Skip to content
2000
Volume 30, Issue 32
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Psoriasis (Pso) is an autoimmune inflammatory skin disease characterized by red plaques covered in silver scales. The existing treatments provide limited benefits and are associated with certain drawbacks which limit their use. Thus, there is a need to explore more options that are highly target-specific and associated with minimal side effects. Researchers have thoroughly investigated the use of herbal drugs for their therapeutic potential. Preclinical studies demonstrate that phytochemicals such as curcumin, psoralen, and dithranol have antipsoriatic effects. These phytoconstituents inhibit the signalling pathways, such as the interleukin (IL) 23/Th17 axis and IL-36 inflammatory loop involved in the pathogenesis of Pso. These phytoconstituents down-regulate the pro-inflammatory cytokines like IL-17 and tumor necrosis factor (TNF)-α. However, their application in clinical settings is limited due to poor bioavailability and access to target sites. Combining phytoconstituents with modern delivery platforms like nanocarriers can address these shortcomings and improve therapeutic efficacy. This review explores the potential of herbal remedies as a substitute for conventional therapies, emphasizing the clinical trials conducted with these herbal medicines. The paper is supported by the discussion on nanocarriers like liposomes, niosomes, emulsomes, ethosomes, nanostructured lipid carriers, nanoemulsions, and dendrimers that are used to deliver herbal medicines.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128330298240708110336
2024-07-24
2025-01-17
Loading full text...

Full text loading...

References

  1. RendonA. SchäkelK. Psoriasis pathogenesis and treatment.Int. J. Mol. Sci.2019206147510.3390/ijms2006147530909615
    [Google Scholar]
  2. GenoveseG. MoltrasioC. CassanoN. MaroneseC.A. VenaG.A. MarzanoA.V. Pustular psoriasis: From pathophysiology to treatment.Biomedicines2021912174610.3390/biomedicines912174634944562
    [Google Scholar]
  3. RahmanM. AkhterS. AhmadJ. AhmadM.Z. BegS. AhmadF.J. Nanomedicine-based drug targeting for psoriasis: Potentials and emerging trends in nanoscale pharmacotherapy.Expert Opin. Drug Deliv.201512463565210.1517/17425247.2015.98208825439967
    [Google Scholar]
  4. SewerinP. BrinksR. SchneiderM. HaaseI. VordenbäumenS. Prevalence and incidence of psoriasis and psoriatic arthritis.Ann. Rheum. Dis.201978228628710.1136/annrheumdis‑2018‑21406530242033
    [Google Scholar]
  5. Fernández-ArmenterosJ.M. Gómez-ArbonésX. Buti-SoléM. Betriu-BarsA. Sanmartin-NovellV. Ortega-BravoM. Martínez-AlonsoM. Casanova-SeumaJ.M. Epidemiology of psoriasis. A population-based study.Actas Dermosifiliogr.2019110538539210.1016/j.ad.2018.10.01530587329
    [Google Scholar]
  6. NaikP.P. Clinical descriptive study of psoriasis in India: Triggers, morbidities and coincidences.Dermatol – Open J20216181410.17140/DRMTOJ‑6‑144
    [Google Scholar]
  7. RahmanM. AlamK. AhmadM.Z. GuptaG. AfzalM. AkhterS. KazmiI. JyotiF.J. AhmadF.J. AnwarF. Classical to current approach for treatment of psoriasis: A review.Endocr. Metab. Immune Disord. Drug Targets201212328730210.2174/18715301280200290122463723
    [Google Scholar]
