Skip to content
2000
Volume 30, Issue 32
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

A unique extreme acute breathing syndrome emerged in China and spread rapidly globally due to a newly diagnosed human coronavirus and declared a pandemic. COVID-19 was formally named by WHO, and the Global Committee on Taxonomy referred to it as extreme Acute respiratory Syndrome Coronavirus-2 (SARS-CoV-2). Currently there is no efficient method to control the extent of SARS-CoV-2 other than social distancing and hygiene activities. This study aims to present a simple medicinal strategy for combating fatal viral diseases like COVID-19 with minimum effort and intervention. Different Ayurveda medicines (, green tea, and ) inhibit virus entrance and pathogen transmission while also enhancing immunity. Piperine (1-piperoylpiperidine), as well as curcumin, combine to create an intermolecular complex (π-π) that improves curcumin bioavailability by inhibiting glucuronidation of curcumin in the liver. The receptor-binding domains of the S-protein and also the angiotensin-converting enzyme 2 receptor of the recipient organism are directly occupied by curcumin and catechin, respectively, thereby preventing viruses from entering the cell. As a result, the infection will be tolerated by the animal host.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128320161240703092622
2024-07-22
2025-01-17
Loading full text...

Full text loading...

References

  1. CyranoskiD. Profile of a scientists are quickly piecing together how the new coronavirus operates, where it came from and what it might do next-but pressing questions remain.Nature2020581222610.1038/d41586‑020‑01315‑732367025
    [Google Scholar]
  2. DongL. HuS. GaoJ. Discovering drugs to treat coronavirus disease 2019 (COVID-19).Drug Discov. Ther.2020141586010.5582/ddt.2020.0101232147628
    [Google Scholar]
  3. ZhouP. YangX.L. WangX.G. HuB. ZhangL. ZhangW. SiH.R. ZhuY. LiB. HuangC.L. ChenH.D. ChenJ. LuoY. GuoH. JiangR.D. LiuM.Q. ChenY. ShenX.R. WangX. ZhengX.S. ZhaoK. ChenQ.J. DengF. LiuL.L. YanB. ZhanF.X. WangY.Y. XiaoG.F. ShiZ.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin.Nature2020579779827027310.1038/s41586‑020‑2012‑732015507
    [Google Scholar]
  4. World Health Organization. Coronavirus disease (COVID-19) epidemiological updates and monthly operational updates. Available from https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
  5. PengfeiS. XiaoshengL. ChaoX. WenjuanS.B.P. Understanding of COVID-19 based on current evidence.Jou. Med Virol.202092654855110.1002/jmv.25722
    [Google Scholar]
  6. ShullaA. Heald-SargentT. SubramanyaG. ZhaoJ. PerlmanS. GallagherT. A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry.J. Virol.201185287388210.1128/JVI.02062‑1021068237
    [Google Scholar]
  7. GheblawiM. WangK. ViveirosA. NguyenQ. ZhongJ.C. TurnerA.J. RaizadaM.K. GrantM.B. OuditG.Y. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: Celebrating the 20th anniversary of the discovery of ACE2.Circ. Res.2020126101456147410.1161/CIRCRESAHA.120.31701532264791
    [Google Scholar]
  8. WangJ.J. EdinM.L. ZeldinD.C. LiC. WangD.W. ChenC. Good or bad: Application of RAAS inhibitors in COVID-19 patients with cardiovascular comorbidities.Pharmacol. Ther.202021510762810.1016/j.pharmthera.2020.10762832653530
    [Google Scholar]
  9. PetrosilloN. ViceconteG. ErgonulO. IppolitoG. PetersenE. COVID-19, SARS and MERS: Are they closely related?Clin. Microbiol. Infect.202026672973410.1016/j.cmi.2020.03.02632234451
    [Google Scholar]
  10. ChanJ.F.W. KokK.H. ZhuZ. ChuH. ToK.K.W. YuanS. YuenK.Y. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan.Emerg. Microbes Infect.20209122123610.1080/22221751.2020.171990231987001
