Skip to content
2000
image of Crippled Hepatocarcinogenesis Inhibition of Quercetin in Glycolysis Pathway with Hepatic Farnesoid X Receptor Deficiency

Abstract

Aim

Quercetin, a bioactive flavonoid extracted from traditional Chinese medicine, has anti-hepatocellular carcinoma effects. Farnesoid X receptor (FXR), a nuclear receptor highly expressed in the liver, plays important roles in maintaining hepatic glucose homeostasis, anti-inflammation, liver regeneration, and anti-cancer properties. Whether quercetin regulates the glycolysis/glycolysis pathway through FXR signaling remains unknown.

Methods

KEGG Enrichment, GO Enrichment, Protein-Protein Interaction (PPI) Network, Molecular Docking, and RNA-Seq Analysis (Swiss Target Prediction, GeneCard databases, Kaplan-Meier Plotter, ). Cell activity, cell proliferation, and cell cycles were separately analyzed by CCK-8 assay, clone formation assay, and flow cytometry. QRT-PCR determined the mRNA levels of related genes in response to quercetin. HPLC-MS/MSHPLC-MS/MS determined the metabolite profiles. FXR deficiency Hep3B cells were used for discriminating the quercetin’s effects with or without FXR.

Results

Quercetin-related genes were significantly correlated with FXR in hepatocarcinogenesis, especially in glycolysis. The top 30 related genes between FXR, quercetin, and glycolysis were enriched and chosen to further study. Furthermore, the strongest binding energy determined by the molecular docking model of between quercetin and FXR was -6.55 kcal/mol. Quercetin inhibited cell proliferation by the accumulation of Hep3B cells in the S-phase. The differential expressed genes (C-MYC, PCNA, CYCLIN-D1, and P21) associated with glycolysis were observed. Furthermore, quercetin also inhibited the expression of HK2, GAPDH, and LDHA. Meanwhile, the levels of glycolysis/gluconeogenesis-related metabolites were regulated by quercetin.

Conclusion

Quercetin makes an essential anti-HCC effect by crippling the glycolysis/gluconeogenesis process FXR signaling.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128342642250111055339
2025-02-04
2025-03-30
Loading full text...

Full text loading...

