Skip to content
2000
Volume 30, Issue 32
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Chronic inflammation characterizes Inflammatory Bowel Disease (IBD), encompassing Crohn's Disease (CD) and Ulcerative Colitis (UC). Despite modest activity of disease in most UC patients, exacerbations occur, especially in those with severe symptoms, necessitating interventions, like colectomy. Current treatments for IBD, predominantly small molecule therapies, impose significant economic burdens. Drug repurposing offers a cost-effective alternative, leveraging existing drugs for novel therapeutic applications. This approach capitalizes on shared molecular pathways across diseases, accelerating therapeutic discovery while minimizing costs and risks. This article provides an overview of IBD and explores drug repurposing as a promising avenue for more effective and affordable treatments. Through computational and animal studies, potential drug candidates are categorized, offering insights into IBD pathogenesis and treatment strategies.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128318032240702045822
2024-07-19
2025-01-17
Loading full text...

Full text loading...

References

  1. PonderA. LongM.D. A clinical review of recent findings in the epidemiology of inflammatory bowel disease.Clin. Epidemiol.2013523724723922506
    [Google Scholar]
  2. CosnesJ Gower–RousseauC SeksikP CortotA Epidemiology and natural history of inflammatory bowel diseases.Gastroenterology2011140617859410.1053/j.gastro.2011.01.055
    [Google Scholar]
  3. NgS.C. ShiH.Y. HamidiN. UnderwoodF.E. TangW. BenchimolE.I. PanaccioneR. GhoshS. WuJ.C.Y. ChanF.K.L. SungJ.J.Y. KaplanG.G. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review of population-based studies.Lancet2017390101142769277810.1016/S0140‑6736(17)32448‑029050646
    [Google Scholar]
  4. BurriE. MaillardM.H. SchoepferA.M. SeiboldF. Van AsscheG. RivièreP. LaharieD. ManzM. Treatment algorithm for mild and moderate-to-severe ulcerative colitis: An update.Digestion2020101Suppl. 121510.1159/00050409231945767
    [Google Scholar]
  5. TrueloveS.C. WittsL.J. Cortisone in ulcerative colitis; Preliminary report on a therapeutic trial.BMJ19542488437537810.1136/bmj.2.4884.37513182220
    [Google Scholar]
  6. SchroederK.W. TremaineW.J. IlstrupD.M. Coated oral 5-aminosalicylic acid therapy for mildly to moderately active ulcerative colitis. A randomized study.N. Engl. J. Med.1987317261625162910.1056/NEJM1987122431726033317057
    [Google Scholar]
  7. SturmA. MaaserC. CalabreseE. AnneseV. FiorinoG. KucharzikT. VavrickaS.R. VerstocktB. van RheenenP. TolanD. TaylorS.A. RimolaJ. RiederF. LimdiJ.K. LaghiA. KrustiņšE. KotzeP.G. KopylovU. KatsanosK. HalliganS. GordonH. González LamaY. EllulP. EliakimR. CastiglioneF. BurischJ. Borralho NunesP. BettenworthD. BaumgartD.C. StokerJ. ECCO-ESGAR Guideline for Diagnostic Assessment in IBD Part 2: IBD scores and general principles and technical aspects.J. Crohn’s Colitis201913327328410.1093/ecco‑jcc/jjy11430137278
    [Google Scholar]
  8. CichewiczA. TencerT. Gupte-SinghK. EgodageS. BurnettH. KumarJ. A systematic review of the economic and health-related quality of life impact of advanced therapies used to treat moderate-to-severe ulcerative colitis.Adv. Ther.20234052116214610.1007/s12325‑023‑02488‑z37000363
    [Google Scholar]