    [Google Scholar]
  11. WuA. PengY. HuangB. DingX. WangX. NiuP. MengJ. ZhuZ. ZhangZ. WangJ. ShengJ. QuanL. XiaZ. TanW. ChengG. JiangT. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China.Cell Host Microbe202027332532810.1016/j.chom.2020.02.00132035028
    [Google Scholar]
  12. Al-TawfiqJ.A. HinediK. GhandourJ. KhairallaH. MuslehS. UjayliA. MemishZ.A. Middle East respiratory syndrome coronavirus: A case-control study of hospitalized patients.Clin. Infect. Dis.201459216016510.1093/cid/ciu22624723278
    [Google Scholar]
  13. ArabiY.M. ArifiA.A. BalkhyH.H. NajmH. AldawoodA.S. GhabashiA. HawaH. AlothmanA. KhaldiA. Al RaiyB. Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection.Ann. Intern. Med.20141606389-39710.7326/M13‑248624474051
    [Google Scholar]
  14. ChafekarA. FieldingB. MERS-CoV: Understanding the latest human coronavirus threat.Viruses20181029310.3390/v1002009329495250
    [Google Scholar]
  15. GuJ. GongE. ZhangB. ZhengJ. GaoZ. ZhongY. ZouW. ZhanJ. WangS. XieZ. ZhuangH. WuB. ZhongH. ShaoH. FangW. GaoD. PeiF. LiX. HeZ. XuD. ShiX. AndersonV.M. LeongA.S.Y. Multiple organ infection and the pathogenesis of SARS.J. Exp. Med.2005202341542410.1084/jem.2005082816043521
    [Google Scholar]
  16. ZhangP. ZhuL. CaiJ. LeiF. QinJ.J. XieJ. LiuY.M. ZhaoY.C. HuangX. LinL. XiaM. ChenM.M. ChengX. ZhangX. GuoD. PengY. JiY.X. ChenJ. SheZ.G. WangY. XuQ. TanR. WangH. LinJ. LuoP. FuS. CaiH. YeP. XiaoB. MaoW. LiuL. YanY. LiuM. ChenM. ZhangX.J. WangX. TouyzR.M. XiaJ. ZhangB.H. HuangX. YuanY. LoombaR. LiuP.P. LiH. Association of inpatient use of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers with mortality among patients with hypertension hospitalized with COVID-19.Circ. Res.2020126121671168110.1161/CIRCRESAHA.120.31713432302265
    [Google Scholar]
  17. Barbosa-FilhoJ.M. MartinsV.K.M. RabeloL.A. MouraM.D. SilvaM.S. CunhaE.V.L. SouzaM.F.V. AlmeidaR.N. MedeirosI.A. Natural products inhibitors of the angiotensin converting enzyme (ACE): A review between 1980-2000.Rev. Bras. Farmacogn.200616342144610.1590/S0102‑695X2006000300021
    [Google Scholar]
  18. PattenG.S. AbeywardenaM.Y. BennettL.E. Inhibition of angiotensin converting enzyme, angiotensin II receptor blocking, and blood pressure lowering bioactivity across plant families.Crit. Rev. Food Sci. Nutr.201656218121410.1080/10408398.2011.65117624915402
    [Google Scholar]
  19. JoshiT. JoshiT. SharmaP. MathpalS. PundirH. BhattV. ChandraS. In silico screening of natural compounds against COVID-19 by targeting Mpro and ACE2 using molecular docking.Eur. Rev. Med. Pharmacol. Sci.20202484529453632373991
    [Google Scholar]
  20. da AntonioA. S, Wiedemann MLS, Veiga-Junior, VF. Natural products’ role against COVID-19. RSC Advance2020102337923393
    [Google Scholar]
  21. RiceG.I. ThomasD.A. GrantP.J. TurnerA.J. HooperN.M. Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism.Biochem. J.20043831455110.1042/BJ2004063415283675
    [Google Scholar]
  22. Daskaya-DikmenC. YucetepeA. Karbancioglu-GulerF. DaskayaH. OzcelikB. Angiotensin-I-converting enzyme (ACE)-inhibitory peptides from plants.Nutrients20179431610.3390/nu904031628333109
    [Google Scholar]
  23. PanditM. LathaN. In silico studies reveal potential antiviral activity of phytochemicals from medicinal plants for the treatment of COVID-19 infection. 2020.10.21203/rs.3.rs‑22687/v1
    [Google Scholar]
  24. ZakaryanH. ArabyanE. OoA. ZandiK. Flavonoids: Promising natural compounds against viral infections.Arch. Virol.201716292539255110.1007/s00705‑017‑3417‑y28547385
    [Google Scholar]
  25. MeneguzzoF. CiriminnaR. ZabiniF. PagliaroM. Review of evidence available on hesperidin-rich products as potential tools against COVID-19 and hydrodynamic cavitation-based extraction as a method of increasing their production.Processes (Basel)20208554910.3390/pr8050549
