miranda J.J. Mirfakhraie R. Mirrakhimov E.M. Mirza-Aghazadeh-Attari M. Misganaw A. Misgina K.H. Mishra M. Moazen B. Mohamed N.S. Mohammadi E. Mohammadi M. Hafshejani M.A. Mohammadshahi M. Mohseni A. forushani M.H. Mokdad A.H. Momtazmanesh S. Monasta L. Moniruzzaman M. Mons U. Montazeri F. Ghalibaf M.A.A. Moradi Y. Moradi M. Sarabi M.M. Morovatdar N. Morrison S.D. Morze J. Mossialos E. Mostafavi E. Mueller U.O. Mulita F. Mulita A. Zamora M.E. Musa K.I. Mwita J.C. Nagaraju S.P. Naghavi M. Nainu F. Nair T.S. Najmuldeen H.H.R. Nangia V. Nargus S. Naser A.Y. Nassereldine H. Natto Z.S. Nauman J. Nayak B.P. Ndejjo R. Negash H. Negoi R.I. Nguyen H.T.H. Nguyen D.H. Nguyen P.T. Nguyen V.T. Nguyen H.Q. Niazi R.K. Nigatu Y.T. Ningrum D.N.A. Nizam M.A. Nnyanzi L.A. Noreen M. Noubiap J.J. Nzoputam O.J. Nzoputam C.I. Oancea B. Odogwu N.M. Odukoya O.O. Ojha V.A. Aliabad O.H. Okekunle A.P. Okonji O.C. Okwute P.G. Olufadewa I.I. Onwujekwe O.E. Ordak M. Ortiz A. Osuagwu U.L. Oulhaj A. Owolabi M.O. Monedero P.A. Padubidri J.R. Palladino R. Panagiotakos D. Jonas P.S. Pandey A. Pandey A. Perumal P.S.R. Stoian P.A.M. Pardhan S. Parekh T. Parekh U. Pasovic M. Patel J. Patel J.R. Paudel U. Pepito V.C.F. Pereira M. Perico N. Perna S. Petcu I-R. Rocha P.F.E. Podder V. Postma M.J. Pourali G. Pourtaheri N. Prates E.J.S. Qadir M.M.F. Qattea I. Raee P. Rafique I. Rahimi M. Rahimifard M. Movaghar R.V. Rahman M.O. Rahman M.A. Rahman M.H.U. Rahman M. Rahman M.M. Rahmani M. Rahmani S. Rahmanian V. Rahmawaty S. Rahnavard N. Rajbhandari B. Ram P. Ramazanu S. Rana J. Rancic N. Ranjha M.M.A.N. Rao C.R. Rapaka D. Rasali D.P. Rashedi S. Rashedi V. Rashid A.M. Rashidi M-M. Ratan Z.A. Rawaf S. Rawal L. Redwan E.M.M. Remuzzi G. Rengasamy K.R.R. Renzaho A.M.N. Reyes L.F. Rezaei N. Rezaei N. Rezaeian M. Rezazadeh H. Riahi S.M. Rias Y.A. Riaz M. Ribeiro D. Rodrigues M. Rodriguez J.A.B. Roever L. Rohloff P. Roshandel G. Roustazadeh A. Rwegerera G.M. Saad A.M.A. Ayad S.M.M. Sabour S. Sabzmakan L. Saddik B. Sadeghi E. Saeed U. Moghaddam S.S. Safi S. Safi S.Z. Saghazadeh A. Saheb Sharif-Askari N. Saheb Sharif-Askari F. Sahebkar A. Sahoo S.S. Sahoo H. Saif-Ur-Rahman K.M. Sajid M.R. Salahi S. Salahi S. Saleh M.A. Salehi M.A. Salomon J.A. Sanabria J. Sanjeev R.K. Sanmarchi F. Milicevic S.M.M. Sarasmita M.A. Sargazi S. Sathian B. Sathish T. Sawhney M. Schlaich M.P. Schmidt M.I. Schuermans A. Seidu A-A. Kumar S.N. Sepanlou S.G. Sethi Y. Seylani A. Shabany M. Shafaghat T. Shafeghat M. Shafie M. Shah N.S. Shahid S. Shaikh M.A. Shanawaz M. Shannawaz M. Sharfaei S. Shashamo B.B. Shiri R. Shittu A. Shivakumar K.M. Shivalli S. Shobeiri P. Shokri F. Shuval K. Sibhat M.M. Silva L.M.L.R. Simpson C.R. Singh J.A. Singh P. Singh S. Siraj M.S. Skryabina A.A. Sohag A.A.M. Soleimani H. Solikhah S. Zangbar S.M.S. Somayaji R. Sorensen R.J.D. Starodubova A.V. Sujata S. Suleman M. Sun J. Sundström J. Seisdedos T.R. Tabatabaei S.M. Tabatabaeizadeh S-A. Tabish M. Taheri M. Taheri E. Taki E. Tamuzi J.J.L.L. Tan K-K. Tat N.Y. Taye B.T. Temesgen W.A. Temsah M-H. Tesler R. Thangaraju P. Thankappan K.R. Thapa R. Tharwat S. Thomas