  8. PurewalJ.S. DoshiG.M. Deciphering the function of new therapeutic targets and prospective biomarkers in the management of psoriasis.Curr. Drug Targets202324161224123810.2174/011389450127765623112806024238037998
    [Google Scholar]
  9. HuangT.H. LinC.F. AlalaiweA. YangS.C. FangJ.Y. Apoptotic or antiproliferative activity of natural products against keratinocytes for the treatment of psoriasis.Int. J. Mol. Sci.20192010255810.3390/ijms2010255831137673
    [Google Scholar]
  10. AbdelgawadR. NasrM. MoftahN.H. HamzaM.Y. Phospholipid membrane tubulation using ceramide doping “Cerosomes”: Characterization and clinical application in psoriasis treatment.Eur. J. Pharm. Sci.201710125826810.1016/j.ejps.2017.02.03028232140
    [Google Scholar]
  11. ÖztürkA.A. KıyanH.T. Treatment of oxidative stress-induced pain and inflammation with dexketoprofen trometamol loaded different molecular weight chitosan nanoparticles: Formulation, characterization and anti-inflammatory activity by using in vivo HET-CAM assay.Microvasc. Res.202012810396110.1016/j.mvr.2019.10396131758946
    [Google Scholar]
  12. GowdaB.H.J. MohantoS. SinghA. BhuniaA. AbdelgawadM.A. GhoshS. AnsariM.J. PramanikS. Nanoparticle-based therapeutic approaches for wound healing: A review of the state-of-the-art.Mater. Today Chem.20232710131910.1016/j.mtchem.2022.101319
    [Google Scholar]
  13. NarayanaS. NasrineA. Gulzar AhmedM. SultanaR. Jaswanth GowdaB.H. SuryaS. AlmuqbilM. AsdaqS.M.B. AlshehriS. Arif HussainS. Potential benefits of using chitosan and silk fibroin topical hydrogel for managing wound healing and coagulation.Saudi Pharm. J.202331346247110.1016/j.jsps.2023.01.01337026047
    [Google Scholar]
  14. DamiriF. GowdaB.H.J. AndraS. BaluS. RojekarS. BerradaM. Chitosan nanocomposites as scaffolds for bone tissue regeneration. Chitosan NanocompositesChamSpringer202310.1007/978‑981‑19‑9646‑7_16
    [Google Scholar]
  15. NagS. MitraO. SankarganeshP BhattacharjeeA. MohantoS. GowdaB.H.J. KarS. RamaiahS. AnbarasuA. AhmedM.G. Exploring the emerging trends in the synthesis and theranostic paradigms of cerium oxide nanoparticles (CeONPs): A comprehensive review.Mater. Today Chem.20243510189410.1016/j.mtchem.2023.101894
    [Google Scholar]
  16. NarayanaS. AhmedM.G. GowdaB.H.J. ShettyP.K. NasrineA. ThriveniM. NoushidaN. SanjanaA. Recent advances in ocular drug delivery systems and targeting VEGF receptors for management of ocular angiogenesis: A comprehensive review.Fut J Pharmaceut Sci2021718610.1186/s43094‑021‑00331‑2
    [Google Scholar]
  17. SanjanaA. AhmedM.G. Gowda BHJ. Development and evaluation of dexamethasone loaded cubosomes for the treatment of vitiligo.Mater. Today Proc.20225019720510.1016/j.matpr.2021.04.120
    [Google Scholar]
  18. HaniU. GowdaB.H.J. HaiderN. RameshK.V.R.N.S. PaulK. AshiqueS. AhmedM.G. NarayanaS. MohantoS. KesharwaniP. Nanoparticle-based approaches for treatment of hematological malignancies: A comprehensive review.AAPS PharmSciTech202324823310.1208/s12249‑023‑02670‑037973643
    [Google Scholar]
  19. BanazadehM. BehnamB. GanjooeiN.A. GowdaB.H.J. KesharwaniP. SahebkarA. Curcumin-based nanomedicines: A promising avenue for brain neoplasm therapy.J. Drug Deliv. Sci. Technol.20238910504010.1016/j.jddst.2023.105040