  9. JostinsL. RipkeS. WeersmaR.K. DuerrR.H. McGovernD.P. HuiK.Y. LeeJ.C. Philip SchummL. SharmaY. AndersonC.A. EssersJ. MitrovicM. NingK. CleynenI. TheatreE. SpainS.L. RaychaudhuriS. GoyetteP. WeiZ. AbrahamC. AchkarJ.P. AhmadT. AmininejadL. AnanthakrishnanA.N. AndersenV. AndrewsJ.M. BaidooL. BalschunT. BamptonP.A. BittonA. BoucherG. BrandS. BüningC. CohainA. CichonS. D’AmatoM. De JongD. DevaneyK.L. DubinskyM. EdwardsC. EllinghausD. FergusonL.R. FranchimontD. FransenK. GearryR. GeorgesM. GiegerC. GlasJ. HarituniansT. HartA. HawkeyC. HedlM. HuX. KarlsenT.H. KupcinskasL. KugathasanS. LatianoA. LaukensD. LawranceI.C. LeesC.W. LouisE. MahyG. MansfieldJ. MorganA.R. MowatC. NewmanW. PalmieriO. PonsioenC.Y. PotocnikU. PrescottN.J. RegueiroM. RotterJ.I. RussellR.K. SandersonJ.D. SansM. SatsangiJ. SchreiberS. SimmsL.A. SventoraityteJ. TarganS.R. TaylorK.D. TremellingM. VerspagetH.W. De VosM. WijmengaC. WilsonD.C. WinkelmannJ. XavierR.J. ZeissigS. ZhangB. ZhangC.K. ZhaoH. SilverbergM.S. AnneseV. HakonarsonH. BrantS.R. Radford-SmithG. MathewC.G. RiouxJ.D. SchadtE.E. DalyM.J. FrankeA. ParkesM. VermeireS. BarrettJ.C. ChoJ.H. Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease.Nature2012491742211912410.1038/nature1158223128233
    [Google Scholar]
  10. LeeH.S. CleynenI. Molecular profiling of inflammatory bowel disease: Is it ready for use in clinical decision-making?Cells20198653510.3390/cells806053531167397
    [Google Scholar]
  11. PorterR.J. KallaR. HoG.T. Ulcerative colitis: Recent advances in the understanding of disease pathogenesis.F1000 Res.2020929410.12688/f1000research.20805.132399194
    [Google Scholar]
  12. KaplanG.G. NgS.C. Understanding and preventing the global increase of inflammatory bowel disease.Gastroenterology20171522313321.e210.1053/j.gastro.2016.10.02027793607
    [Google Scholar]
  13. KirsnerJ.B. Historical aspects of inflammatory bowel disease.J. Clin. Gastroenterol.198810328629710.1097/00004836‑198806000‑000122980764
    [Google Scholar]
  14. SheikhSZ HegaziRA KobayashiT OnyiahJC RussoSM MatsuokaK An anti-inflammatory role for carbon monoxide and heme oxygenase-1 in chronic Th2-mediated murine colitis.J Immunol2011186955061310.4049/jimmunol.1002433
    [Google Scholar]
  15. Nyboe AndersenN. GørtzS. FrischM. JessT. Reduced risk of UC in families affected by appendicitis: A Danish national cohort study.Gut20176681398140210.1136/gutjnl‑2015‑31113127196591
    [Google Scholar]
  16. JohnS. LubenR. ShresthaS.S. WelchA. KhawK.T. HartA.R. Dietary n-3 polyunsaturated fatty acids and the aetiology of ulcerative colitis: A UK prospective cohort study.Eur. J. Gastroenterol. Hepatol.201022560260610.1097/MEG.0b013e3283352d0520216220
    [Google Scholar]
  17. AmarapurkarA.D. AmarapurkarD.N. RathiP. SawantP. PatelN. KamaniP. RawalK. BaijalR. SonawaneA. NarawaneN. KolekarS. TotlaN. Risk factors for inflammatory bowel disease: A prospective multi-center study.Indian J. Gastroenterol.201837318919510.1007/s12664‑018‑0850‑029987750
    [Google Scholar]
  18. JantchouP. MoroisS. Clavel-ChapelonF. Boutron-RuaultM.C. CarbonnelF. Animal protein intake and risk of inflammatory bowel disease: The E3N prospective study.Am. J. Gastroenterol.2010105102195220110.1038/ajg.2010.19220461067
    [Google Scholar]
  19. McCauleyH.A. GuaschG. Three cheers for the goblet cell: Maintaining homeostasis in mucosal epithelia.Trends Mol. Med.201521849250310.1016/j.molmed.2015.06.00326144290
    [Google Scholar]
  20. TurnerJ.R. Intestinal mucosal barrier function in health and disease.Nat. Rev. Immunol.200991179980910.1038/nri265319855405
    [Google Scholar]