N. Ticoalu J.H.V. Tiyuri A. Tonelli M. Palone T.M.R. Trico D. Trihandini I. Tripathy J.P. Tromans S.J. Tsegay G.M. Tualeka A.R. Tufa D.G. Tyrovolas S. Ullah S. Upadhyay E. Vahabi S.M. Vaithinathan A.G. Valizadeh R. Daalen v.K.R. Vart P. Varthya S.B. Vasankari T.J. Vaziri S. Verma M. Verras G-I. Vo D.C. Wagaye B. Waheed Y. Wang Z. Wang Y. Wang C. Wang F. Wassie G.T. Wei M.Y.W. Weldemariam A.H. Westerman R. Wickramasinghe N.D. Wu Y.F. Wulandari R.D.W.I. Xia J. Xiao H. Xu S. Xu X. Yada D.Y. Yang L. Yatsuya H. Yesiltepe M. Yi S. Yohannis H.K. Yonemoto N. You Y. Zaman S.B. Zamora N. Zare I. Zarea K. Zarrintan A. Zastrozhin M.S. Zeru N.G. Zhang Z-J. Zhong C. Zhou J. Zielińska M. Zikarg Y.T. Zodpey S. Zoladl M. Zou Z. Zumla A. Zuniga Y.M.H. Magliano D.J. Murray C.J.L. Hay S.I. Vos T. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the global burden of disease study 2021. Lancet 2023 402 10397 203 234 10.1016/S0140‑6736(23)01301‑6 37356446
    [Google Scholar]
  2. Classification and diagnosis of diabetes: Standards of medical care in diabetes—2021. Diabetes Care 2021 44 S1 S15 S33 10.2337/dc21‑S002 33298413
    [Google Scholar]
  3. Williams R. Karuranga S. Malanda B. Saeedi P. Basit A. Besançon S. Bommer C. Esteghamati A. Ogurtsova K. Zhang P. Colagiuri S. Global and regional estimates and projections of diabetes-related health expenditure: Results from the international diabetes federation diabetes atlas. Diab. Res. Clin. Pract. 2020 162 108072 10.1016/j.diabres.2020.108072
    [Google Scholar]
  4. Canpolat G.A. Şahin M. Glucose lowering treatment modalities of type 2 diabetes mellitus. Adv. Exp. Med. Biol. 2020 1307 7 27 10.1007/5584_2020_516 32200500
    [Google Scholar]
  5. Hu C. Jia W. Therapeutic medications against diabetes: What we have and what we expect. Adv. Drug Deliv. Rev. 2019 139 3 15 10.1016/j.addr.2018.11.008 30529309
    [Google Scholar]
  6. Hussain H. Abbas G. Green I.R. Ali I. Dipeptidyl peptidase IV inhibitors as a potential target for diabetes: Patent review (2015-2018). Expert Opin. Ther. Pat. 2019 29 7 535 553 10.1080/13543776.2019.1632290 31203700
    [Google Scholar]
  7. Suzuki R. Brown G.A. Christopher J.A. Scully C.C.G. Congreve M. Recent developments in therapeutic peptides for the glucagon-like peptide 1 and 2 receptors. J. Med. Chem. 2020 63 3 905 927 10.1021/acs.jmedchem.9b00835 31577440
    [Google Scholar]
  8. Jesus A.R. Viçosa V.D. Machuqueiro M. Marques A.P. Dore T.M. Rauter A.P. Targeting type 2 diabetes with C -glucosyl dihydrochalcones as selective sodium glucose co-transporter 2 (SGLT2) inhibitors: Synthesis and biological evaluation. J. Med. Chem. 2017 60 2 568 579 10.1021/acs.jmedchem.6b01134 28098449
    [Google Scholar]
  9. Lamos E.M. Hedrington M. Davis S.N. An update on the safety and efficacy of oral antidiabetic drugs: DPP-4 inhibitors and SGLT-2 inhibitors. Expert Opin. Drug Saf. 2019 18 8 691 701 10.1080/14740338.2019.1626823 31150300
    [Google Scholar]
  10. Consoli A. Formoso G. Baldassarre M.P.A. Febo F. A comparative safety review between GLP-1 receptor agonists and SGLT2 inhibitors for diabetes treatment. Expert Opin. Drug Saf. 2018 17 3 293 302 10.1080/14740338.2018.1428305 29334278
