Skip to content
2000
Volume 31, Issue 6
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Introduction

The incidence of Central Nervous System (CNS) disorders, including Parkinson's disease, Alzheimer's disease, stroke, and malignancies, has risen significantly in recent decades, contributing to millions of deaths annually. Efficacious treatment of these disorders requires medicines targeting the brain. The Blood-brain Barrier (BBB) poses a formidable challenge to effective drug delivery to the brain, hindering progress in CNS therapeutics. This review explores the latest developments in nanoparticulate carriers, highlighting their potential to overcome BBB limitations.

Objective

This study aimed to evaluate and summarise the critical factors and pathways in the nanoparticle-based CNS targeted drug delivery.

Methods

An extensive literature search was conducted, comprising the initial development of nanoparticle-based CNS-targeted drug delivery approaches to the latest advancements using various online search tools.

Results

The properties of nanoparticles, such as type of nanoparticles, size, shape, surface charge, hydrophobicity, and surface functionalisation, along with properties of the BBB during normal and pathological conditions and their impact on the delivery of nanoparticles across the BBB, are identified and discussed here.

Conclusion

Important properties and pathways that determine the penetration of nanoparticles across the CNS are reviewed in this article, along with recent advances in the field.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128328722240828184410
2024-09-24
2025-01-18
Loading full text...

Full text loading...

References

  1. DorseyE.R. ElbazA. NicholsE. AbbasiN. Abd-AllahF. AbdelalimA. AdsuarJ.C. AnshaM.G. BrayneC. ChoiJ-Y.J. Collado-MateoD. DahodwalaN. DoH.P. EdessaD. EndresM. FereshtehnejadS-M. ForemanK.J. GankpeF.G. GuptaR. HamidiS. HankeyG.J. HayS.I. HegazyM.I. HibstuD.T. KasaeianA. KhaderY. KhalilI. KhangY-H. KimY.J. KokuboY. LogroscinoG. MassanoJ. Mohamed IbrahimN. MohammedM.A. MohammadiA. Moradi-LakehM. NaghaviM. NguyenB.T. NirayoY.L. OgboF.A. OwolabiM.O. PereiraD.M. PostmaM.J. QorbaniM. RahmanM.A. RobaK.T. SafariH. SafiriS. SatpathyM. SawhneyM. ShafieesabetA. ShiferawM.S. SmithM. SzoekeC.E.I. Tabarés-SeisdedosR. TruongN.T. UkwajaK.N. VenketasubramanianN. VillafainaS. weldegwergsK. WestermanR. WijeratneT. WinklerA.S. XuanB.T. YonemotoN. FeiginV.L. VosT. MurrayC.J.L. GBD 2016 Parkinson’s Disease Collaborators Global, regional, and national burden of Parkinson’s disease, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016.Lancet Neurol.2018171193995310.1016/S1474‑4422(18)30295‑330287051
    [Google Scholar]
  2. FeiginV.L. StarkB.A. JohnsonC.O. RothG.A. BisignanoC. AbadyG.G. AbbasifardM. Abbasi-KangevariM. Abd-AllahF. AbediV. AbualhasanA. Abu-RmeilehN.M.E. AbushoukA.I. AdebayoO.M. AgarwalG. AgasthiP. AhinkorahB.O. AhmadS. AhmadiS. Ahmed SalihY. AjiB. AkbarpourS. AkinyemiR.O. Al HamadH. AlahdabF. AlifS.M. AlipourV. AljunidS.M. AlmustanyirS. Al-RaddadiR.M. Al-Shahi SalmanR. Alvis-GuzmanN. AncuceanuR. AnderliniD. AndersonJ.A. AnsarA. AntonazzoI.C. ArablooJ. ÄrnlövJ. ArtantiK.D. AryanZ. AsgariS. AshrafT. AtharM. AtreyaA. AusloosM. BaigA.A. BaltatuO.C. BanachM. BarbozaM.A. Barker-ColloS.L. BärnighausenT.W. BaroneM.T.U. BasuS. BazmandeganG. BeghiE. BeheshtiM. BéjotY. BellA.W. BennettD.A. BensenorI.M. BezabheW.M. BezabihY.M. BhagavathulaA.S. BhardwajP. BhattacharyyaK. BijaniA. BikbovB. BirhanuM.M. BoloorA. BonnyA. BrauerM. BrennerH. BryazkaD. ButtZ.A. Caetano dos SantosF.L. Campos-NonatoI.R. Cantu-BritoC. CarreroJ.J. Castañeda-OrjuelaC.A. CatapanoA.L. ChakrabortyP.A. CharanJ. ChoudhariS.G. ChowdhuryE.K. ChuD-T. ChungS-C. ColozzaD. CostaV.M. CostanzoS. CriquiM.H. DadrasO. DagnewB. DaiX. DalalK. DamascenoA.A.M. D’AmicoE. DandonaL. DandonaR. Darega GelaJ. DavletovK. De la Cruz-GóngoraV. DesaiR. DhamnetiyaD. DharmaratneS.D. DhimalM.L. DhimalM. DiazD. DichgansM. DokovaK. DoshiR. DouiriA. DuncanB.B. EftekharzadehS. EkholuenetaleM. El NahasN. ElgendyI.Y. ElhadiM. El-JaafaryS.I. EndresM. EndriesA.Y. ErkuD.A. FaraonE.J.A. FarooqueU. FarzadfarF. FerozeA.H. FilipI. FischerF. FloodD. GadM.M. GaidhaneS. Ghanei GheshlaghR. GhashghaeeA. GhithN. GhozaliG. GhozyS. GialluisiA. GiampaoliS. GilaniS.A. GillP.S. GnedovskayaE.V. GolechhaM. GoulartA.C. GuoY. GuptaR. GuptaV.B. GuptaV.K. GyanwaliP. Hafezi-NejadN. HamidiS. HanifA. HankeyG.J. HargonoA. HashiA. HassanT.S. HassenH.Y. HavmoellerR.J. HayS.I. HayatK. HegazyM.I. HerteliuC. HollaR. HostiucS. HousehM. HuangJ. HumayunA. HwangB-F. IacovielloL. IavicoliI. IbitoyeS.E. IlesanmiO.S. IlicI.M. IlicM.D. IqbalU. IrvaniS.S.N. IslamS.M.S. IsmailN.E. IsoH. IsolaG. IwagamiM. JacobL. JainV. JangS-I. JayapalS.K. JayaramS. JayawardenaR. JeemonP. JhaR.P. JohnsonW.D. JonasJ.B. JosephN. JozwiakJ.J. JürissonM. KalaniR. KalhorR. KalkondeY. KamathA. KamiabZ. KanchanT. KandelH. KarchA. KatotoP.D.M.C. KayodeG.A. KeshavarzP. KhaderY.S. KhanE.A. KhanI.A. KhanM. KhanM.A.B. KhatibM.N. KhubchandaniJ. KimG.R. KimM.S. KimY.J. KisaA. KisaS. KivimäkiM. KolteD. KoolivandA. Koulmane LaxminarayanaS.L. KoyanagiA. KrishanK. KrishnamoorthyV. KrishnamurthiR.V. KumarG.A. KusumaD. La VecchiaC. LaceyB. LakH.M. LallukkaT. LasradoS. LavadosP.M. LeonardiM. LiB. LiS. LinH. LinR-T. LiuX. LoW.D. LorkowskiS. LucchettiG. Lutzky SauteR. Magdy Abd El RazekH. MagnaniF.G. MahajanP.B. MajeedA. MakkiA. MalekzadehR. MalikA.A. ManafiN. MansourniaM.A. MantovaniL.G. MartiniS. MazzagliaG. MehndirattaM.M. MenezesR.G. MeretojaA. MershaA.G. Miao JonassonJ. MiazgowskiB. MiazgowskiT. MichalekI.M. MirrakhimovE.M. MohammadY. Mohammadian-HafshejaniA. MohammedS. MokdadA.H. MokhayeriY. MolokhiaM. MoniM.A. MontasirA.A. MoradzadehR. MorawskaL. MorzeJ. MuruetW. MusaK.I. NagarajanA.J. NaghaviM. Narasimha SwamyS. NascimentoB.R. NegoiR.I. Neupane KandelS. NguyenT.H. NorrvingB. NoubiapJ.J. NwatahV.E. OanceaB. OdukoyaO.O. OlagunjuA.T. OrruH. OwolabiM.O. PadubidriJ.R. PanaA. ParekhT. ParkE-C. Pashazadeh KanF. PathakM. PeresM.F.P. PerianayagamA. PhamT-M. PiradovM.A. PodderV. PolinderS. PostmaM.J. PourshamsA. RadfarA. RafieiA. RaggiA. RahimF. Rahimi-MovagharV. RahmanM. RahmanM.A. RahmaniA.M. RajaiN. RanasingheP. RaoC.R. RaoS.J. RathiP. RawafD.L. RawafS. ReitsmaM.B. RenjithV. RenzahoA.M.N. RezapourA. RodriguezJ.A.B. RoeverL. RomoliM. RynkiewiczA. SaccoS. SadeghiM. Saeedi