  21. CattinA.L. Le BeyecJ. BarreauF. Saint-JustS. HoullierA. GonzalezF.J. RobineS. Pinçon-RaymondM. CardotP. LacasaM. RibeiroA. Hepatocyte nuclear factor 4alpha, a key factor for homeostasis, cell architecture, and barrier function of the adult intestinal epithelium.Mol. Cell. Biol.200929236294630810.1128/MCB.00939‑0919805521
    [Google Scholar]
  22. AsanoK. MatsushitaT. UmenoJ. HosonoN. TakahashiA. KawaguchiT. MatsumotoT. MatsuiT. KakutaY. KinouchiY. ShimosegawaT. HosokawaM. ArimuraY. ShinomuraY. KiyoharaY. TsunodaT. KamataniN. IidaM. NakamuraY. KuboM. A genome-wide association study identifies three new susceptibility loci for ulcerative colitis in the Japanese population.Nat. Genet.200941121325132910.1038/ng.48219915573
    [Google Scholar]
  23. McGovernD.P.B. GardetA. TörkvistL. GoyetteP. EssersJ. TaylorK.D. NealeB.M. OngR.T.H. LagacéC. LiC. GreenT. StevensC.R. BeauchampC. FleshnerP.R. CarlsonM. D’AmatoM. HalfvarsonJ. HibberdM.L. LördalM. PadyukovL. AndriulliA. ColomboE. LatianoA. PalmieriO. BernardE.J. DeslandresC. HommesD.W. de JongD.J. StokkersP.C. WeersmaR.K. SharmaY. SilverbergM.S. ChoJ.H. WuJ. RoederK. BrantS.R. SchummL.P. DuerrR.H. DubinskyM.C. GlazerN.L. HarituniansT. IppolitiA. MelmedG.Y. SiscovickD.S. VasiliauskasE.A. TarganS.R. AnneseV. WijmengaC. PetterssonS. RotterJ.I. XavierR.J. DalyM.J. RiouxJ.D. SeielstadM. Genome-wide association identifies multiple ulcerative colitis susceptibility loci.Nat. Genet.201042433233710.1038/ng.54920228799
    [Google Scholar]
  24. HellerF. FrommA. GitterA.H. MankertzJ. SchulzkeJ-D. Epithelial apoptosis is a prominent feature of the epithelial barrier disturbance in intestinal inflammation: Effect of pro-inflammatory interleukin-13 on epithelial cell function.Mucosal Immunol.20081Suppl. 1S58S6110.1038/mi.2008.4619079233
    [Google Scholar]
  25. WatsonC.J. HoareC.J. GarrodD.R. CarlsonG.L. WarhurstG. Interferon-γ selectively increases epithelial permeability to large molecules by activating different populations of paracellular pores.J. Cell Sci.2005118225221523010.1242/jcs.0263016249235
    [Google Scholar]
  26. HallertC. BjörckI. NymanM. PousetteA. GrännöC. SvenssonH. Increasing fecal butyrate in ulcerative colitis patients by diet: Controlled pilot study.Inflamm. Bowel Dis.20039211612110.1097/00054725‑200303000‑0000512769445
    [Google Scholar]
  27. ParkS. AbdiT. GentryM. LaineL. Histological disease activity as a predictor of clinical relapse among patients with ulcerative colitis: Systematic review and meta-analysis.Am. J. Gastroenterol.2016111121692170110.1038/ajg.2016.41827725645
    [Google Scholar]
  28. LinN. SimonM.C. Hypoxia-inducible factors: Key regulators of myeloid cells during inflammation.J. Clin. Invest.2016126103661367110.1172/JCI8442627599290
    [Google Scholar]
  29. TaylorC.T. ColganS.P. Regulation of immunity and inflammation by hypoxia in immunological niches.Nat. Rev. Immunol.2017171277478510.1038/nri.2017.10328972206
    [Google Scholar]
  30. AngelidouI ChrysanthopoulouA MitsiosA ArelakiS ArampatzioglouA KambasK REDD1/autophagy pathway is associated with neutrophil-driven IL-1β inflammatory response in active ulcerative colitis.J Immunol20182001239503961
    [Google Scholar]
  31. DinalloV. MarafiniI. Di FuscoD. LaudisiF. FranzèE. Di GraziaA. FigliuzziM.M. CaprioliF. StolfiC. MonteleoneI. MonteleoneG. Neutrophil extracellular traps sustain inflammatory signals in ulcerative colitis.J. Crohn’s Colitis201913677278410.1093/ecco‑jcc/jjy21530715224
    [Google Scholar]
  32. BoumaG. StroberW. The immunological and genetic basis of inflammatory bowel disease.Nat. Rev. Immunol.20033752153310.1038/nri113212876555
    [Google Scholar]