    [Google Scholar]
  26. ChenC.N. LinC.P.C. HuangK.K. ChenW.C. HsiehH.P. LiangP.H. HsuJ.T.A. Inhibition of SARS-CoV 3C-like protease activity by Theaflavin-3,3′-digallate (TF3).Evid. Based Complement. Alternat. Med.20052220921510.1093/ecam/neh08115937562
    [Google Scholar]
  27. ChenhJ. TangY. BaoB. ZhangP. Exploring the active compounds of traditional Mongolian medicine agsirga in intervention of novel coronavirusChemRxiv 2019; 11955273.10.26434/chemrxiv.11955273.v2
    [Google Scholar]
  28. JoshiR. JagdaleS. BansodeS. ShankarSS. TellisM. PandyaVK. GiriA. KulkarniM. Discovery of potential multi-target-directed ligands by targeting host-specific SARS-CoV-2 structurally conserved main protease.Biomol, J. Struct. Dyn.20203993099311910.1080/07391102.2020.1760137
    [Google Scholar]
  29. AlishaK. TriptiS. Computational screening of phytochemicals from medicinal plants as COVID-19 inhibitors.ChemRxiv 2020; 12320273.10.26434/chemrxiv.12320273.v1
    [Google Scholar]
  30. OoA. TeohB.T. SamS.S. BakarS.A. ZandiK. Baicalein and baicalin as Zika virus inhibitors.Arch. Virol.2019164258559310.1007/s00705‑018‑4083‑430392049
    [Google Scholar]
  31. RahmanN. BasharatZ. YousufM. CastaldoG. RastrelliL. KhanH. Virtual screening of natural products against type II transmembrane serine protease (TMPRSS2), the priming agent of coronavirus 2 (SARS-CoV-2).Molecules20202510227110.3390/molecules2510227132408547
    [Google Scholar]
  32. AlokA. IndraD.S. ShivaniS. MallikaK. PrakashC.J. Curcumin - pharmacological actions and its role in oral submucous fibrosis: A review.J. Clin. Diagn. Res.2015910ZE0110.7860/JCDR/2015/13857.6552
    [Google Scholar]
  33. YadavS.K. KharR.K. MujeebM. AkhtarM. YadavD. Turmeric (Curcuma longa L.): A promising spice for phytochemical and pharmacological activities.Int J Green Pharm2013728510.4103/0973‑8258.116375
    [Google Scholar]
  34. PriyaN.C. KumarP.S. Antiviral activities and cytotoxicaty assay of seed extracts of Piper longum and Piper nigrum on human cell lines.Int. J. Pharm. Sci. Rev. Res.201744197202
    [Google Scholar]
  35. BukhariI.A. PivacN. AlhumayydM.S. MahesarA.L. GilaniA.H. The analgesic and anticonvulsant effects of piperine in mice.J. Physiol. Pharmacol.201364678979424388894
    [Google Scholar]
  36. JoshiD.R. ShresthaA.C. AdhikariN. A review on diversified use of the king of spices: Piper nigrum (black paper).Int. J. Pharm. Sci. Res.20189104089410110.13040/IJPSR.0975‑8232.9(10).4089‑01
    [Google Scholar]
  37. BashirT. Chemistry, pharmacology and ethnomedicinal uses of Helianthus annuus (sunflower): A review.Pure Appl. Biol.20154222623510.19045/bspab.2015.42011
    [Google Scholar]
  38. PalD. Sunflower (Helianthus annuus L.) seeds in health and nutrition.Nuts Seeds Health Dis Preven201120111097110510.1016/B978‑0‑12‑375688‑6.10130‑6
    [Google Scholar]
  39. LongY.Q. LeeS.L. LinC.Y. EnyedyI.J. WangS. LiP. DicksonR.B. RollerP.P. Synthesis and evaluation of the sunflower derived trypsin inhibitor as a potent inhibitor of the type II transmembrane serine protease, matriptase.Bioorg. Med. Chem. Lett.200111182515251910.1016/S0960‑894X(01)00493‑011549459
    [Google Scholar]
  40. JenaA.B. KanungoN. NayakV. ChainyG.B.N. Catechin, and curcumin interact with corona (2019-nCoV/SARS-CoV2) viral S protein and ACE2 of human cell membrane: Insights from computational study and implication for intervention.Sci Rep2021111204310.21203/rs.3.rs‑22057/v1
    [Google Scholar]
  41. LiuC. ZhouQ. LiY. GarnerL.V. WatkinsS.P. CarterL.J. SmootJ. GreggA.C. DanielsA.D. JerveyS. AlbaiuD. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases.ACS Cent. Sci.20206331533110.1021/acscentsci.0c0027232226821