MoghaddamS. SahebkarA. Saif-Ur-RahmanK.M. SalahR. SamaeiM. SamyA.M. SantosI.S. Santric-MilicevicM.M. SarrafzadeganN. SathianB. SattinD. SchiavolinS. SchlaichM.P. SchmidtM.I. SchutteA.E. SepanlouS.G. SeylaniA. ShaF. ShahabiS. ShaikhM.A. ShannawazM. ShawonM.S.R. SheikhA. SheikhbahaeiS. ShibuyaK. SiabaniS. SilvaD.A.S. SinghJ.A. SinghJ.K. SkryabinV.Y. SkryabinaA.A. SobaihB.H. StorteckyS. StrangesS. TadesseE.G. TariganI.U. TemsahM-H. TeuschlY. ThriftA.G. TonelliM. Tovani-PaloneM.R. TranB.X. TripathiM. TsegayeG.W. UllahA. UnimB. UnnikrishnanB. VakilianA. Valadan TahbazS. VasankariT.J. VenketasubramanianN. VervoortD. VoB. VoloviciV. VosoughiK. VuG.T. VuL.G. WafaH.A. WaheedY. WangY. WijeratneT. WinklerA.S. WolfeC.D.A. WoodwardM. WuJ.H. Wulf HansonS. XuX. YadavL. YadollahpourA. Yahyazadeh JabbariS.H. YamagishiK. YatsuyaH. YonemotoN. YuC. YunusaI. ZamanM.S. ZamanS.B. ZamanianM. ZandR. ZandifarA. ZastrozhinM.S. ZastrozhinaA. ZhangY. ZhangZ-J. ZhongC. ZunigaY.M.H. MurrayC.J.L. GBD 2019 Stroke Collaborators Global, regional, and national burden of stroke and its risk factors, 1990-2019: A systematic analysis for the Global Burden of Disease Study 2019.Lancet Neurol.2021201079582010.1016/S1474‑4422(21)00252‑034487721
    [Google Scholar]
  3. PatelA.P. FisherJ.L. NicholsE. Abd-AllahF. AbdelaJ. AbdelalimA. AbrahaH.N. AgiusD. AlahdabF. AlamT. AllenC.A. AnberN.H. AwasthiA. BadaliH. BelachewA.B. BijaniA. BjørgeT. CarvalhoF. Catalá-LópezF. ChoiJ-Y.J. DaryaniA. DegefaM.G. DemozG.T. DoH.P. DubeyM. FernandesE. FilipI. ForemanK.J. GebreA.K. GeramoY.C.D. Hafezi-NejadN. HamidiS. HarveyJ.D. HassenH.Y. HayS.I. IrvaniS.S.N. JakovljevicM. JhaR.P. KasaeianA. KhalilI.A. KhanE.A. KhangY-H. KimY.J. MengistuG. MohammadK.A. MokdadA.H. NagelG. NaghaviM. NaikG. NguyenH.L.T. NguyenL.H. NguyenT.H. NixonM.R. OlagunjuA.T. PereiraD.M. Pinilla-MonsalveG.D. PoustchiH. QorbaniM. RadfarA. ReinerR.C. RoshandelG. SafariH. SafiriS. SamyA.M. SarviS. ShaikhM.A. SharifM. SharmaR. SheikhbahaeiS. ShirkoohiR. SinghJ.A. SmithM. Tabarés-SeisdedosR. TranB.X. TranK.B. UllahI. WeiderpassE. WeldegwergsK.G. YimerE.M. ZadnikV. ZaidiZ. EllenbogenR.G. VosT. FeiginV.L. MurrayC.J.L. FitzmauriceC. GBD 2016 Brain and Other CNS Cancer Collaborators Global, regional, and national burden of brain and other CNS cancer, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016.Lancet Neurol.201918437639310.1016/S1474‑4422(18)30468‑X30797715
    [Google Scholar]
  4. FeiginV.L. NicholsE. AlamT. BannickM.S. BeghiE. BlakeN. CulpepperW.J. DorseyE.R. ElbazA. EllenbogenR.G. FisherJ.L. FitzmauriceC. GiussaniG. GlennieL. JamesS.L. JohnsonC.O. KassebaumN.J. LogroscinoG. MarinB. Mountjoy-VenningW.C. NguyenM. Ofori-AsensoR. PatelA.P. PiccininniM. RothG.A. SteinerT.J. StovnerL.J. SzoekeC.E.I. TheadomA. VollsetS.E. WallinM.T. WrightC. ZuntJ.R. AbbasiN. Abd-AllahF. AbdelalimA. AbdollahpourI. AboyansV. AbrahaH.N. AcharyaD. AdamuA.A. AdebayoO.M. AdeoyeA.M. AdsuarJ.C. AfaridehM. AgrawalS. AhmadiA. AhmedM.B. AichourA.N. AichourI. AichourM.T.E. AkinyemiR.O. AkseerN. Al-EyadhyA. Al-Shahi SalmanR. AlahdabF. AleneK.A. AljunidS.M. AltirkawiK. Alvis-GuzmanN. AnberN.H. AntonioC.A.T. ArablooJ. AremuO. ÄrnlövJ. AsayeshH. AsgharR.J. AtalayH.T. AwasthiA. Ayala QuintanillaB.P. AyukT.B. BadawiA. BanachM. BanoubJ.A.M. BarbozaM.A. Barker-ColloS.L. BärnighausenT.W. BauneB.T. BediN. BehzadifarM. BehzadifarM. BéjotY. BekeleB.B. BelachewA.B. BennettD.A. BensenorI.M. BerhaneA. BeuranM. BhattacharyyaK. BhuttaZ.A. BiadgoB. BijaniA. BililignN. Bin SayeedM.S. BlazesC.K. BrayneC. ButtZ.A. Campos-NonatoI.R. Cantu-BritoC. CarM. CárdenasR. CarreroJ.J. CarvalhoF. Castañeda-OrjuelaC.A. CastroF. Catalá-LópezF. CerinE. ChaiahY. ChangJ-C. ChatziralliI. ChiangP.P-C. ChristensenH. ChristopherD.J. CooperC. CortesiP.A. CostaV.M. CriquiM.H. CroweC.S. DamascenoA.A.M. DaryaniA. De la Cruz-GóngoraV. De la HozF.P. De LeoD. DemozG.T. DeribeK. DharmaratneS.D. DiazD. DinberuM.T. DjalaliniaS. DokuD.T. DubeyM. DubljaninE. DukenE.E. EdvardssonD. El-KhatibZ. EndresM. EndriesA.Y. EskandariehS. EsteghamatiA. EsteghamatiS. FarhadiF. FaroA. FarzadfarF. FarzaeiM.H. FatimaB. FereshtehnejadS-M. FernandesE. FeyissaG.T. FilipI. FischerF. FukumotoT. GanjiM. GankpeF.G. Garcia-GordilloM.A. GebreA.K. GebremichaelT.G. GelawB.K. GeleijnseJ.M. GeremewD. GezaeK.E. Ghasemi-KasmanM. GideyM.Y. GillP.S. GillT.K. GirmaE.T. GnedovskayaE.V. GoulartA.C. GradaA. GrossoG. GuoY. GuptaR. GuptaR. HaagsmaJ.A. HagosT.B. Haj-MirzaianA. Haj-MirzaianA. HamadehR.R. HamidiS. HankeyG.J. HaoY. HaroJ.M. HassankhaniH. HassenH.Y. HavmoellerR. HayS.I. HegazyM.I. HeidariB. HenokA. HeydarpourF. HoangC.L. HoleM.K. Homaie RadE. HosseiniS.M. HuG. IgumborE.U. IlesanmiO.S. IrvaniS.S.N. IslamS.M.S. JakovljevicM. JavanbakhtM. JhaR.P. JobanputraY.B. JonasJ.B. JozwiakJ.J. JürissonM. KahsayA. KalaniR. KalkondeY. KamilT.A. KanchanT. KaramiM. KarchA. KarimiN. KasaeianA. KassaT.D. KassaZ.Y. KaulA. KefaleA.T. KeiyoroP.N. KhaderY.S. KhafaieM.A. KhalilI.A. KhanE.A. KhangY-H. KhazaieH. KiadaliriA.A. KiirithioD.N. KimA.S. KimD. KimY-E. KimY.J. KisaA. KokuboY. KoyanagiA. KrishnamurthiR.V. Kuate DefoB. Kucuk BicerB. KumarM. LaceyB. LafranconiA. LansinghV.C. LatifiA. LeshargieC.T. LiS. LiaoY. LinnS. LoW.D. LopezJ.C.F. LorkowskiS. LotufoP.A. LucasR.M. LuneviciusR. MackayM.T. MahotraN.B. MajdanM. MajdzadehR. MajeedA. MalekzadehR. MaltaD.C. ManafiN. MansourniaM.A. MantovaniL.G. MärzW. Mashamba-ThompsonT.P. MassenburgB.B. MateK.K.V. McAlindenC. McGrathJ.J. MehtaV. MeierT. MelesH.G. MeleseA. MemiahP.T.N. MemishZ.A. MendozaW. MengistuD.T. MengistuG. MeretojaA. MeretojaT.J. MestrovicT. MiazgowskiB. MiazgowskiT. MillerT.R. MiniG.K. MirrakhimovE.M. MoazenB. MohajerB. Mohammad Gholi MezerjiN. MohammadiM. Mohammadi-KhanaposhtaniM. MohammadibakhshR. Mohammadnia-AfrouziM. MohammedS. MohebiF. MokdadA.H. MonastaL. MondelloS. MoodleyY. MoosazadehM. MoradiG. Moradi-LakehM. MoradinazarM. MoragaP. Moreno VelásquezI. MorrisonS.D. MousaviS.M. MuhammedO.S. MuruetW. MusaK.I. MustafaG. NaderiM. NagelG. NaheedA. NaikG. NajafiF. NangiaV. NegoiI. NegoiR.I. NewtonC.R.J. NgunjiriJ.W. NguyenC.T. NguyenL.H. NingrumD.N.A. NirayoY.L. NixonM.R. NorrvingB. NoubiapJ.J. Nourollahpour ShiadehM. NyasuluP.S. OgahO.S. OhI-H. OlagunjuA.T. OlagunjuT.O. OlivaresP.R. OnwujekweO.E. OrenE. OwolabiM.O. PaM. PakpourA.H. PanW-H. Panda-JonasS. PandianJ.D. PatelS.K. PereiraD.M. PetzoldM. PillayJ.D. PiradovM.A. PolanczykG.V. PolinderS. PostmaM.J. PoultonR. PoustchiH. PrakashS. PrakashV. QorbaniM. RadfarA. RafayA. RafieiA. RahimF. Rahimi-MovagharV. RahmanM. RahmanM.H.U. RahmanM.A. RajatiF. RamU. RantaA. RawafD.L. RawafS. ReinigN. ReisC. RenzahoA.M.N. ResnikoffS. RezaeianS. RezaiM.S. Rios