  33. FussI.J. HellerF. BoirivantM. LeonF. YoshidaM. Fichtner-FeiglS. YangZ. ExleyM. KitaniA. BlumbergR.S. MannonP. StroberW. Nonclassical CD1d-restricted NK T cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis.J. Clin. Invest.2004113101490149710.1172/JCI1983615146247
    [Google Scholar]
  34. KobayashiT. OkamotoS. HisamatsuT. KamadaN. ChinenH. SaitoR. KitazumeM.T. NakazawaA. SugitaA. KoganeiK. IsobeK. HibiT. IL23 differentially regulates the Th1/Th17 balance in ulcerative colitis and Crohn’s disease.Gut200857121682168910.1136/gut.2007.13505318653729
    [Google Scholar]
  35. NallewegN. ChiriacM.T. PodstawaE. LehmannC. RauT.T. AtreyaR. KraussE. HundorfeanG. Fichtner-FeiglS. HartmannA. BeckerC. MudterJ. IL-9 and its receptor are predominantly involved in the pathogenesis of UC.Gut201564574375510.1136/gutjnl‑2013‑30594724957265
    [Google Scholar]
  36. DuerrR.H. TaylorK.D. BrantS.R. RiouxJ.D. SilverbergM.S. DalyM.J. SteinhartA.H. AbrahamC. RegueiroM. GriffithsA. DassopoulosT. BittonA. YangH. TarganS. DattaL.W. KistnerE.O. SchummL.P. LeeA.T. GregersenP.K. BarmadaM.M. RotterJ.I. NicolaeD.L. ChoJ.H. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene.Science200631458041461146310.1126/science.113524517068223
    [Google Scholar]
  37. TengM.W.L. BowmanE.P. McElweeJ.J. SmythM.J. CasanovaJ.L. CooperA.M. CuaD.J. IL-12 and IL-23 cytokines: From discovery to targeted therapies for immune-mediated inflammatory diseases.Nat. Med.201521771972910.1038/nm.389526121196
    [Google Scholar]
  38. WheatC.L. KoC.W. Clark-SnustadK. GrembowskiD. ThorntonT.A. DevineB. Inflammatory Bowel Disease (IBD) pharmacotherapy and the risk of serious infection: A systematic review and network meta-analysis.BMC Gastroenterol.20171715210.1186/s12876‑017‑0602‑028407755
    [Google Scholar]
  39. ZurbaY. GrosB. ShehabM. Exploring the pipeline of novel therapies for inflammatory bowel disease; state of the art review.Biomedicines202311374710.3390/biomedicines1103074736979724
    [Google Scholar]
  40. Altaf-Ul-AminM. Drug repurposing for inflammatory bowel disease based on relations among drugs, diseases and genes.J Gastro Hepato.202391718
    [Google Scholar]
  41. SadeghS. MatschinskeJ. BlumenthalD.B. GalindezG. KacprowskiT. ListM. NasirigerdehR. OubounytM. PichlmairA. RoseT.D. Salgado-AlbarránM. SpäthJ. StukalovA. WenkeN.K. YuanK. PaulingJ.K. BaumbachJ. Exploring the SARS-CoV-2 virus-host-drug interactome for drug repurposing.Nat. Commun.2020111351810.1038/s41467‑020‑17189‑232665542
    [Google Scholar]
  42. KitaniT. MaddipatlaS.C. MadupuriR. GrecoC. HartmannJ. BaraniukJ.N. VasudevanS. In search of newer targets for inflammatory bowel disease: A systems and a network medicine approach.Netw. Syst. Med.202141748710.1089/nsm.2020.0012
    [Google Scholar]
  43. DudleyJ.T. SirotaM. ShenoyM. PaiR.K. RoedderS. ChiangA.P. MorganA.A. SarwalM.M. PasrichaP.J. ButteA.J. Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease.Sci. Transl. Med.201139696ra7610.1126/scitranslmed.300264821849664
    [Google Scholar]
  44. SadeghS. SkeltonJ. AnastasiE. BernettJ. BlumenthalD.B. GalindezG. Salgado-AlbarránM. LazarevaO. FlanaganK. CockellS. NogalesC. CasasA.I. SchmidtH.H.H.W. BaumbachJ. WipatA. KacprowskiT. Network medicine for disease module identification and drug repurposing with the NeDRex platform.Nat. Commun.2021121684810.1038/s41467‑021‑27138‑234824199
    [Google Scholar]
  45. GrenierL. HuP. Computational drug repurposing for inflammatory bowel disease using genetic information.Comput. Struct. Biotechnol. J.20191712713510.1016/j.csbj.2019.01.00130728920