    [Google Scholar]
  20. GowdaB.H.J. AhmedM.G. AlshehriS.A. WahabS. VoraL.K. Singh ThakurR.R. KesharwaniP. The cubosome-based nanoplatforms in cancer therapy: Seeking new paradigms for cancer theranostics.Environ. Res.2023237Pt 111689410.1016/j.envres.2023.11689437586450
    [Google Scholar]
  21. NagS. MitraO. TripathiG. AdurI. MohantoS. NamaM. SamantaS. GowdaB.H.J. SubramaniyanV. SundararajanV. KumarasamyV. Nanomaterials-assisted photothermal therapy for breast cancer: State-of-the-art advances and future perspectives.Photodiagn. Photodyn. Ther.20244510395910.1016/j.pdpdt.2023.10395938228257
    [Google Scholar]
  22. KhanM.S. Jaswanth GowdaB.H. AlmalkiW.H. SinghT. SahebkarA. KesharwaniP. Unravelling the potential of mitochondria-targeted liposomes for enhanced cancer treatment.Drug Discov. Today202429110381910.1016/j.drudis.2023.10381937940034
    [Google Scholar]
  23. Sameer KhanM. Jaswanth GowdaB.H. HasanN. GuptaG. SinghT. MdS. KesharwaniP. Carbon nanotube-mediated platinum-based drug delivery for the treatment of cancer: Advancements and future perspectives.Eur. Polym. J.202420611280010.1016/j.eurpolymj.2024.112800
    [Google Scholar]
  24. HaniU. OsmaniR.A.M. YasminS. GowdaB.H.J. AtherH. AnsariM.Y. SiddiquaA. GhazwaniM. Al FateaseA. AlamriA.H. RahamathullaM. BegumM.Y. WahabS. Novel drug delivery systems as an emerging platform for stomach cancer therapy.Pharmaceutics2022148157610.3390/pharmaceutics14081576
    [Google Scholar]
  25. ArmstrongA.W. ReadC. Pathophysiology, clinical presentation, and treatment of psoriasis.JAMA2020323191945196010.1001/jama.2020.400632427307
    [Google Scholar]
  26. FinlayA.Y. OrtonneJ.P. Patient satisfaction with psoriasis therapies: An update and introduction to biologic therapy.J. Cutan. Med. Surg.20048531032010.1177/12034754040080050215868312
    [Google Scholar]
  27. DvorakovaV. MarkhamT. Psoriasis: Current treatment options and recent advances.Prescriber20132410132010.1002/psb.1059
    [Google Scholar]
  28. BakshiH. NagpalM. SinghM. DhingraG.A. AggarwalG. Treatment of psoriasis: A comprehensive review of entire therapies.Curr. Drug Saf.20201528210410.2174/22123911MTAziOTU8431994468
    [Google Scholar]
  29. FouéréS. AdjadjL. PawinH. How patients experience psoriasis: Results from a European survey.J. Eur. Acad. Dermatol. Venereol.200519s3Suppl. 32610.1111/j.1468‑3083.2005.01329.x16274404
    [Google Scholar]
  30. KalbR.E. StroberB. WeinsteinG. LebwohlM. Methotrexate and psoriasis: 2009 National Psoriasis Foundation Consensus Conference.J. Am. Acad. Dermatol.200960582483710.1016/j.jaad.2008.11.90619389524
    [Google Scholar]
  31. PappK. ReichK. LeonardiC.L. KircikL. ChimentiS. LangleyR.G.B. HuC. StevensR.M. DayR.M. GordonK.B. KormanN.J. GriffithsC.E.M. Apremilast, an oral phosphodiesterase 4 (PDE4) inhibitor, in patients with moderate to severe plaque psoriasis: Results of a phase III, randomized, controlled trial (Efficacy and Safety Trial Evaluating the Effects of Apremilast in Psoriasis [ESTEEM] 1).J. Am. Acad. Dermatol.2015731374910.1016/j.jaad.2015.03.04926089047
    [Google Scholar]
  32. PedrazJ. DaudénE. Delgado-JiménezY. García-RíoI. García-DíezA. Sequential study on the treatment of moderate-to-severe chronic plaque psoriasis with mycophenolate mofetil and cyclosporin.J. Eur. Acad. Dermatol. Venereol.200620670270610.1111/j.1468‑3083.2006.01577.x16836499