GonzálezC.M. RobertsN.L.S. RoeverL. RonfaniL. RoroE.M. RoshandelG. RostamiA. SabbaghP. SaccoR.L. SachdevP.S. SaddikB. SafariH. Safari-FaramaniR. SafiS. SafiriS. SagarR. SahathevanR. SahebkarA. SahraianM.A. SalamatiP. Salehi ZahabiS. SalimiY. SamyA.M. SanabriaJ. SantosI.S. Santric MilicevicM.M. SarrafzadeganN. SartoriusB. SarviS. SathianB. SatpathyM. SawantA.R. SawhneyM. SchneiderI.J.C. SchöttkerB. SchwebelD.C. SeedatS. SepanlouS.G. ShabaninejadH. ShafieesabetA. ShaikhM.A. ShakirR.A. Shams-BeyranvandM. ShamsizadehM. SharifM. Sharif-AlhoseiniM. SheJ. SheikhA. ShethK.N. ShigematsuM. ShiriR. ShirkoohiR. ShiueI. SiabaniS. SiddiqiT.J. SigfusdottirI.D. SigurvinsdottirR. SilberbergD.H. SilvaJ.P. SilveiraD.G.A. SinghJ.A. SinhaD.N. SkiadaresiE. SmithM. SobaihB.H. SobhaniS. SoofiM. SoyiriI.N. SposatoL.A. SteinD.J. SteinM.B. StokesM.A. SufiyanM.B. SykesB.L. SylajaP.N. Tabarés-SeisdedosR. Te AoB.J. Tehrani-BanihashemiA. TemsahM-H. TemsahO. ThakurJ.S. ThriftA.G. Topor-MadryR. Tortajada-GirbésM. Tovani-PaloneM.R. TranB.X. TranK.B. TruelsenT.C. TsadikA.G. Tudor CarL. UkwajaK.N. UllahI. UsmanM.S. UthmanO.A. ValdezP.R. VasankariT.J. VasanthanR. VeisaniY. VenketasubramanianN. ViolanteF.S. VlassovV. VosoughiK. VuG.T. VujcicI.S. WagnewF.S. WaheedY. WangY-P. WeiderpassE. WeissJ. WhitefordH.A. WijeratneT. WinklerA.S. WiysongeC.S. WolfeC.D.A. XuG. YadollahpourA. YamadaT. YanoY. YaseriM. YatsuyaH. YimerE.M. YipP. YismaE. YonemotoN. YousefifardM. YuC. ZaidiZ. ZamanS.B. ZamaniM. ZandianH. ZareZ. ZhangY. ZodpeyS. NaghaviM. MurrayC.J.L. VosT. GBD 2016 Neurology Collaborators Global, regional, and national burden of neurological disorders, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016.Lancet Neurol.201918545948010.1016/S1474‑4422(18)30499‑X30879893
    [Google Scholar]
  5. NicholsE. SzoekeC.E.I. VollsetS.E. AbbasiN. Abd-AllahF. AbdelaJ. AichourM.T.E. AkinyemiR.O. AlahdabF. AsgedomS.W. AwasthiA. Barker-ColloS.L. BauneB.T. BéjotY. BelachewA.B. BennettD.A. BiadgoB. BijaniA. Bin SayeedM.S. BrayneC. CarpenterD.O. CarvalhoF. Catalá-LópezF. CerinE. ChoiJ-Y.J. DangA.K. DegefaM.G. DjalaliniaS. DubeyM. DukenE.E. EdvardssonD. EndresM. EskandariehS. FaroA. FarzadfarF. FereshtehnejadS-M. FernandesE. FilipI. FischerF. GebreA.K. GeremewD. Ghasemi-KasmanM. GnedovskayaE.V. GuptaR. HachinskiV. HagosT.B. HamidiS. HankeyG.J. HaroJ.M. HayS.I. IrvaniS.S.N. JhaR.P. JonasJ.B. KalaniR. KarchA. KasaeianA. KhaderY.S. KhalilI.A. KhanE.A. KhannaT. KhojaT.A.M. KhubchandaniJ. KisaA. Kissimova-SkarbekK. KivimäkiM. KoyanagiA. KrohnK.J. LogroscinoG. LorkowskiS. MajdanM. MalekzadehR. MärzW. MassanoJ. MengistuG. MeretojaA. MohammadiM. Mohammadi-KhanaposhtaniM. MokdadA.H. MondelloS. MoradiG. NagelG. NaghaviM. NaikG. NguyenL.H. NguyenT.H. NirayoY.L. NixonM.R. Ofori-AsensoR. OgboF.A. OlagunjuA.T. OwolabiM.O. Panda-JonasS. PassosV.M.A. PereiraD.M. Pinilla-MonsalveG.D. PiradovM.A. PondC.D. PoustchiH. QorbaniM. RadfarA. ReinerR.C.Jr RobinsonS.R. RoshandelG. RostamiA. RussT.C. SachdevP.S. SafariH. SafiriS. SahathevanR. SalimiY. SatpathyM. SawhneyM. SaylanM. SepanlouS.G. ShafieesabetA. ShaikhM.A. SahraianM.A. ShigematsuM. ShiriR. ShiueI. SilvaJ.P. SmithM. SobhaniS. SteinD.J. Tabarés-SeisdedosR. Tovani-PaloneM.R. TranB.X. TranT.T. TsegayA.T. UllahI. VenketasubramanianN. VlassovV. WangY-P. WeissJ. WestermanR. WijeratneT. WyperG.M.A. YanoY. YimerE.M. YonemotoN. YousefifardM. ZaidiZ. ZareZ. VosT. FeiginV.L. MurrayC.J.L. GBD 2016 Dementia Collaborators Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016.Lancet Neurol.20191818810610.1016/S1474‑4422(18)30403‑430497964
    [Google Scholar]
  6. AhlawatJ. Guillama BarrosoG. Masoudi AsilS. AlvaradoM. ArmendarizI. BernalJ. CarabazaX. ChavezS. CruzP. EscalanteV. EstorgaS. FernandezD. LozanoC. MarrufoM. AhmadN. NegreteS. OlveraK. ParadaX. PortilloB. RamirezA. RamosR. RodriguezV. RojasP. RomeroJ. SuarezD. UruetaG. VielS. NarayanM. Nanocarriers as  potential  drug  delivery candidates for overcoming the blood-brain barrier: Challenges and possibilities.ACS Omega2020522125831259510.1021/acsomega.0c0159232548442
    [Google Scholar]
  7. KadryH. NooraniB. CuculloL. A blood-brain barrier overview on structure, function, impairment, and biomarkers of integrity.Fluids Barriers CNS20201716910.1186/s12987‑020‑00230‑333208141
    [Google Scholar]
  8. TietzS. EngelhardtB. Brain barriers: Crosstalk between complex tight junctions and adherens junctions.J. Cell Biol.2015209449350610.1083/jcb.20141214726008742
    [Google Scholar]
  9. DingS. KhanA.I. CaiX. SongY. LyuZ. DuD. DuttaP. LinY. Overcoming blood-brain barrier transport: Advances in nanoparticle-based drug delivery strategies.Mater. Today20203711212510.1016/j.mattod.2020.02.00133093794
    [Google Scholar]
  10. MartanoS. De MatteisV. CascioneM. RinaldiR. Inorganic nanomaterials versus polymer-based nanoparticles for overcoming neurodegeneration.Nanomaterials20221214233710.3390/nano1214233735889562
    [Google Scholar]
  11. DongX. Current strategies for brain drug delivery.Theranostics2018861481149310.7150/thno.2125429556336
    [Google Scholar]
  12. WuD. ChenQ. ChenX. HanF. ChenZ. WangY. The blood- brain barrier: Structure, regulation, and drug delivery.Signal Transduct. Target. Ther.20238121710.1038/s41392‑023‑01481‑w37231000
    [Google Scholar]
  13. TanQ. ZhaoS. XuT. WangQ. LanM. YanL. ChenX. Getting drugs to the brain: Advances and prospects of organic nanoparticle delivery systems for assisting drugs to cross the blood-brain barrier.J. Mater. Chem. B Mater. Biol. Med.202210459314933310.1039/D2TB01440H36349976
    [Google Scholar]
  14. FerrariA.J. StockingsE. KhooJ.P. ErskineH.E. DegenhardtL. VosT. WhitefordH.A. The prevalence and burden of bipolar disorder: Findings from the Global Burden of Disease Study 2013.Bipolar Disord.201618544045010.1111/bdi.1242327566286
    [Google Scholar]
  15. CharlsonF.J. FerrariA.J. SantomauroD.F. DiminicS. StockingsE. ScottJ.G. McGrathJ.J. WhitefordH.A. Global epidemiology and burden of schizophrenia: Findings from the Global Burden of Disease Study 2016.Schizophr. Bull.20184461195120310.1093/schbul/sby05829762765
    [Google Scholar]