    [Google Scholar]
  46. NitzanO. EliasM. PeretzA. SalibaW. Role of antibiotics for treatment of inflammatory bowel disease.World J. Gastroenterol.20162231078108710.3748/wjg.v22.i3.107826811648
    [Google Scholar]
  47. TianR. LiY. WangX. LiJ. LiY. BeiS. LiH. A pharmacoinformatics analysis of artemisinin targets and de novo design of hits for treating ulcerative colitis.Front. Pharmacol.20221384304310.3389/fphar.2022.84304335370688
    [Google Scholar]
  48. JohnsonT.O. AkinsanmiA.O. EjembiS.A. AdeyemiO.E. OcheJ.R. JohnsonG.I. AdegboyegaA.E. Modern drug discovery for inflammatory bowel disease: The role of computational methods.World J. Gastroenterol.202329231033110.3748/wjg.v29.i2.31036687123
    [Google Scholar]
  49. CanG. AyvazS. CanH. DemirtasS. AksitH. YilmazB. KorkmazU. KurtM. KaracaT. The syk inhibitor fostamatinib decreases the severity of colonic mucosal damage in a rodent model of colitis.J. Crohn’s Colitis201591090791710.1093/ecco‑jcc/jjv11426116555
    [Google Scholar]
  50. El-MahdyN.A. El-SayadM.E.S. El-KademA.H. Abu-RishaS.E.L.S. Metformin alleviates inflammation in oxazolone induced ulcerative colitis in rats: Plausible role of sphingosine kinase 1/sphingosine 1 phosphate signaling pathway.Immunopharmacol. Immunotoxicol.202143219220210.1080/08923973.2021.187821433504231
    [Google Scholar]
  51. KohS.J. KimJ.M. KimI.K. KoS.H. KimJ.S. Anti-inflammatory mechanism of metformin and its effects in intestinal inflammation and colitis-associated colon cancer.J. Gastroenterol. Hepatol.201429350251010.1111/jgh.1243524716225
    [Google Scholar]
  52. LiuX. SunZ. WangH. Metformin alleviates experimental colitis in mice by up-regulating TGF-β signaling.Biotech. Histochem.202196214615210.1080/10520295.2020.177689632654569
    [Google Scholar]
  53. AliF.E.M. M ElfikyM. FaddaW.A. AliH.S. MahmoudA.R. MohammedsalehZ.M. Abd-ElhamidT.H. Regulation of IL-6/STAT-3/Wnt axis by nifuroxazide dampens colon ulcer in acetic acid-induced ulcerative colitis model: Novel mechanistic insight.Life Sci.202127611943310.1016/j.lfs.2021.11943333794250
    [Google Scholar]
  54. ChumanevichA.A. WitalisonE.E. ChaparalaA. ChumanevichA. NagarkattiP. NagarkattiM. HofsethL.J. Repurposing the anti-malarial drug, quinacrine: New anti-colitis properties.Oncotarget2016733529285293910.18632/oncotarget.1060827447967
    [Google Scholar]
  55. ByrnesJJ GrossS EllardC ConnollyK DonahueS PicarellaD Effects of the ACE2 inhibitor GL1001 on acute dextran sodium sulfate-induced colitis in mice.Inflamm Res200958118192710.1007/s00011‑009‑0053‑3
    [Google Scholar]
  56. ChandeN. MacDonaldJ.K. WangJ.J. McDonaldJ.W.D. Unfractionated or low molecular weight heparin for induction of remission in ulcerative colitis: A cochrane inflammatory bowel disease and functional bowel disorders systematic review of randomized trials.Inflamm. Bowel Dis.20111791979198610.1002/ibd.2177621618363
    [Google Scholar]
  57. FairbrassK.M. HoshenD. GracieD.J. FordA.C. Effect of ACE inhibitors and angiotensin II receptor blockers on disease outcomes in inflammatory bowel disease.Gut2021701218.221910.1136/gutjnl‑2020‑32118632241900
    [Google Scholar]
  58. JacobsJ.D. WagnerT. GulottaG. LiaoC. LiY.C. BissonnetteM. PekowJ. Impact of angiotensin II signaling blockade on clinical outcomes in patients with inflammatory bowel disease.Dig. Dis. Sci.20196471938194410.1007/s10620‑019‑5474‑430725290
    [Google Scholar]
  59. ShakibfarS. AllinK. JessT. BarbieriM.A. BattiniV. SimoncicE. KirchgesnerJ. UlvenT. SessaM. Drug repurposing in Crohn’s disease using Danish Real-World Data.Pragmat. Obs. Res.202415172910.2147/POR.S44456938404739