    [Google Scholar]
  11. Montes O.M.J. Gimeno A. Hernández T.S. Massagué C.A. Debón B.R. Valls C. Mulero M. Pujadas G. Vallvé G.S. Activity and selectivity cliffs for DPP‐IV inhibitors: Lessons we can learn from SAR studies and their application to virtual screening. Med. Res. Rev. 2018 38 6 1874 1915 10.1002/med.21499 29660786
    [Google Scholar]
  12. Deacon C.F. Dipeptidyl peptidase 4 inhibitors in the treatment of type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2020 16 11 642 653 10.1038/s41574‑020‑0399‑8 32929230
    [Google Scholar]
  13. Rasmussen H.B. Branner S. Wiberg F.C. Wagtmann N. Crystal structure of human dipeptidyl peptidase IV/CD26 in complex with a substrate analog. Nat. Struct. Biol. 2003 10 1 19 25 10.1038/nsb882 12483204
    [Google Scholar]
  14. Munir K.M. Lamos E.M. Diabetes type 2 management: What are the differences between DPP-4 inhibitors and how do you choose? Expert Opin. Pharmacother. 2017 18 9 839 841 10.1080/14656566.2017.1323878 28449622
    [Google Scholar]
  15. Scheen A.J. The safety of gliptins : Updated data in 2018. Expert Opin. Drug Saf. 2018 17 4 387 405 10.1080/14740338.2018.1444027 29468916
    [Google Scholar]
  16. Scirica B.M. Bhatt D.L. Braunwald E. Steg P.G. Davidson J. Hirshberg B. Ohman P. Frederich R. Wiviott S.D. Hoffman E.B. Cavender M.A. Udell J.A. Desai N.R. Mosenzon O. McGuire D.K. Ray K.K. Leiter L.A. Raz I. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N. Engl. J. Med. 2013 369 14 1317 1326 10.1056/NEJMoa1307684 23992601
    [Google Scholar]
  17. Burness C.B. Omarigliptin: First global approval. Drugs 2015 75 16 1947 1952 10.1007/s40265‑015‑0493‑8 26507988
    [Google Scholar]
  18. Kaku K. First novel once-weekly DPP-4 inhibitor, trelagliptin, for the treatment of type 2 diabetes mellitus. Expert Opin. Pharmacother. 2015 16 16 2539 2547 10.1517/14656566.2015.1099630 26523434
    [Google Scholar]
  19. Li Q. Meng L. Zhou S. Deng X. Wang N. Ji Y. Peng Y. Xing J. Yao G. Rapid generation of novel benzoic acid–based xanthine derivatives as highly potent, selective and long acting DPP-4 inhibitors: Scaffold-hopping and prodrug study. Eur. J. Med. Chem. 2019 180 509 523 10.1016/j.ejmech.2019.07.045 31336309
    [Google Scholar]
  20. Huang J. Deng X. Zhou S. Wang N. Qin Y. Meng L. Li G. Xiong Y. Fan Y. Guo L. Lan D. Xing J. Jiang W. Li Q. Identification of novel uracil derivatives incorporating benzoic acid moieties as highly potent dipeptidyl peptidase-IV inhibitors. Bioorg. Med. Chem. 2019 27 4 644 654 10.1016/j.bmc.2019.01.001 30642693
    [Google Scholar]
  21. Deng X. Han L. Zhou J. Zhang H. Li Q. Discovery of triazole-based uracil derivatives bearing amide moieties as novel dipeptidyl peptidase-IV inhibitors. Bioorg. Chem. 2017 75 357 367 10.1016/j.bioorg.2017.10.010 29096096
    [Google Scholar]