    [Google Scholar]
  33. BalakD.M. Fumaric acid esters in the management of psoriasis.Psoriasis2015592310.2147/PTT.S5149029387578
    [Google Scholar]
  34. HoffmanM.B. HillD. FeldmanS.R. Current challenges and emerging drug delivery strategies for the treatment of psoriasis.Expert Opin. Drug Deliv.201613101461147310.1080/17425247.2016.118880127164301
    [Google Scholar]
  35. FarokhzadO.C. LangerR. Impact of nanotechnology on drug delivery.ACS Nano200931162010.1021/nn900002m19206243
    [Google Scholar]
  36. AbrahamN. KrishnanN. RajA. Management of psoriasis-ayurveda and allopathy-A review.Int J Dermatol Clin Res20195101802310.17352/2455‑8605.000033
    [Google Scholar]
  37. VermaS. SinghS. Current and future status of herbal medicines.Vet. World20082234735010.5455/vetworld.2008.347‑350
    [Google Scholar]
  38. Rout SK, Tripathy BC, Kar BR. Natural green alternatives to psoriasis treatment-A review. Global J Pharm Pharm Sci 2017; 4(1): 001-7.10.19080/GJPPS.2017.04.555631
  39. AhmadS. ParveenA. ParveenB. ParveenR. Challenges and guidelines for clinical trial of herbal drugs.J. Pharm. Bioallied Sci.20157432933310.4103/0975‑7406.16803526681895
    [Google Scholar]
  40. LiuM. DaiY. LiY. LuoY. HuangF. GongZ. MengQ. Madecassoside isolated from Centella asiatica herbs facilitates burn wound healing in mice.Planta Med.200874880981510.1055/s‑2008‑107453318484522
    [Google Scholar]
  41. VishnupriyaP. PadmaV. A review on the antioxidant and therapeutic potential of Bacopa monnieri.React. Oxyg. Species2017311112010.20455/ros.2017.817
    [Google Scholar]
  42. SehgalV.N. VermaP. KhuranaA. Anthralin/dithranol in dermatology.Int. J. Dermatol.20145310e449e46010.1111/j.1365‑4632.2012.05611.x25208745
    [Google Scholar]
  43. Aghmiuni AI, Khiavi AA. Medicinal plants to calm and treat psoriasis disease. Aromatic and Medicinal Plants - Back to Nature. London: IntechOpen 2017.10.5772/67062
  44. SanatiS. RazaviB.M. HosseinzadehH. A review of the effects of Capsicum annuum L. and its constituent, capsaicin, in metabolic syndrome.Iran. J. Basic Med. Sci.201821543944810.22038/IJBMS.2018.25200.623829922422
    [Google Scholar]
  45. BarreaL. SavanelliM.C. Di SommaC. NapolitanoM. MegnaM. ColaoA. SavastanoS. Vitamin D and its role in psoriasis: An overview of the dermatologist and nutritionist.Rev. Endocr. Metab. Disord.201718219520510.1007/s11154‑017‑9411‑628176237
    [Google Scholar]
  46. FuloriaS. MehtaJ. ChandelA. SekarM. RaniN.N.I.M. BegumM.Y. SubramaniyanV. ChidambaramK. ThangaveluL. NordinR. WuY.S. SathasivamK.V. LumP.T. MeenakshiD.U. KumarasamyV. AzadA.K. FuloriaN.K. A comprehensive review on the therapeutic potential of Curcuma longa Linn. in relation to its major active constituent curcumin.Front. Pharmacol.20221382080610.3389/fphar.2022.82080635401176
    [Google Scholar]
  47. KueteV. Health effects of alkaloids from African medicinal plants. Toxicological Survey of African Medicinal Plants.1st edAmsterdamElsevier201410.1016/B978‑0‑12‑800018‑2.00021‑2
    [Google Scholar]