    [Google Scholar]
  60. AzumaK. OsakiT. KurozumiS. KiyoseM. TsukaT. MurahataY. ImagawaT. ItohN. MinamiS. SatoK. OkamotoY. Anti-inflammatory effects of orally administered glucosamine oligomer in an experimental model of inflammatory bowel disease.Carbohydr. Polym.201511544845610.1016/j.carbpol.2014.09.01225439918
    [Google Scholar]
  61. JadavP.D. PatelS.H. RachchhM.A. Evaluation of anti-inflammatory effect of anti-platelet agent-clopidogrel in experimentally induced inflammatory bowel disease.Indian J. Pharmacol.201244674474810.4103/0253‑7613.10327823248405
    [Google Scholar]
  62. GhorbanzadehB. BehmaneshM.A. MahmoudinejadR. ZamaniyanM. EkhtiarS. ParidarY. The effect of montelukast, a leukotriene receptor antagonist, on the acetic acid-induced model of colitis in rats: Involvement of NO-cGMP-KATP channels pathway.Front. Pharmacol.202213101114110.3389/fphar.2022.101114136225573
    [Google Scholar]
  63. GuoW. ChenS. LiC. XuJ. WangL. Application of disulfiram and its metabolites in treatment of inflammatory disorders.Front. Pharmacol.20221279507810.3389/fphar.2021.79507835185542
    [Google Scholar]
  64. ZhouW. ZhangH. HuangL. SunC. YueY. CaoX. JiaH. WangC. GaoY. Disulfiram with Cu2+ alleviates dextran sulfate sodium-induced ulcerative colitis in mice.Theranostics20231392879289510.7150/thno.8157137284442
    [Google Scholar]
  65. BhatM.A. RoyS. DhaneshwarS. KumarS. SaxenaS.K. Desloratadine via its anti-inflammatory and antioxidative properties ameliorates TNBS-induced experimental colitis in rats.Immunopharmacol. Immunotoxicol.2024202411410.1080/08923973.2024.236004338816915
    [Google Scholar]
  66. EskandariM. AsgharzadehF. Askarnia-faalM.M. NaimiH. AvanA. AhadiM. VossoughiniaH. GharibM. SoleimaniA. NaghibzadehN. FernsG. RyzhikovM. KhazaeiM. HassanianS.M. Mebendazole, an anti-helminth drug, suppresses inflammation, oxidative stress and injury in a mouse model of ulcerative colitis.Sci. Rep.20221211024910.1038/s41598‑022‑14420‑635715495
    [Google Scholar]
  67. Pena RossiC. HanauerS.B. TomasevicR. HunterJ.O. ShafranI. GraffnerH. Interferon beta-1a for the maintenance of remission in patients with Crohn’s disease: Results of a phase II dose-finding study.BMC Gastroenterol.2009912210.1186/1471‑230X‑9‑2219302707
    [Google Scholar]
  68. ArdesiaM. FerlazzoG. FriesW. Vitamin D and inflammatory bowel disease.BioMed Res. Int.2015201511610.1155/2015/47080526000293
    [Google Scholar]
  69. BramuzzoM. VenturaA. MartelossiS. LazzeriniM. Thalidomide for inflammatory bowel disease.Medicine20169530e423910.1097/MD.000000000000423927472695
    [Google Scholar]
  70. BaiL. ScottM.K.D. SteinbergE. KalesinskasL. HabtezionA. ShahN.H. KhatriP. Computational drug repositioning of atorvastatin for ulcerative colitis.J. Am. Med. Inform. Assoc.202128112325233510.1093/jamia/ocab16534529084
    [Google Scholar]
  71. GripO. JanciauskieneS. BredbergA. Use of atorvastatin as an anti‐inflammatory treatment in Crohn’s disease.Br. J. Pharmacol.200815571085109210.1038/bjp.2008.36918806816
    [Google Scholar]
  72. LundJ.L. StürmerT. PorterC.Q. SandlerR.S. KappelmanM.D. Thiazolidinedione use and ulcerative colitis-related flares: An exploratory analysis of administrative data.Inflamm. Bowel Dis.201117378779410.1002/ibd.2134820848530
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128318032240702045822
Loading
/content/journals/cpd/10.2174/0113816128318032240702045822
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test