References

  1. Rumgay H. Arnold M. Ferlay J. Lesi O. Cabasag C.J. Vignat J. Laversanne M. McGlynn K.A. Soerjomataram I. Global burden of primary liver cancer in 2020 and predictions to 2040. J. Hepatol. 2022 77 6 1598 1606 10.1016/j.jhep.2022.08.021 36208844
    [Google Scholar]
  2. Llovet J.M. Kelley R.K. Villanueva A. Singal A.G. Pikarsky E. Roayaie S. Lencioni R. Koike K. Rossi Z.J. Finn R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Primers 2021 7 1 6 10.1038/s41572‑020‑00240‑3 33479224
    [Google Scholar]
  3. Singal A.G. Kanwal F. Llovet J.M. Global trends in hepatocellular carcinoma epidemiology: Implications for screening, prevention and therapy. Nat. Rev. Clin. Oncol. 2023 20 12 864 884 10.1038/s41571‑023‑00825‑3 37884736
    [Google Scholar]
  4. Gonzalez F.J. Jiang C. Patterson A.D. An intestinal microbiota–farnesoid x receptor axis modulates metabolic disease. Gastroenterology 2016 151 5 845 859 10.1053/j.gastro.2016.08.057 27639801
    [Google Scholar]
  5. Tschuck J. Theilacker L. Rothenaigner I. Weiß S.A.I. Akdogan B. Lam V.T. Müller C. Graf R. Brandner S. Pütz C. Rieder T. Kopplin S.P. Vincendeau M. Zischka H. Schorpp K. Hadian K. Farnesoid X receptor activation by bile acids suppresses lipid peroxidation and ferroptosis. Nat. Commun. 2023 14 1 6908 10.1038/s41467‑023‑42702‑8 37903763
    [Google Scholar]
  6. Sun L. Cai J. Gonzalez F.J. The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer. Nat. Rev. Gastroenterol. Hepatol. 2021 18 5 335 347 10.1038/s41575‑020‑00404‑2 33568795
    [Google Scholar]
  7. Ding L. Yang L. Wang Z. Huang W. Bile acid nuclear receptor FXR and digestive system diseases. Acta Pharm. Sin. B 2015 5 2 135 144 10.1016/j.apsb.2015.01.004 26579439
    [Google Scholar]
  8. Inagaki T. Choi M. Moschetta A. Peng L. Cummins C.L. McDonald J.G. Luo G. Jones S.A. Goodwin B. Richardson J.A. Gerard R.D. Repa J.J. Mangelsdorf D.J. Kliewer S.A. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2005 2 4 217 225 10.1016/j.cmet.2005.09.001 16213224
    [Google Scholar]
  9. Xu J. Li Y. Chen W.D. Xu Y. Yin L. Ge X. Jadhav K. Adorini L. Zhang Y. Hepatic carboxylesterase 1 is essential for both normal and farnesoid X receptor-controlled lipid homeostasis. Hepatology 2014 59 5 1761 1771 10.1002/hep.26714 24038130
    [Google Scholar]
  10. Stayrook K.R. Bramlett K.S. Savkur R.S. Ficorilli J. Cook T. Christe M.E. Michael L.F. Burris T.P. Regulation of carbohydrate metabolism by the farnesoid X receptor. Endocrinology 2005 146 3 984 991 10.1210/en.2004‑0965 15564327
    [Google Scholar]
  11. Wang Y.D. Chen W.D. Moore D.D. Huang W. FXR: A metabolic regulator and cell protector. Cell Res. 2008 18 11 1087 1095 10.1038/cr.2008.289 18825165
    [Google Scholar]
  12. Yang F. Huang X. Yi T. Yen Y. Moore D.D. Huang W. Spontaneous development of liver tumors in the absence of the bile acid receptor farnesoid X receptor. Cancer Res. 2007 67 3 863 867 10.1158/0008‑5472.CAN‑06‑1078 17283114
    [Google Scholar]
  13. Niu Y. Xie W. Qin W. Molecular mechanism for the involvement of nuclear receptor FXR in HBV-associated hepatocellular carcinoma. Acta Pharm. Sin. B 2011 1 2 73 79 10.1016/j.apsb.2011.06.001
    [Google Scholar]
  14. Guo J. Zhu Y. Ma X. Shang G. Liu B. Zhang K. Virus infection and mRNA nuclear export. Int. J. Mol. Sci. 2023 24 16 12593 10.3390/ijms241612593 37628773
    [Google Scholar]
  15. Singh P. Arif Y. Bajguz A. Hayat S. The role of quercetin in plants. Plant Physiol. Biochem. 2021 166 10 19 10.1016/j.plaphy.2021.05.023 34087741
    [Google Scholar]
  16. Reis H.M. Neto A.C. Neves D. Impact of curcumin, quercetin, or resveratrol on the pathophysiology of endometriosis: A systematic review. Phytother. Res. 2022 36 6 2416 2433 10.1002/ptr.7464 35583746
    [Google Scholar]
  17. Han J. Meng J. Chen S. Wang X. Yin S. Zhang Q. Liu H. Qin R. Li Z. Zhong W. Zhang C. Zhang H. Tang Y. Lin T. Gao W. Zhang X. Yang L. Liu Y. Zhou H. Sun T. Yang C. YY1 complex promotes quaking expression via super-enhancer binding during emt of hepatocellular carcinoma. Cancer Res. 2019 79 7 1451 1464 10.1158/0008‑5472.CAN‑18‑2238 30760518