  16. AbbottN.J. PatabendigeA.A.K. DolmanD.E.M. YusofS.R. BegleyD.J. Structure and function of the blood-brain barrier.Neurobiol. Dis.2010371132510.1016/j.nbd.2009.07.03019664713
    [Google Scholar]
  17. LochheadJ.J. YangJ. RonaldsonP.T. DavisT.P. Structure, function, and regulation of the blood-brain barrier tight junction in central nervous system disorders.Front. Physiol.20201191410.3389/fphys.2020.0091432848858
    [Google Scholar]
  18. AbbottN.J. Blood-brain barrier structure and function and the challenges for CNS drug delivery.J. Inherit. Metab. Dis.201336343744910.1007/s10545‑013‑9608‑023609350
    [Google Scholar]
  19. ZhaoY GanL RenL LinY MaC LinX Factors influencing the blood-brain barrier permeability.Brain Res.20221788147937
    [Google Scholar]
  20. NavasardyanI. YeganyanS. NguyenH. VaghashiaP. SubbianS. VenketaramanV. Role of oxidative stress in tuberculosis meningitis infection in diabetics.Biomedicines2023119256810.3390/biomedicines1109256837761009
    [Google Scholar]
  21. NittaT. HataM. GotohS. SeoY. SasakiH. HashimotoN. FuruseM. TsukitaS. Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice.J. Cell Biol.2003161365366010.1083/jcb.20030207012743111
    [Google Scholar]
  22. VerheggenI.C.M. de JongJ.J.A. van BoxtelM.P.J. GronenschildE.H.B.M. PalmW.M. PostmaA.A. JansenJ.F.A. VerheyF.R.J. BackesW.H. Increase in blood-brain barrier leakage in healthy, older adults.Geroscience20204241183119310.1007/s11357‑020‑00211‑232601792
    [Google Scholar]
  23. StamatovicS.M. Martinez-RevollarG. HuA. ChoiJ. KeepR.F. AndjelkovicA.V. Decline in Sirtuin-1 expression and activity plays a critical role in blood-brain barrier permeability in aging.Neurobiol. Dis.201912610511610.1016/j.nbd.2018.09.00630196051
    [Google Scholar]
  24. MenardC. PfauM.L. HodesG.E. KanaV. WangV.X. BouchardS. TakahashiA. FlaniganM.E. AleyasinH. LeClairK.B. JanssenW.G. LabontéB. PariseE.M. LorschZ.S. GoldenS.A. HeshmatiM. TammingaC. TureckiG. CampbellM. FayadZ.A. TangC.Y. MeradM. RussoS.J. Social stress induces neurovascular pathology promoting depression.Nat. Neurosci.201720121752176010.1038/s41593‑017‑0010‑329184215
    [Google Scholar]
  25. SunJ WuJ HuaF ChenY ZhanF XuG. Sleep deprivation induces cognitive impairment by increasing blood-brain barrier permeability via CD44.Front. Neurol.20201156391610.3389/fneur.2020.563916
    [Google Scholar]
  26. VillalbaN. MaY. GahanS.A. Joly-AmadoA. SpenceS. YangX. Lung infection by P. aeruginosa induces neuroinflammation and blood-brain barrier dysfunction in mice.Research square202310.21203/rs.3.rs‑2511441/v1
    [Google Scholar]
  27. WilsonA.C. ClementeL. LiuT. BowenR.L. MeethalS.V. AtwoodC.S. Reproductive hormones regulate the selective permeability of the blood-brain barrier.Biochim. Biophys. Acta Mol. Basis Dis.20081782640140710.1016/j.bbadis.2008.02.01118381207
    [Google Scholar]
  28. MaggioliE. McArthurS. MauroC. KieswichJ. KustersD.H.M. ReutelingspergerC.P.M. YaqoobM. SolitoE. Estrogen protects the blood-brain barrier from inflammation-induced disruption and increased lymphocyte trafficking.Brain Behav. Immun.20165121222210.1016/j.bbi.2015.08.02026321046
    [Google Scholar]
  29. NaW. LeeJ.Y. KimW.S. YuneT.Y. JuB.G. 17β-estradiol ameliorates tight junction disruption via repression of MMP transcription.Mol. Endocrinol.20152991347136110.1210/ME.2015‑112426168035
    [Google Scholar]
  30. Abi-GhanemC. RobisonL.S. ZuloagaK.L. Androgens’ effects on cerebrovascular function in health and disease.Biol. Sex Differ.20201113510.1186/s13293‑020‑00309‑432605602
    [Google Scholar]
  31. CruzL.J. StammesM.A. QueI. van BeekE.R. Knol-BlankevoortV.T. SnoeksT.J.A. ChanA. KaijzelE.L. LöwikC.W.G.M. Effect of PLGA NP size on efficiency to target traumatic brain injury.J. Control. Release2016223314110.1016/j.jconrel.2015.12.02926708021
    [Google Scholar]
  32. ManikkathJ. SumathyT.K. ManikkathA. MutalikS. Delving deeper into dermal and transdermal drug delivery: Factors and mechanisms associated with nanocarrier-mediated strategies.Curr. Pharm. Des.201824273210322210.2174/138161282466618092412264030246632
    [Google Scholar]
  33. De JongW.H. HagensW.I. KrystekP. BurgerM.C. SipsA.J.A.M. GeertsmaR.E. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration.Biomaterials200829121912191910.1016/j.biomaterials.2007.12.03718242692
    [Google Scholar]
  34. ManikkathJ. ManikkathA. LadH. VoraL.K. MudgalJ. ShenoyR.R. AshiliS. RadhakrishnanR. Nanoparticle-mediated active and passive drug targeting in oral squamous cell carcinoma: Current trends and advances.Nanomedicine202318272061208010.2217/nnm‑2023‑024738197397
    [Google Scholar]
  35. AhmadS. KhanI. PanditJ. EmadN.A. BanoS. DarK.I. RizviM.M.A. AnsariM.D. AqilM. SultanaY. Brain targeted delivery of carmustine using chitosan coated nanoparticles via nasal route for glioblastoma treatment.Int. J. Biol. Macromol.202222143544510.1016/j.ijbiomac.2022.08.21036067850
    [Google Scholar]
  36. El-SetouhyD.A. IbrahimA.B. AminM.M. KhowessahO.M. ElzanfalyE.S. Intranasal haloperidol-loaded miniemulsions for brain targeting: Evaluation of locomotor suppression and in vivo biodistribution.Eur. J. Pharm. Sci.20169224425410.1016/j.ejps.2016.05.00227154259
    [Google Scholar]
  37. FuS. LiangM. WangY. CuiL. GaoC. ChuX. LiuQ. FengY. GongW. YangM. LiZ. YangC. XieX. YangY. GaoC. Dual-modified novel biomimetic nanocarriers improve targeting and therapeutic efficacy in glioma.ACS Appl. Mater. Interfaces20191121841185410.1021/acsami.8b1866430582685
    [Google Scholar]
  38. MikitshJ.L. ChackoA.M. Pathways for small molecule delivery to the central nervous system across the blood-brain barrier.Perspect. Medicin. Chem.20146PMC.S1338410.4137/PMC.S1338424963272
    [Google Scholar]
  39. PardridgeW.M. Drug transport across the blood-brain barrier.J. Cereb. Blood Flow Metab.201232111959197210.1038/jcbfm.2012.12622929442
    [Google Scholar]
  40. VanGilderR.L. RosenC.L. BarrT.L. HuberJ.D. Targeting the neurovascular unit for treatment of neurological disorders.Pharmacol. Ther.2011130323924710.1016/j.pharmthera.2010.12.00421172386
    [Google Scholar]
  41. BegleyD.J. Delivery of therapeutic agents to the central nervous system: The problems and the possibilities.Pharmacol. Ther.20041041294510.1016/j.pharmthera.2004.08.00115500907
    [Google Scholar]
  42. ParkinsonF.E. DamarajuV.L. GrahamK. YaoS.Y.M. BaldwinS.A. CassC.E. YoungJ.D. Molecular biology of nucleoside transporters and their distributions and functions in the brain.Curr. Top. Med. Chem.201111894897210.2174/15680261179534758221401500