  48. YuanX. LiN. ZhangM. LuC. DuZ. ZhuW. WuD. Taxifolin attenuates IMQ-induced murine psoriasis-like dermatitis by regulating T helper cell responses via Notch1 and JAK2/STAT3 signal pathways.Biomed. Pharmacother.202012310974710.1016/j.biopha.2019.10974731881484
    [Google Scholar]
  49. IriventiP. GuptaN.V. Nanotechnology in management of psoriasis: A focus on herbal therapy.Indo Am. J. Pharm. Res.201720177
    [Google Scholar]
  50. ErnstE. Complementary and alternative medicine in rheumatology.Best Pract. Res. Clin. Rheumatol.200014473174910.1053/berh.2000.011011092799
    [Google Scholar]
  51. KoychevaI.K. MihaylovaL.V. TodorovaM.N. Balcheva-SivenovaZ.P. AlipievaK. FerranteC. OrlandoG. GeorgievM.I. Leucosceptoside a from devil’s claw modulates psoriasis-like inflammation via suppression of the pi3k/akt signaling pathway in keratinocytes.Molecules20212622701410.3390/molecules2622701434834106
    [Google Scholar]
  52. LiuC. ChenY. LuC. ChenH. DengJ. YanY. XuY.Y. LiuH. HuangH. WeiJ. HanL. DaiZ. Betulinic acid suppresses Th17 response and ameliorates psoriasis-like murine skin inflammation.Int. Immunopharmacol.20197334335210.1016/j.intimp.2019.05.03031129421
    [Google Scholar]
  53. LiX. XieX. ZhangL. MengY. LiN. WangM. ZhaiC. LiuZ. DiT. ZhangL. LiP. Hesperidin inhibits keratinocyte proliferation and imiquimod-induced psoriasis-like dermatitis via the IRS-1/ERK1/2 pathway.Life Sci.201921931132110.1016/j.lfs.2019.01.01930658103
    [Google Scholar]
  54. ClinicalTrials Study on the therapeutic mechanisms of dithranol treatment in patients with chronic plaque psoriasis.2017Available from: https://clinicaltrials.gov/study/NCT02752672
  55. ClinicalTrialsFormulation and clinical evaluation of ethosomal and liposomal preparations of anthralin in psoriasis.2017Available from: https://www.cochranelibrary.com/central/doi/10.1002/central/CN-01583896/full
  56. ClinicalTrialsCurcuminoids for the treatment of chronic psoriasis vulgaris.2017Available from: https://clinicaltrials.gov/study/NCT00235625
  57. ClinicalTrialsTurmeric based therapy in the treatment of psoriasis.2019Available from: https://clinicaltrials.gov/study/NCT04071106
  58. SinghK.K. TripathyS. Natural treatment alternative for psoriasis: A review on herbal resources.J. Appl. Pharm. Sci.2014411412110.7324/JAPS.2014.41120
    [Google Scholar]
  59. SinghD. PradhanM. NagM. SinghM.R. Vesicular system: Versatile carrier for transdermal delivery of bioactives.Artif. Cells Nanomed. Biotechnol.201543428229010.3109/21691401.2014.88340124564350
    [Google Scholar]
  60. YadavN. AggarwalR. TarghotraM. SahooP.K. ChauhanM.K. Natural and nanotechnology based treatment: An alternative approach to psoriasis.Curr. Nanomed.2021111213910.2174/2468187310999201022192318
    [Google Scholar]
  61. XieJ. HuangS. HuangH. DengX. YueP. LinJ. YangM. HanL. ZhangD. Advances in the application of natural products and the novel drug delivery systems for psoriasis.Front. Pharmacol.20211264495210.3389/fphar.2021.64495233967781
    [Google Scholar]
  62. SercombeL. VeeratiT. MoheimaniF. WuS.Y. SoodA.K. HuaS. Advances and challenges of liposome assisted drug delivery.Front. Pharmacol.2015628610.3389/fphar.2015.0028626648870
    [Google Scholar]
  63. MoosavianS.A. BianconiV. PirroM. SahebkarA. Challenges and pitfalls in the development of liposomal delivery systems for cancer therapy.Semin. Cancer Biol.20216933734810.1016/j.semcancer.2019.09.02531585213