    [Google Scholar]
  18. Wu H. Pan L. Gao C. Xu H. Li Y. Zhang L. Ma L. Meng L. Sun X. Qin H. Quercetin inhibits the proliferation of glycolysis-addicted HCC cells by reducing hexokinase 2 and Akt-mTOR Pathway. Molecules 2019 24 10 1993 10.3390/molecules24101993 31137633
    [Google Scholar]
  19. Nie H. Deng Y. Zheng C. Pan M. Xie J. Zhang Y. Yang Q. A network pharmacology‐based approach to explore the effects of Chaihu Shugan powder on a non‐alcoholic fatty liver rat model through nuclear receptors. J. Cell. Mol. Med. 2020 24 9 5168 5184 10.1111/jcmm.15166 32189432
    [Google Scholar]
  20. Chen X. Wang Y. Wan J. Dou X. Zhang C. Sun M. Ye F. Quercetin alleviates liver fibrosis via regulating glycolysis of liver sinusoidal endothelial cells and neutrophil infiltration. Bio. Bio. 2024 24 6 1806 1815 10.17305/bb.2024.10530 38943679
    [Google Scholar]
  21. Palanca F.P. Fondevila F. Blanco M.C. Tuñón M.J. Gallego G.J. Mauriz J.L. Antitumor effects of quercetin in hepatocarcinoma in vitro and in vivo models: A systematic review. Nutrients 2019 11 12 2875 10.3390/nu11122875 31775362
    [Google Scholar]
  22. Shrestha R. Mohankumar K. Martin G. Hailemariam A. Lee S. Jin U. Burghardt R. Safe S. Flavonoids kaempferol and quercetin are nuclear receptor 4A1 (NR4A1, Nur77) ligands and inhibit rhabdomyosarcoma cell and tumor growth. J. Exp. Clin. Cancer Res. 2021 40 1 392 10.1186/s13046‑021‑02199‑9 34906197
    [Google Scholar]
  23. Wu D.N. Guan L. Jiang Y.X. Ma S.H. Sun Y.N. Lei H.T. Yang W.F. Wang Q.F. Microbiome and metabonomics study of quercetin for the treatment of atherosclerosis. Cardiovasc. Diagn. Ther. 2019 9 6 545 560 10.21037/cdt.2019.12.04 32038944
    [Google Scholar]
  24. Wu X. Ni Z. Song T. Lv W. Chen Y. Huang D. Xie Y. Huang W. Niu Y. C-Terminal truncated hbx facilitates oncogenesis by modulating cell cycle and glucose metabolism in fxr-deficient hepatocellular carcinoma. Int. J. Mol. Sci. 2023 24 6 5174 10.3390/ijms24065174 36982249
    [Google Scholar]
  25. Nakamura M.T. Yudell B.E. Loor J.J. Regulation of energy metabolism by long-chain fatty acids. Prog. Lipid Res. 2014 53 124 144 10.1016/j.plipres.2013.12.001 24362249
    [Google Scholar]
  26. Niu Y. Xu M. Slagle B.L. Huang H. Li S. Guo G.L. Shi G. Qin W. Xie W. Farnesoid X receptor ablation sensitizes mice to hepatitis b virus X protein–induced hepatocarcinogenesis. Hepatology 2017 65 3 893 906 10.1002/hep.28924 28102638
    [Google Scholar]
  27. Khan H. Ni Z. Feng H. Xing Y. Wu X. Huang D. Chen L. Niu Y. Shi G. Combination of curcumin with N-n-butyl haloperidol iodide inhibits hepatocellular carcinoma malignant proliferation by downregulating enhancer of zeste homolog 2 (EZH2) - lncRNA H19 to silence Wnt/β-catenin signaling. Phytomedicine 2021 91 153706 10.1016/j.phymed.2021.153706 34517264
    [Google Scholar]
  28. Niu Y. Chen L. Wu M. Huang W. Wu X. Huang D. Xie Y. Shi G. Partial abrogation of FXR-KNG1 signaling by carboxyl-terminal truncated HBx-C30 in hepatitis B virus-associated hepatocellular carcinoma. Virus Res. 2021 293 198264 10.1016/j.virusres.2020.198264 33359549
    [Google Scholar]
  29. Caillot M. Bourgeais J. Dakik H. Costé É. Mazure N.M. Lelièvre É. Coqueret O. Hérault O. Mazurier F. Sola B. Cyclin D1 targets hexokinase 2 to control aerobic glycolysis in myeloma cells. Oncogenesis 2020 9 7 68 10.1038/s41389‑020‑00253‑3 32709889
    [Google Scholar]
  30. Jin X. Kuang Y. Li L. Li H. Zhao T. He Y. Di C. Kang J. Yuan L. Yu B. Li Q. A positive feedback circuit comprising p21 and HIF‐1α aggravates hypoxia‐induced radioresistance of glioblastoma by promoting Glut1/LDHA‐mediated glycolysis. FASEB J. 2022 36 3 e22229 10.1096/fj.202101736R 35199870
    [Google Scholar]