    [Google Scholar]
  43. FischerW. PraetorK. MetznerL. NeubertR.H.H. BrandschM. Transport of valproate at intestinal epithelial (Caco-2) and brain endothelial (RBE4) cells: Mechanism and substrate specificity.Eur. J. Pharm. Biopharm.200870248649210.1016/j.ejpb.2008.05.02218577448
    [Google Scholar]
  44. HershA.M. AlomariS. TylerB.M. Crossing the blood-brain barrier: Advances in nanoparticle technology for drug delivery in neuro-oncology.Int. J. Mol. Sci.2022238415310.3390/ijms2308415335456971
    [Google Scholar]
  45. PulgarV.M. Transcytosis to cross the blood brain barrier, new advancements and challenges.Front. Neurosci.201912JAN101910.3389/fnins.2018.0101930686985
    [Google Scholar]
  46. TrapaniA. De GiglioE. CafagnaD. DenoraN. AgrimiG. CassanoT. GaetaniS. CuomoV. TrapaniG. Characterization and evaluation of chitosan nanoparticles for dopamine brain delivery.Int. J. Pharm.20114191-229630710.1016/j.ijpharm.2011.07.03621821107
    [Google Scholar]
  47. WileyD.T. WebsterP. GaleA. DavisM.E. Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor.Proc. Natl. Acad. Sci. USA2013110218662866710.1073/pnas.130715211023650374
    [Google Scholar]
  48. XuG. YongK.T. RoyI. MahajanS.D. DingH. SchwartzS.A. PrasadP.N. Bioconjugated quantum rods as targeted probes for efficient transmigration across an in vitro blood- brain barrier.Bioconjug. Chem.20081961179118510.1021/bc700477u18473444
    [Google Scholar]
  49. PucciC. De PasqualeD. MarinoA. MartinelliC. LaucielloS. CiofaniG. Hybrid magnetic nanovectors promote selective glioblastoma cell death through a combined effect of lysosomal membrane permeabilization and chemotherapy.ACS Appl. Mater. Interfaces20201226290372905510.1021/acsami.0c0555632459082
    [Google Scholar]
  50. NanceE.A. WoodworthG.F. SailorK.A. ShihT.Y. XuQ. SwaminathanG. XiangD. EberhartC. HanesJ. A dense poly(ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue.Sci. Transl. Med.20124149149ra11910.1126/scitranslmed.300359422932224
    [Google Scholar]
  51. QiaoR. JiaQ. HüwelS. XiaR. LiuT. GaoF. GallaH.J. GaoM. Receptor-mediated delivery of magnetic nanoparticles across the blood-brain barrier.ACS Nano2012643304331010.1021/nn300240p22443607
    [Google Scholar]
  52. PiazzaJ. HoareT. MolinaroL. TerpstraK. BhandariJ. SelvaganapathyP.R. GuptaB. MishraR.K. Haloperidol-loaded intranasally administered lectin functionalized poly(ethylene glycol)-block-poly(d,l)-lactic-co-glycolic acid (PEG-PLGA) nanoparticles for the treatment of schizophrenia.Eur. J. Pharm. Biopharm.2014871303910.1016/j.ejpb.2014.02.00724560967
    [Google Scholar]
  53. KulkarniS.A. FengS.S. Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery.Pharm. Res.201330102512252210.1007/s11095‑012‑0958‑323314933
    [Google Scholar]
  54. PerraultS.D. WalkeyC. JenningsT. FischerH.C. ChanW.C.W. Mediating tumor targeting efficiency of nanoparticles through design.Nano Lett.2009951909191510.1021/nl900031y19344179
    [Google Scholar]
  55. SunX. RossinR. TurnerJ.L. BeckerM.L. JoralemonM.J. WelchM.J. WooleyK.L. An assessment of the effects of shell cross-linked nanoparticle size, core composition, and surface PEGylation on in vivo biodistribution.Biomacromolecules2005652541255410.1021/bm050260e16153091
    [Google Scholar]
  56. HeC. HuY. YinL. TangC. YinC. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles.Biomaterials201031133657366610.1016/j.biomaterials.2010.01.06520138662
    [Google Scholar]
  57. AlqahtaniM.S. SyedR. AlshehriM. Size-dependent phagocytic uptake and immunogenicity of gliadin nanoparticles.Polymers20201211257610.3390/polym1211257633147852
    [Google Scholar]
  58. NowakM. BrownT.D. GrahamA. HelgesonM.E. MitragotriS. Size, shape, and flexibility influence nanoparticle transport across brain endothelium under flow.Bioeng. Transl. Med.202052e1015310.1002/btm2.1015332440560
    [Google Scholar]
  59. VoigtN. Henrich-NoackP. KockentiedtS. HintzW. TomasJ. SabelB.A. Surfactants, not size or zeta-potential influence blood- brain barrier passage of polymeric nanoparticles.Eur. J. Pharm. Biopharm.2014871192910.1016/j.ejpb.2014.02.01324607790
    [Google Scholar]
  60. ShiloM. SharonA. BaranesK. MotieiM. LelloucheJ.P.M. PopovtzerR. The effect of nanoparticle size on the probability to cross the blood-brain barrier: An in vitro endothelial cell model.J. Nanobiotechnology20151311910.1186/s12951‑015‑0075‑725880565
    [Google Scholar]
  61. BetzerO. ShiloM. OpochinskyR. BarnoyE. MotieiM. OkunE. YadidG. PopovtzerR. The effect of nanoparticle size on the ability to cross the blood-brain barrier: An in vivo study.Nanomedicine201712131533154610.2217/nnm‑2017‑002228621578
    [Google Scholar]
  62. SonavaneG. TomodaK. MakinoK. Biodistribution of colloidal gold nanoparticles after intravenous administration: Effect of particle size.Colloids Surf. B Biointerfaces200866227428010.1016/j.colsurfb.2008.07.00418722754
    [Google Scholar]
  63. ZhangF. Trent MagruderJ. LinY.A. CrawfordT.C. GrimmJ.C. SciortinoC.M. WilsonM.A. BlueM.E. KannanS. JohnstonM.V. BaumgartnerW.A. KannanR.M. Generation-6 hydroxyl PAMAM dendrimers improve CNS penetration from intravenous administration in a large animal brain injury model.J. Control. Release201724917318210.1016/j.jconrel.2017.01.03228137632
    [Google Scholar]
  64. SarinH. KanevskyA.S. WuH. BrimacombeK.R. FungS.H. SousaA.A. AuhS. WilsonC.M. SharmaK. AronovaM.A. LeapmanR.D. GriffithsG.L. HallM.D. Effective transvascular delivery of nanoparticles across the blood-brain tumor barrier into malignant glioma cells.J. Transl. Med.2008618010.1186/1479‑5876‑6‑8019094226
    [Google Scholar]
  65. Caldorera-MooreM. GuimardN. ShiL. RoyK. Designer nanoparticles: Incorporating size, shape and triggered release into nanoscale drug carriers.Expert Opin. Drug Deliv.20107447949510.1517/1742524090357997120331355
    [Google Scholar]
  66. XieX. LiaoJ. ShaoX. LiQ. LinY. The effect of shape on cellular uptake of gold nanoparticles in the forms of stars, rods, and triangles.Sci. Rep.201771382710.1038/s41598‑017‑04229‑z28630477
    [Google Scholar]
  67. TruongN.P. WhittakerM.R. MakC.W. DavisT.P. The importance of nanoparticle shape in cancer drug delivery.Expert Opin. Drug Deliv.201512112914210.1517/17425247.2014.95056425138827
    [Google Scholar]