    [Google Scholar]
  64. ChenJ. MaY. TaoY. ZhaoX. XiongY. ChenZ. TianY. Formulation and evaluation of a topical liposomal gel containing a combination of zedoary turmeric oil and tretinoin for psoriasis activity.J. Liposome Res.202131213014410.1080/08982104.2020.174864632223352
    [Google Scholar]
  65. XiL. LinZ. QiuF. ChenS. LiP. ChenX. WangZ. ZhengY. Enhanced uptake and anti-maturation effect of celastrol-loaded mannosylated liposomes on dendritic cells for psoriasis treatment.Acta Pharm. Sin. B202212133935210.1016/j.apsb.2021.07.01935127390
    [Google Scholar]
  66. HatahetT. MorilleM. HommossA. DevoisselleJ.M. MüllerR.H. BéguS. Liposomes, lipid nanocapsules and smartCrystals®: A comparative study for an effective quercetin delivery to the skin.Int. J. Pharm.20185421-217618510.1016/j.ijpharm.2018.03.01929549014
    [Google Scholar]
  67. BhardwajP. TripathiP. GuptaR. PandeyS. Niosomes: A review on niosomal research in the last decade.J. Drug Deliv. Sci. Technol.20205610158110.1016/j.jddst.2020.101581
    [Google Scholar]
  68. AgarwalR. KatareO.P. VyasS.P. Preparation and in vitro evaluation of liposomal/niosomal delivery systems for antipsoriatic drug dithranol.Int. J. Pharm.20012281-2435210.1016/S0378‑5173(01)00810‑911576767
    [Google Scholar]
  69. MengS. SunL. WangL. LinZ. LiuZ. XiL. WangZ. ZhengY. Loading of water-insoluble celastrol into niosome hydrogels for improved topical permeation and anti-psoriasis activity.Colloids Surf. B Biointerfaces201918211035210.1016/j.colsurfb.2019.11035231306831
    [Google Scholar]
  70. ShijilaP. GowthamM. Formulation and evaluation of herbal niosomal gel for psoriasis like effect.WJPPS201981052107910.20959/wjpps20194‑13469
    [Google Scholar]
  71. ZhangY. XiaQ. LiY. HeZ. LiZ. GuoT. WuZ. FengN. CD44 assists the topical anti-psoriatic efficacy of curcumin-loaded hyaluronan-modified ethosomes: A new strategy for clustering drug in inflammatory skin.Theranostics201991486410.7150/thno.2971530662553
    [Google Scholar]
  72. NegiP. SharmaI. HemrajaniC. RathoreC. BishtA. RazaK. KatareO.P. Thymoquinone-loaded lipid vesicles: A promising nanomedicine for psoriasis.BMC Complement. Altern. Med.201919133410.1186/s12906‑019‑2675‑531771651
    [Google Scholar]
  73. LuJ. GuoT. FanY. LiZ. HeZ. YinS. FengN. Recent developments in the principles, modification and application prospects of functionalized ethosomes for topical delivery.Curr. Drug Deliv.202118557058210.2174/156720181766620082609310232851961
    [Google Scholar]
  74. Sarah SujithaY. Indira MuzibY. Preparation of topical nano gel loaded with Hesperidin emusomoes: In vitro and in vivo studies.Int. J. Pharm. Investig.202010450050510.5530/ijpi.2020.4.87
    [Google Scholar]
  75. ZhouX. ChenZ. Preparation and performance evaluation of emulsomes as a drug delivery system for silybin.Arch. Pharm. Res.201538122193220010.1007/s12272‑015‑0630‑726152876
    [Google Scholar]
  76. SimonazziA. CidA.G. VillegasM. RomeroA.I. PalmaS.D. BermúdezJ.M. Nanotechnology applications in drug controlled release. Drug Targeting and Stimuli Sensitive Drug Delivery SystemsNorwich, NYWilliam Andrew Publishing20188111610.1016/B978‑0‑12‑813689‑8.00003‑3
    [Google Scholar]