    [Google Scholar]
  42. ZhengY.Y. MaY.T. ZhangJ.Y. XieX. COVID-19 and the cardiovascular system.Nat. Rev. Cardiol.202017525926010.1038/s41569‑020‑0360‑532139904
    [Google Scholar]
  43. ShimJ.S. KimJ.H. ChoH.Y. YumY.N. KimS.H. ParkH.J. ShimB.S. ChoiS.H. KwonH.J. Irreversible inhibition of CD13/aminopeptidase N by the antiangiogenic agent curcumin.Chem. Biol.200310869570410.1016/S1074‑5521(03)00169‑812954328
    [Google Scholar]
  44. RabiF.A. Al ZoubiM.S. KasasbehG.A. SalamehD.M. Al-NasserA.D. AmjadD. SARS-CoV-2 and coronavirus disease 2019: What We know so far.Pathogens20209323110.3390/pathogens9030231
    [Google Scholar]
  45. RegueraJ. SantiagoC. MudgalG. OrdoñoD. EnjuanesL. CasasnovasJ.M. Structural bases of coronavirus attachment to host aminopeptidase N and its inhibition by neutralizing antibodies.PLoS Pathog.201288e100285910.1371/journal.ppat.100285922876187
    [Google Scholar]
  46. LiF. Structure, function, and evolution of coronavirus spike proteins.Annu. Rev. Virol.20163123726110.1146/annurev‑virology‑110615‑04230127578435
    [Google Scholar]
  47. ŠedoA. VlašicováK. BartákP. VespalecR. VičarJ. ŠimánekV. UlrichováJ. Quaternary benzo[c]phenanthridine alkaloids as inhibitors of aminopeptidase N and dipeptidyl peptidase IV.Phytother. Res.2002161848710.1002/ptr.96911807974
    [Google Scholar]
  48. GallagherT.M. BuchmeierM.J. Coronavirus spike proteins in viral entry and pathogenesis.Virology2001279237137410.1006/viro.2000.075711162792
    [Google Scholar]
  49. WangL. ShiW. JoyceM.G. ModjarradK. ZhangY. LeungK. LeesC.R. ZhouT. YassineH.M. KanekiyoM. YangZ. ChenX. BeckerM.M. FreemanM. VogelL. JohnsonJ.C. OlingerG. ToddJ.P. BagciU. SolomonJ. MolluraD.J. HensleyL. JahrlingP. DenisonM.R. RaoS.S. SubbaraoK. KwongP.D. MascolaJ.R. KongW.P. GrahamB.S. Evaluation of candidate vaccine approaches for MERS-CoV.Nat. Commun.201561771210.1038/ncomms871226218507
    [Google Scholar]
  50. BernsteinK.E. KhanZ. GianiJ.F. CaoD.Y. BernsteinE.A. ShenX.Z. Angiotensin-converting enzyme in innate and adaptive immunity.Nat. Rev. Nephrol.201814532533610.1038/nrneph.2018.1529578208
    [Google Scholar]
  51. TanE.L.C. OoiE.E. LinC.Y. TanH.C. LingA.E. LimB. StantonL.W. Inhibition of SARS coronavirus infection in vitro with clinically approved antiviral drugs.Emerg. Infect. Dis.200410458158610.3201/eid1004.03045815200845
    [Google Scholar]
  52. ShobaG. JoyD. JosephT. MajeedM. RajendranR. SrinivasP. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers.Planta Med.199864435335610.1055/s‑2006‑9574509619120
    [Google Scholar]
  53. Kumar G, Kumar D, Singh NP, Therapeutic approach against 2019-nCoV by inhibition of ACE-2 receptor. Drug Res 2021; 71: 213-17. 10.1055/a‑1275‑022833184809
  54. SongJ.M. Anti-infective potential of catechins and their derivatives against viral hepatitis.Clin. Exp. Vaccine Res.201871374210.7774/cevr.2018.7.1.3729399578
    [Google Scholar]
  55. ShinojimaN. YokoyamaT. KondoY. KondoS. Roles of the Akt/mTOR/p70S6K and ERK1/2 signaling pathways in curcumin-induced autophagy.Autophagy20073663563710.4161/auto.491617786026
    [Google Scholar]
  56. PatilV.M. DasS. BalasubramanianK. Quantum chemical and docking insights into bioavailability enhancement of curcumin by piperine in pepper.J. Phys. Chem. A2016120203643365310.1021/acs.jpca.6b0143427111639
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128320161240703092622
Loading
/content/journals/cpd/10.2174/0113816128320161240703092622
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): 1-piperoylpiperidine; 2019-nCoV; ACE-2; catechin; curcumin; inhibitors; TMPRSS2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test