  68. HuangX. LiL. LiuT. HaoN. LiuH. ChenD. TangF. The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo.ACS Nano2011575390539910.1021/nn200365a21634407
    [Google Scholar]
  69. Plascencia-VillaG. BahenaD. RodríguezA.R. PonceA. José-YacamánM. Advanced microscopy of star-shaped gold nanoparticles and their adsorption-uptake by macrophages.Metallomics20135324225010.1039/c3mt20202j23443314
    [Google Scholar]
  70. ZhaoJ. LuH. WongS. LuM. XiaoP. StenzelM.H. Influence of nanoparticle shapes on cellular uptake of paclitaxel loaded nanoparticles in 2D and 3D cancer models.Polym. Chem.20178213317332610.1039/C7PY00385D
    [Google Scholar]
  71. ChristianD.A. CaiS. GarbuzenkoO.B. HaradaT. ZajacA.L. MinkoT. DischerD.E. Flexible filaments for in vivo imaging and delivery: Persistent circulation of filomicelles opens the dosage window for sustained tumor shrinkage.Mol. Pharm.2009651343135210.1021/mp900022m19249859
    [Google Scholar]
  72. KolharP. AnselmoA.C. GuptaV. PantK. PrabhakarpandianB. RuoslahtiE. MitragotriS. Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium.Proc. Natl. Acad. Sci. USA201311026107531075810.1073/pnas.130834511023754411
    [Google Scholar]
  73. Da Silva-CandalA. BrownT. KrishnanV. Lopez-LoureiroI. Ávila-GómezP. PusuluriA. Pérez-DíazA. Correa-PazC. HervellaP. CastilloJ. MitragotriS. CamposF. Shape effect in active targeting of nanoparticles to inflamed cerebral endothelium under static and flow conditions.J. Control. Release20193099410510.1016/j.jconrel.2019.07.02631330214
    [Google Scholar]
  74. Arnida Janát-AmsburyM.M. RayA. PetersonC.M. GhandehariH. Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages.Eur. J. Pharm. Biopharm.201177341742310.1016/j.ejpb.2010.11.01021093587
    [Google Scholar]
  75. HervéF. GhineaN. ScherrmannJ.M. CNS delivery via adsorptive transcytosis.AAPS J.200810345547210.1208/s12248‑008‑9055‑218726697
    [Google Scholar]
  76. VorbrodtA.W. Ultracytochemical characterization of anionic sites in the wall of brain capillaries.J. Neurocytol.198918335936810.1007/BF011908392746307
    [Google Scholar]
  77. BonaccorsoA. MusumeciT. SerapideM.F. PellitteriR. UchegbuI.F. PuglisiG. Nose to brain delivery in rats: Effect of surface charge of rhodamine B labeled nanocarriers on brain subregion localization.Colloids Surf. B Biointerfaces201715429730610.1016/j.colsurfb.2017.03.03528363190
    [Google Scholar]
  78. MistryA. StolnikS. IllumL. Nose-to-brain delivery: Investigation of the transport of nanoparticles with different surface characteristics and sizes in excised porcine olfactory epithelium.Mol. Pharm.20151282755276610.1021/acs.molpharmaceut.5b0008825997083
    [Google Scholar]
  79. MoscarielloP. NgD.Y.W. JansenM. WeilT. LuhmannH.J. HedrichJ. Brain delivery of multifunctional dendrimer protein bioconjugates.Adv. Sci.201855170089710.1002/advs.20170089729876217
    [Google Scholar]
  80. ParikhT. BommanaM.M. SquillanteE.III Efficacy of surface charge in targeting pegylated nanoparticles of sulpiride to the brain.Eur. J. Pharm. Biopharm.201074344245010.1016/j.ejpb.2009.11.00119941957
    [Google Scholar]
  81. SahaS. YakatiV. ShankarG. JaggarapuM.M.C.S. MokuG. MadhusudanaK. BanerjeeR. RamkrishnaS. SrinivasR. ChaudhuriA. Amphetamine decorated cationic lipid nanoparticles cross the blood-brain barrier: Therapeutic promise for combating glioblastoma.J. Mater. Chem. B Mater. Biol. Med.20208194318433010.1039/C9TB02700A32330214
    [Google Scholar]
  82. Gonzalez-CarterD. GoodeA.E. KiryushkoD. MasudaS. HuS. Lopes-RodriguesR. DexterD.T. ShafferM.S.P. PorterA.E. Quantification of blood-brain barrier transport and neuronal toxicity of unlabelled multiwalled carbon nanotubes as a function of surface charge.Nanoscale20191145220542206910.1039/C9NR02866H31720664
    [Google Scholar]
  83. LockmanP.R. KoziaraJ.M. MumperR.J. AllenD.D. Nanoparticle surface charges alter blood-brain barrier integrity and permeability.J. Drug Target.2004129-1063564110.1080/1061186040001593615621689
    [Google Scholar]
  84. OldendorfW.H. HymanS. BraunL. OldendorfS.Z. Blood-brain barrier: Penetration of morphine, codeine, heroin, and methadone after carotid injection.Science1972178406498498610.1126/science.178.4064.9845084666
    [Google Scholar]
  85. KanazawaT. KanekoM. NiideT. AkiyamaF. KakizakiS. IbarakiH. ShiraishiS. TakashimaY. SuzukiT. SetaY. Enhancement of nose-to- brain delivery of hydrophilic macromolecules with stearate- or polyethylene glycol-modified arginine-rich peptide.Int. J. Pharm.20175301-219520010.1016/j.ijpharm.2017.07.07728757255
    [Google Scholar]
  86. GuerreroS. ArayaE. FiedlerJ.L. AriasJ.I. AduraC. AlbericioF. GiraltE. AriasJ.L. FernándezM.S. KoganM.J. Improving the brain delivery of gold nanoparticles by conjugation with an amphipathic peptide.Nanomedicine20105689791310.2217/nnm.10.7420735225
    [Google Scholar]
  87. TodaR. KawazuK. OyabuM. MiyazakiT. KiuchiY. Comparison of drug permeabilities across the blood-retinal barrier, blood- aqueous humor barrier, and blood-brain barrier.J. Pharm. Sci.201110093904391110.1002/jps.2261021638281
    [Google Scholar]
  88. JinwalU. GroshevA. ZhangJ. GroverA. SutariyaV. Preparation and characterization of methylene blue nanoparticles for Alzheimer’s disease and other tauopathies.Curr. Drug Deliv.201311454155010.2174/156720181066613111310203724237400
    [Google Scholar]
  89. LiuL. GuoK. LuJ. VenkatramanS.S. LuoD. NgK.C. LingE.A. MoochhalaS. YangY.Y. Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG-TAT for drug delivery across the blood-brain barrier.Biomaterials200829101509151710.1016/j.biomaterials.2007.11.01418155137
    [Google Scholar]
  90. PatelT. ZhouJ. PiepmeierJ.M. SaltzmanW.M. Polymeric nanoparticles for drug delivery to the central nervous system.Adv. Drug Deliv. Rev.201264770170510.1016/j.addr.2011.12.00622210134
    [Google Scholar]
  91. PokharkarV. Patil-GadheA. PallaP. Efavirenz loaded nanostructured lipid carrier engineered for brain targeting through intranasal route: In vivo pharmacokinetic and toxicity study.Biomed. Pharmacother.20179415016410.1016/j.biopha.2017.07.06728759752
    [Google Scholar]
  92. GulyaevA.E. GelperinaS.E. SkidanI.N. AntropovA.S. KivmanG.Y. KreuterJ. Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles.Pharm. Res.199916101564156910.1023/A:101898390453710554098
    [Google Scholar]
  93. González-MariscalL. PosadasY. MirandaJ. UcP. Ortega-OlveraJ. HernándezS. Strategies that target tight junctions for enhanced drug delivery.Curr. Pharm. Des.201622355313534610.2174/138161282266616072016365627510485