  77. AlgahtaniM.S. AhmadM.Z. AhmadJ. Nanoemulsion loaded polymeric hydrogel for topical delivery of curcumin in psoriasis.J. Drug Deliv. Sci. Technol.20205910184710.1016/j.jddst.2020.101847
    [Google Scholar]
  78. SahuS. KatiyarS.S. KushwahV. JainS. Active natural oil-based nanoemulsion containing tacrolimus for synergistic antipsoriatic efficacy.Nanomedicine201813161985199810.2217/nnm‑2018‑013530188761
    [Google Scholar]
  79. KhanS. SharmaA. JainV. An overview of nanostructured lipid carriers and its application in drug delivery through different routes.Adv. Pharm. Bull.202313344646010.34172/apb.2023.05637646052
    [Google Scholar]
  80. ChauhanI. YasirM. VermaM. SinghA.P. Nanostructured lipid carriers: A groundbreaking approach for transdermal drug delivery.Adv. Pharm. Bull.202010215016510.34172/apb.2020.02132373485
    [Google Scholar]
  81. SatheP. SakaR. KommineniN. RazaK. KhanW. Dithranol-loaded nanostructured lipid carrier-based gel ameliorate psoriasis in imiquimod-induced mice psoriatic plaque model.Drug Dev. Ind. Pharm.201945582683810.1080/03639045.2019.157672230764674
    [Google Scholar]
  82. QadirA. AqilM. AliA. WarsiM.H. MujeebM. AhmadF.J. AhmadS. BegS. Nanostructured lipidic carriers for dual drug delivery in the management of psoriasis: Systematic optimization, dermatokinetic and preclinical evaluation.J. Drug Deliv. Sci. Technol.20205710177510.1016/j.jddst.2020.101775
    [Google Scholar]
  83. TripathiP.K. GorainB. ChoudhuryH. SrivastavaA. KesharwaniP. Dendrimer entrapped microsponge gel of dithranol for effective topical treatment.Heliyon201953e0134310.1016/j.heliyon.2019.e0134330957038
    [Google Scholar]
  84. BorowskaK. WołowiecS. GłowniakK. SieniawskaE. RadejS. Transdermal delivery of 8-methoxypsoralene mediated by polyamidoamine dendrimer G2.5 and G3.5-In vitro and in vivo study.Int. J. Pharm.20124361-276477010.1016/j.ijpharm.2012.07.06722884834
    [Google Scholar]
  85. MehriziT.Z. MosaffaN. KhamesipourA. HoseiniM.H.M. ShahmabadiH.E. ArdestaniM.S. RamezaniA. A novel nanoformulation for reducing the toxicity and increasing the efficacy of betulinic acid using anionic linear globular dendrimer.J. Nanostructures.20211114315210.22052/JNS.2021.01.016
    [Google Scholar]
  86. KannanR.M. NanceE. KannanS. TomaliaD.A. Emerging concepts in dendrimer-based nanomedicine: From design principles to clinical applications.J. Intern. Med.2014276657961710.1111/joim.1228024995512
    [Google Scholar]
  87. JanaszewskaA. LazniewskaJ. TrzepińskiP. MarcinkowskaM. Klajnert-MaculewiczB. Cytotoxicity of dendrimers.Biomolecules20199833010.3390/biom908033031374911
    [Google Scholar]
  88. PanditaD. MadaanK. KumarS. PooniaN. LatherV. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues.J. Pharm. Bioallied Sci.20146313915010.4103/0975‑7406.13096525035633
    [Google Scholar]
  89. ChauhanA.S. JainN.K. DiwanP.V. Pre-clinical and behavioural toxicity profile of PAMAM dendrimers in mice.Proc-Royal Soc., Math. Phys. Eng. Sci.201046621171535155010.1098/rspa.2009.0448
    [Google Scholar]
  90. AraújoR.V. SantosS.S. Igne FerreiraE. GiarollaJ. New advances in general biomedical applications of PAMAM dendrimers.Molecules20182311284910.3390/molecules23112849
    [Google Scholar]