  22. Eckhardt M. Langkopf E. Mark M. Tadayyon M. Thomas L. Nar H. Pfrengle W. Guth B. Lotz R. Sieger P. Fuchs H. Himmelsbach F. 8-(3-(R)-aminopiperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methyl-quinazolin-2-ylmethyl)-3,7-dihydropurine-2,6-dione (BI 1356), a highly potent, selective, long-acting, and orally bioavailable DPP-4 inhibitor for the treatment of type 2 diabetes. J. Med. Chem. 2007 50 26 6450 6453 10.1021/jm701280z 18052023
    [Google Scholar]
  23. Nabeno M. Akahoshi F. Kishida H. Miyaguchi I. Tanaka Y. Ishii S. Kadowaki T. A comparative study of the binding modes of recently launched dipeptidyl peptidase IV inhibitors in the active site. Biochem. Biophys. Res. Commun. 2013 434 2 191 196 10.1016/j.bbrc.2013.03.010 23501107
    [Google Scholar]
  24. Li Q. Deng X. Jiang N. Meng L. Xing J. Jiang W. Xu Y. Identification and structure–activity relationship exploration of uracil-based benzoic acid and ester derivatives as novel dipeptidyl peptidase-4 inhibitors for the treatment of type 2 diabetes mellitus. Eur. J. Med. Chem. 2021 225 113765 10.1016/j.ejmech.2021.113765 34399391
    [Google Scholar]
  25. Chemdraw ultra 6.0 and chem3D ultra, cambridge soft corporation Cambridge, USA 2002
    [Google Scholar]
  26. Dragon software (version 1.11-2001) by Todeschini, R, Consonni, V, Milano, Italy. Available from: http://disat.unimib.it/chm/Dragon.htm 2001
  27. Golbraikh A. Tropsha A. Beware of q2! J. Mol. Graph. Model. 2002 20 4 269 276 10.1016/S1093‑3263(01)00123‑1 11858635
    [Google Scholar]
  28. Prabhakar Y.S. A combinatorial approach to the variable selection in multiple linear regression: Analysis of selwood et al. data set – A case study. QSAR Comb. Sci. 2003 22 6 583 595 10.1002/qsar.200330814
    [Google Scholar]
  29. Sharma B.K. Pilania P. Singh P. Prabhakar Y.S. Combinatorial protocol in multiple linear regression/partial least-squares directed rationale for the caspase-3 inhibition activity of isoquinoline-1,3,4-trione derivatives. SAR QSAR Environ. Res. 2010 21 1-2 169 185 10.1080/10629360903570545 20373219
    [Google Scholar]
  30. Sharma B.K. Singh P. Pilania P. Shekhawat M. Prabhakar Y.S. QSAR of 2-(4-methylsulphonylphenyl)pyrimidine derivatives as cyclooxygenase-2 inhibitors: Simple structural fragments as potential modulators of activity. J. Enzyme Inhib. Med. Chem. 2012 27 2 249 260 10.3109/14756366.2011.587414 21679051
    [Google Scholar]
  31. Singh P. A quantitative structure-activity relationship study of caffeic acid amides as selective inhibitors of matrix metalloproteinase. Int J Chem Pharm Sci. 2013 1 5 319 330
    [Google Scholar]
  32. Shekhawat N Singh P. Molecular descriptors in the rationale of α- and β- sulfone piperidine hydroxamate inhibitors of TACE and MMP. J Curr Chem Pharm Sic 2012 2 4 2012 316 333
    [Google Scholar]
  33. So S.S. Karplus M. Three-dimensional quantitative structure-activity relationships from molecular similarity matrices and genetic neural networks. 1. method and validations. J. Med. Chem. 1997 40 26 4347 4359 10.1021/jm970487v 9435904
    [Google Scholar]
  34. Prabhakar Y.S. Solomon V.R. Rawal R.K. Gupta M.K. Katti S.B. CP-MLR/PLS Directed structure-activity modeling of the HIV-1 RT inhibitory activity of 2,3-diary-l,3-thiazolidin-4-ones. QSAR Comb. Sci. 2004 23 4 234 244 10.1002/qsar.200330854