    [Google Scholar]
  94. MittalG. CarswellH. BrettR. CurrieS. KumarM.N.V.R. Development and evaluation of polymer nanoparticles for oral delivery of estradiol to rat brain in a model of Alzheimer’s pathology.J. Control. Release2011150222022810.1016/j.jconrel.2010.11.01321111014
    [Google Scholar]
  95. SukJS XuQ KimN HanesJ EnsignLM PEGylation as a strategy for improving nanoparticle-based drug and gene delivery.Adv. Drug Deliv. Rev.201699P1285110.1016/j.addr.2015.09.012
    [Google Scholar]
  96. YuanB. ZhaoY. DongS. SunY. HaoF. XieJ. TengL. LeeR.J. FuY. BiY. Cell-penetrating peptide-coated liposomes for drug delivery across the blood-brain barrier.Anticancer Res.201939123724310.21873/anticanres.1310330591464
    [Google Scholar]
  97. Gonzalez-CarterD. LiuX. TockaryT.A. DirisalaA. TohK. AnrakuY. KataokaK. Targeting nanoparticles to the brain by exploiting the blood-brain barrier impermeability to selectively label the brain endothelium.Proc. Natl. Acad. Sci. USA202011732191411915010.1073/pnas.200201611732703811
    [Google Scholar]
  98. JainD. HasanN. ZafarS. ThakurJ. HaiderK. ParvezS. AhmadF.J. Transferrin functionalized nanostructured lipid carriers for targeting Rivastigmine and Resveratrol to Alzheimer’s disease: Synthesis, in vitro characterization and brain uptake analysis.J. Drug Deliv. Sci. Technol.20238610455510.1016/j.jddst.2023.104555
    [Google Scholar]
  99. DemeuleM. CurrieJ.C. BertrandY. ChéC. NguyenT. RéginaA. GabathulerR. CastaigneJ.P. BéliveauR. Involvement of the low- density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector Angiopep-2.J. Neurochem.200810641534154410.1111/j.1471‑4159.2008.05492.x18489712
    [Google Scholar]
  100. KafaH. WangJ.T.W. RubioN. KlippsteinR. CostaP.M. HassanH.A.F.M. SosabowskiJ.K. BansalS.S. PrestonJ.E. AbbottN.J. Al-JamalK.T. Translocation of LRP1 targeted carbon nanotubes of different diameters across the blood-brain barrier in vitro and in vivo.J. Control. Release201622521722910.1016/j.jconrel.2016.01.03126809004
    [Google Scholar]
  101. TylawskyD.E. KiguchiH. VaynshteynJ. GerwinJ. ShahJ. IslamT. BoyerJ.A. BouéD.R. SnuderlM. GreenblattM.B. ShamayY. RajuG.P. HellerD.A. P-selectin-targeted nanocarriers induce active crossing of the blood-brain barrier via caveolin-1-dependent transcytosis.Nat. Mater.202322339139910.1038/s41563‑023‑01481‑936864161
    [Google Scholar]
  102. KhongkowM. YataT. BoonrungsimanS. RuktanonchaiU.R. GrahamD. NamdeeK. Surface modification of gold nanoparticles with neuron-targeted exosome for enhanced blood-brain barrier penetration.Sci. Rep.201991827810.1038/s41598‑019‑44569‑631164665
    [Google Scholar]
  103. ShevtsovM. StanglS. NikolaevB. YakovlevaL. MarchenkoY. TagaevaR. SievertW. PitkinE. MazurA. TolstoyP. GalibinO. RyzhovV. SteigerK. SmirnovO. KhachatryanW. ChesterK. MulthoffG. Granzyme B functionalized nanoparticles targeting membrane hsp70-positive tumors for multimodal cancer theranostics.Small20191513190020510.1002/smll.20190020530828968
    [Google Scholar]
  104. YangX. LiX. LiuL. ChenY.H. YouY. GaoY. LiuY.Y. YangL. TongK. ChenD.S. HaoJ.R. SunN. ZhaoZ.M. GaoC. Transferrin-Pep63-liposomes accelerate the clearance of Aβ and rescue impaired synaptic plasticity in early Alzheimer’s disease models.Cell Death Discov.20217125610.1038/s41420‑021‑00639‑134548476
    [Google Scholar]
  105. RavichandranV. LeeM. Nguyen CaoT.G. ShimM.S. Polysorbate-based drug formulations for brain-targeted drug delivery and anticancer therapy.Appl. Sci.20211119933610.3390/app11199336
    [Google Scholar]
  106. QuM. LinQ. HeS. WangL. FuY. ZhangZ. ZhangL. A brain targeting functionalized liposomes of the dopamine derivative N-3,4-bis(pivaloyloxy)-dopamine for treatment of Parkinson’s disease.J. Control. Release201827717318210.1016/j.jconrel.2018.03.01929588159
    [Google Scholar]
  107. Gonzalez-CarterD.A. OngZ.Y. McGilveryC.M. DunlopI.E. DexterD.T. PorterA.E. L-DOPA functionalized, multi-branched gold nanoparticles as brain-targeted nano-vehicles.Nanomedicine201915111110.1016/j.nano.2018.08.01130189294
    [Google Scholar]
  108. PlissonneauM. PansieriJ. Heinrich-BalardL. MorfinJ.F. Stransky-HeilkronN. RivoryP. MowatP. DumoulinM. CohenR. AllémannÉ. TόthÉ. SaraivaM.J. LouisC. TillementO. ForgeV. LuxF. MarquetteC. Gd-nanoparticles functionalization with specific peptides for ß-amyloid plaques targeting.J. Nanobiotechnol20161416010.1186/s12951‑016‑0212‑y27455834
    [Google Scholar]
  109. MartinsC. AraújoM. MalfantiA. PachecoC. SmithS.J. UcakarB. RahmanR. AylottJ.W. PréatV. SarmentoB. Stimuli-responsive multifunctional nanomedicine for enhanced glioblastoma chemotherapy augments multistage blood-to-brain trafficking and tumor targeting.Small20231922230002910.1002/smll.20230002936852650
    [Google Scholar]
  110. SmileyS.B. YunY. AyyagariP. ShannonH.E. PollokK.E. VannierM.W. DasS.K. VeronesiM.C. Development of  CD133  targeting  multi-drug  polymer micellar  nanoparticles  for glioblastoma- In vitro evaluation in glioblastoma stem cells.Pharm. Res.20213861067107910.1007/s11095‑021‑03050‑834100216
    [Google Scholar]
  111. JanjuaT.I. Ahmed-CoxA. MekaA.K. MansfeldF.M. ForghamH. IgnacioR.M.C. CaoY. McCarrollJ.A. MazzieriR. KavallarisM. PopatA. Facile synthesis of lactoferrin conjugated ultra small large pore silica nanoparticles for the treatment of glioblastoma.Nanoscale20211340169091692210.1039/D1NR03553C34533167
    [Google Scholar]
  112. YuY. WangA. WangS. SunY. ChuL. ZhouL. YangX. LiuX. ShaC. SunK. XuL. Efficacy of temozolomide-conjugated gold nanoparticle photothermal therapy of drug-resistant glioblastoma and its mechanism study.Mol. Pharm.20221941219122910.1021/acs.molpharmaceut.2c0008335262365
    [Google Scholar]
  113. RamalhoM.J. BravoM. LoureiroJ.A. LimaJ. PereiraM.C. Transferrin-modified nanoparticles for targeted delivery of Asiatic acid to glioblastoma cells.Life Sci.202229612043510.1016/j.lfs.2022.12043535247437
    [Google Scholar]
  114. RahmaniR. KianiJ. TongW.Y. SoleimaniM. VoelckerN.H. ArefianE. Engineered anti-EGFRvIII targeted exosomes induce apoptosis in glioblastoma multiforme.J. Drug Target.202331331031910.1080/1061186X.2022.215281936440540
    [Google Scholar]