  91. WangJ. LiB. QiuL. QiaoX. YangH. Dendrimer-based drug delivery systems: History, challenges, and latest developments.J. Biol. Eng.20221611810.1186/s13036‑022‑00298‑535879774
    [Google Scholar]
  92. JonesC.F. CampbellR.A. BrooksA.E. AssemiS. TadjikiS. ThiagarajanG. MulcockC. WeyrichA.S. BrooksB.D. GhandehariH. GraingerD.W. Cationic PAMAM dendrimers aggressively initiate blood clot formation.ACS Nano20126119900991010.1021/nn303472r23062017
    [Google Scholar]
  93. LiX. NaeemA. XiaoS. HuL. ZhangJ. ZhengQ. Safety challenges and application strategies for the use of dendrimers in medicine.Pharmaceutics2022146129210.3390/pharmaceutics1406129235745863
    [Google Scholar]
  94. GowdaB.H.J. AhmedM.G. AlmoyadM.A.A. WahabS. AlmalkiW.H. KesharwaniP. Nanosponges as an emerging platform for cancer treatment and diagnosis.Adv. Funct. Mater.2024347230707410.1002/adfm.202307074
    [Google Scholar]
  95. TiwariK. BhattacharyaS. The ascension of nanosponges as a drug delivery carrier: Preparation, characterization, and applications.J. Mater. Sci. Mater. Med.20223332810.1007/s10856‑022‑06652‑935244808
    [Google Scholar]
  96. IriventiP. GuptaN.V. OsmaniR.A.M. BalamuralidharaV. Design & development of nanosponge loaded topical gel of curcumin and caffeine mixture for augmented treatment of psoriasis.Daru202028248950610.1007/s40199‑020‑00352‑x32472531
    [Google Scholar]
  97. BodnárK. FehérP. UjhelyiZ. BácskayI. JózsaL. Recent approaches for the topical treatment of psoriasis using nanoparticles.Pharmaceutics202416444910.3390/pharmaceutics1604044938675110
    [Google Scholar]
  98. Mohd NordinU.U. AhmadN. SalimN. Mohd YusofN.S. Lipid-based nanoparticles for psoriasis treatment: A review on conventional treatments, recent works, and future prospects.RSC Advances20211146290802910110.1039/D1RA06087B35478537
    [Google Scholar]
  99. Rahmanian-DevinP. AskariV.R. Sanei-FarZ. Baradaran RahimiV. KamaliH. JaafariM.R. GolmohammadzadehS. Preparation and characterization of solid lipid nanoparticles encapsulated noscapine and evaluation of its protective effects against imiquimod- induced psoriasis-like skin lesions.Biomed. Pharmacother.202316811582310.1016/j.biopha.2023.11582337924792
    [Google Scholar]
  100. ZengL. GowdaB.H.J. AhmedM.G. AbourehabM.A.S. ChenZ.S. ZhangC. LiJ. KesharwaniP. Advancements in nanoparticle-based treatment approaches for skin cancer therapy.Mol. Cancer20232211010.1186/s12943‑022‑01708‑436635761
    [Google Scholar]
  101. PerumalS. AtchudanR. LeeW. A review of polymeric micelles and their applications.Polymers20221412251010.3390/polym1412251035746086
    [Google Scholar]
  102. GhezziM. PescinaS. PadulaC. SantiP. Del FaveroE. CantùL. NicoliS. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions.J. Control. Release202133231233610.1016/j.jconrel.2021.02.03133652113
    [Google Scholar]
  103. ChavoshyF. ZadehB.S.M. TamaddonA.M. AnbardarM.H. Delivery and anti-psoriatic effect of silibinin-loaded polymeric micelles: An experimental study in the psoriatic skin model.Curr. Drug Deliv.202017978779810.2174/156720181766620072214180732703129
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128330298240708110336
Loading
/content/journals/cpd/10.2174/0113816128330298240708110336
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test