    [Google Scholar]
  35. Wold S. Cross-validatory estimation of the number of components in factor and principal components models. Technometrics 1978 20 4 397 405 10.1080/00401706.1978.10489693
    [Google Scholar]
  36. Kettaneh N. Berglund A. Wold S. PCA and PLS with very large data sets. Comput. Stat. Data Anal. 2005 48 1 69 85 10.1016/j.csda.2003.11.027
    [Google Scholar]
  37. Ståhle L. Wold S. 6 Multivariate data analysis and experimental design in biomedical research. Prog. Med. Chem. 1988 25 291 338 10.1016/S0079‑6468(08)70281‑9
    [Google Scholar]
  38. Gramatica P. Principles of QSAR models validation: Internal and external. QSAR Comb. Sci. 2007 26 5 694 701 10.1002/qsar.200610151
    [Google Scholar]
  39. Eriksson L. Jaworska J. Worth A.P. Cronin M.T.D. McDowell R.M. Gramatica P. Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environ. Health Perspect. 2003 111 10 1361 1375 10.1289/ehp.5758 12896860
    [Google Scholar]
  40. Morris G.M. Huey R. Lindstrom W. Sanner M.F. Belew R.K. Goodsell D.S. Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009 30 16 2785 2791 10.1002/jcc.21256 19399780
    [Google Scholar]
  41. Morris G.M. Goodsell D.S. Halliday R.S. Huey R. Hart W.E. Belew R.K. Olson A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1998 19 14 1639 1662 10.1002/(SICI)1096‑987X(19981115)19:14<1639::AID‑JCC10>3.0.CO;2‑B
    [Google Scholar]
  42. Systèmes D.B.I.O.V.I.A. Discovery studio modeling environment, release 2017. San Diego Dassault Systèmes 2016
    [Google Scholar]
  43. Sharma S. Sharma B.K. Jain S. Gulyani P. A combined QSAR and molecular docking approach for identifying pyrimidine derivatives as penicillin binding protein inhibitors. Lett. Drug Des. Discov. 2022 19 12 1121 1135 10.2174/1570180819666220427101322
    [Google Scholar]
  44. Jain S Sharma S Sen DJ An in silico study of imidazo [1, 2-a] pyridine derivatives with homology modelled F1F0 ATP synthase against mycobacterium tuberculosis. Anti-Inf. Agents 2022 205 81 100 10.2174/2211352520666220414094155
    [Google Scholar]
  45. Daina A. Michielin O. Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017 7 1 42717 10.1038/srep42717 28256516
    [Google Scholar]
  46. Lee S.K. Kang Y. Chang G.S. Lee I.H. Park S.H. Bioinformatics and molecular design research center. Seoul Yonsei University 2017
    [Google Scholar]
  47. Yang H. Lou C. Sun L. Li J. Cai Y. Wang Z. Li W. Liu G. Tang Y. AdmetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics 2019 35 6 1067 1069 10.1093/bioinformatics/bty707 30165565
    [Google Scholar]
  48. Amin S. Adhikari N. Agrawal R. Jha T. Gayen S. Possible binding mode analysis of pyrazolo-triazole hybrids as potential anticancer agents through validated molecular docking and 3D-QSAR modeling approaches. Lett. Drug Des. Discov. 2017 14 5 515 527 10.2174/1570180813666160916153017
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128331664250206113701
Loading
/content/journals/cpd/10.2174/0113816128331664250206113701
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test