  31. Foerster F. Gairing S.J. Müller L. Galle P.R. NAFLD-driven HCC: Safety and efficacy of current and emerging treatment options. J. Hepatol. 2022 76 2 446 457 10.1016/j.jhep.2021.09.007 34555422
    [Google Scholar]
  32. Yang C. Zhang H. Zhang L. Zhu A.X. Bernards R. Qin W. Wang C. Evolving therapeutic landscape of advanced hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 2023 20 4 203 222 10.1038/s41575‑022‑00704‑9 36369487
    [Google Scholar]
  33. Huang A. Yang X.R. Chung W.Y. Dennison A.R. Zhou J. Targeted therapy for hepatocellular carcinoma. Signal Transduct. Target. Ther. 2020 5 1 146 10.1038/s41392‑020‑00264‑x 32782275
    [Google Scholar]
  34. Tang K. Du S. Wang Q. Zhang Y. Song H. Traditional Chinese medicine targeting cancer stem cells as an alternative treatment for hepatocellular carcinoma. J. Integr. Med. 2020 18 3 196 202 10.1016/j.joim.2020.02.002 32067923
    [Google Scholar]
  35. Lotfi N. Yousefi Z. Golabi M. Khalilian P. Ghezelbash B. Montazeri M. Shams M.H. Baghbadorani P.Z. Eskandari N. The potential anti-cancer effects of quercetin on blood, prostate and lung cancers: An update. Front. Immunol. 2023 14 1077531 10.3389/fimmu.2023.1077531 36926328
    [Google Scholar]
  36. Khan F. Niaz K. Maqbool F. Hassan I.F. Abdollahi M. Venkata N.K. Nabavi S. Bishayee A. Molecular targets underlying the anticancer effects of quercetin: An update. Nutrients 2016 8 9 529 10.3390/nu8090529 27589790
    [Google Scholar]
  37. Huang X. Wang B. Chen R. Zhong S. Gao F. Zhang Y. Niu Y. Li C. Shi G. The nuclear farnesoid x receptor reduces p53 ubiquitination and inhibits cervical cancer cell proliferation. Front. Cell Dev. Biol. 2021 9 583146 10.3389/fcell.2021.583146 33889569
    [Google Scholar]
  38. Ma W. Liu M. Liang F. Zhao L. Gao C. Jiang X. Zhang X. Zhan H. Hu H. Zhao Z. Cardiotoxicity of sorafenib is mediated through elevation of ROS level and CaMKII activity and dysregulation of calcium homoeostasis. Basic Clin. Pharmacol. Toxicol. 2020 126 2 166 180 10.1111/bcpt.13318 31483925
    [Google Scholar]
  39. Zhang H. Zhang W. Jiang L. Chen Y. Recent advances in systemic therapy for hepatocellular carcinoma. Biomark. Res. 2022 10 1 3 10.1186/s40364‑021‑00350‑4 35000616
    [Google Scholar]
  40. Tesori V. Piscaglia A.C. Samengo D. Barba M. Bernardini C. Scatena R. Pontoglio A. Castellini L. Spelbrink J.N. Maulucci G. Puglisi M.A. Pani G. Gasbarrini A. The multikinase inhibitor Sorafenib enhances glycolysis and synergizes with glycolysis blockade for cancer cell killing. Sci. Rep. 2015 5 1 9149 10.1038/srep09149 25779766
    [Google Scholar]
  41. Yan X. Tian R. Sun J. Zhao Y. Liu B. Su J. Li M. Sun W. Xu X. Sorafenib-induced autophagy promotes glycolysis by upregulating the p62/HDAC6/HSP90 axis in hepatocellular carcinoma cells. Front. Pharmacol. 2022 12 788667 10.3389/fphar.2021.788667 35250553
    [Google Scholar]
  42. Yuan S. Wei C. Liu G. Zhang L. Li J. Li L. Cai S. Fang L. Sorafenib attenuates liver fibrosis by triggering hepatic stellate cell ferroptosis via HIF‐1α/SLC7A11 pathway. Cell Prolif. 2022 55 1 e13158 10.1111/cpr.13158 34811833
    [Google Scholar]
  43. Abdu S. Juaid N. Amin A. Moulay M. Miled N. Effects of sorafenib and quercetin alone or in combination in treating hepatocellular carcinoma: In vitro and in vivo approaches. Molecules. 2022 27 22 0
    [Google Scholar]
  44. Zhang Z. Wu H. Zhang Y. Shen C. Zhou F. Dietary antioxidant quercetin overcomes the acquired resistance of sorafenib in sorafenib-resistant hepatocellular carcinoma cells through epidermal growth factor receptor signaling inactivation. Naunyn. Schmiedebergs. Arch. Pharmacol. 2024 397 1 559 574 10.1007/s00210‑023‑02605‑3 37490119
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128342642250111055339
Loading
/content/journals/cpd/10.2174/0113816128342642250111055339
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: HPLC-MS/MS ; Quercetin ; glycolysis ; hepatocarcinogenesis ; Farnesoid X receptor ; HCC
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test