  115. JinZ. PiaoL. SunG. LvC. JingY. JinR. Dual functional nanoparticles efficiently across the blood-brain barrier to combat glioblastoma via simultaneously inhibit the PI3K pathway and NKG2A axis.J. Drug Target.202129332333510.1080/1061186X.2020.184121433108906
    [Google Scholar]
  116. Uribe-RoblesM. Ortiz-IslasE. Rodriguez-PerezE. ValverdeF.F. LimT. Martinez-MoralesA.A. Targeted delivery of temozolomide by nanocarriers based on folic acid-hollow TiO2-nanospheres for the treatment of glioblastoma.Biomaterials Advances202315121344210.1016/j.bioadv.2023.21344237207587
    [Google Scholar]
  117. RabhaB. BharadwajK.K. PatiS. ChoudhuryB.K. SarkarT. KariZ.A. EdinurH.A. BaishyaD. AtanaseL.I. Development of polymer-based nanoformulations for glioblastoma brain cancer therapy and diagnosis: An update.Polymers20211323411410.3390/polym1323411434883617
    [Google Scholar]
  118. YudintcevaN. LomertE. MikhailovaN. TolkunovaE. AgadzhanianN. SamochernychK. MulthoffG. TiminG. RyzhovV. DeriglazovV. MazurA. ShevtsovM. Targeting brain tumors with mesenchymal stem cells in the experimental model of the orthotopic glioblastoma in rats.Biomedicines2021911159210.3390/biomedicines911159234829821
    [Google Scholar]
  119. TeixeiraM.I. LopesC.M. AmaralM.H. CostaP.C. Surface-modified lipid nanocarriers for crossing the blood-brain barrier (BBB): A current overview of active targeting in brain diseases.Colloids Surf. B Biointerfaces202322111299910.1016/j.colsurfb.2022.11299936368148
    [Google Scholar]
  120. LiJ. ZengH. YouY. WangR. TanT. WangW. YinL. ZengZ. ZengY. XieT. Active targeting of orthotopic glioma using biomimetic liposomes co-loaded elemene and cabazitaxel modified by transferritin.J. Nanobiotechnol202119128910.1186/s12951‑021‑01048‑334565383
    [Google Scholar]
  121. NatarajanJ. BaskaranM. HumtsoeL.C. VadivelanR. JustinA. Enhanced brain targeting efficacy of Olanzapine through solid lipid nanoparticles.Artif. Cells Nanomed. Biotechnol.201745236437110.3109/21691401.2016.116040227002542
    [Google Scholar]
  122. NarayanR. SinghM. RanjanO. NayakY. GargS. ShaviG.V. NayakU.Y. Development of risperidone liposomes for brain targeting through intranasal route.Life Sci.2016163384510.1016/j.lfs.2016.08.03327593571
    [Google Scholar]
  123. LombardoR. MusumeciT. CarboneC. PignatelloR. Nanotechnologies for intranasal drug delivery: An update of literature.Pharm. Dev. Technol.202126882484510.1080/10837450.2021.195018634218736
    [Google Scholar]
  124. PiresA. FortunaA. AlvesG. FalcãoA. Intranasal drug delivery: How, why and what for?J. Pharm. Pharm. Sci.200912328831110.18433/J3NC7920067706
    [Google Scholar]
  125. VliegheP. KhrestchatiskyM. Medicinal chemistry based approaches and nanotechnology-based systems to improve CNS drug targeting and delivery.Med. Res. Rev.201333345751610.1002/med.2125222434495
    [Google Scholar]
  126. LiX. TsibouklisJ. WengT. ZhangB. YinG. FengG. CuiY. SavinaI.N. MikhalovskaL.I. SandemanS.R. HowelC.A. MikhalovskyS.V. Nano carriers for drug transport across the blood-brain barrier.J. Drug Target.2017251172810.1080/1061186X.2016.118427227126681
    [Google Scholar]
  127. TeleanuD.M. ChircovC. GrumezescuA.M. VolceanovA. TeleanuR.I. Blood-brain delivery methods using nanotechnology.Pharmaceutics201810426910.3390/pharmaceutics1004026930544966
    [Google Scholar]
  128. KreuterJ. AlyautdinR.N. KharkevichD.A. IvanovA.A. Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles).Brain Res.1995674117117410.1016/0006‑8993(95)00023‑J7773690
    [Google Scholar]
  129. AlamM.I. BegS. SamadA. BabootaS. KohliK. AliJ. AhujaA. AkbarM. Strategy for effective brain drug delivery.Eur J Pharm Sci Off J Eur Fed Pharm Sci.201040538540320497904
    [Google Scholar]
  130. Del Prado-AudeloM.L. Caballero-FloránI.H. Sharifi-RadJ. Mendoza-MuñozN. González-TorresM. Urbán-MorlánZ. FloránB. CortesH. Leyva-GómezG. Chitosan-decorated nanoparticles for drug delivery.J. Drug Deliv. Sci. Technol.20205910189610.1016/j.jddst.2020.101896
    [Google Scholar]
  131. WangS. JiangT. MaM. HuY. ZhangJ. Preparation and evaluation of anti-neuroexcitation peptide (ANEP) loaded N-trimethyl chitosan chloride nanoparticles for brain-targeting.Int. J. Pharm.20103861-224925510.1016/j.ijpharm.2009.11.00219900520
    [Google Scholar]
  132. Zargar V, Asghari M, Dashti A. A review on chitin and chitosan polymers: Structure, chemistry, solubility, derivatives, and applications. ChemBioEng Rev 2015; 2(3): 204-26.
    [Google Scholar]
  133. Nance E, Zhang C, Shih TY, Xu Q, Schuster BS, Hanes J. Brain-penetrating nanoparticles improve paclitaxel efficacy in malignant glioma following local administration.ACS Nano20148101065510664
    [Google Scholar]
  134. TrösterS.D. MüllerU. KreuterJ. Modification of the body distribution of poly(methyl methacrylate) nanoparticles in rats by coating with surfactants.Int. J. Pharm.1990611-28510010.1016/0378‑5173(90)90047‑8
    [Google Scholar]
  135. LalaniJ. RaichandaniY. MathurR. LalanM. ChutaniK. MishraA.K. MisraA. Comparative receptor based brain delivery of tramadol-loaded poly(lactic-co-glycolic acid) nanoparticles.J. Biomed. Nanotechnol.20128691892710.1166/jbn.2012.146223030000
    [Google Scholar]
  136. ShaoK. HuangR. LiJ. HanL. YeL. LouJ. JiangC. Angiopep-2 modified PE-PEG based polymeric micelles for amphotericin B delivery targeted to the brain.J. Control. Release2010147111812610.1016/j.jconrel.2010.06.01820609375
    [Google Scholar]
  137. GadhaveD. GuptaA. KhotS. TagalpallewarA. KokareC. Nose- to-brain delivery of paliperidone palmitate poloxamer-guar gum nanogel: Formulation, optimization and pharmacological studies in rats.Ann. Pharm. Fr.202381231533310.1016/j.pharma.2022.08.01036037930
    [Google Scholar]
  138. FonsecaF.N. BettiA.H. CarvalhoF.C. GremiãoM.P.D. DimerF.A. GuterresS.S. TebaldiM.L. RatesS.M.K. PohlmannA.R. Mucoadhesive amphiphilic methacrylic copolymer-functionalized poly(ε-caprolactone) nanocapsules for nose-to-brain delivery of olanzapine.J. Biomed. Nanotechnol.20151181472148110.1166/jbn.2015.207826295147
    [Google Scholar]
  139. AbdelbaryG.A. TadrosM.I. Brain targeting of olanzapine via intranasal delivery of core-shell difunctional block copolymer mixed nanomicellar carriers: In vitro characterization, ex vivo estimation of nasal toxicity and in vivo biodistribution studies.Int. J. Pharm.20134521-230031010.1016/j.ijpharm.2013.04.08423684658
    [Google Scholar]
  140. Sánchez-LópezE. EttchetoM. EgeaM.A. EspinaM. CanoA. CalpenaA.C. CaminsA. CarmonaN. SilvaA.M. SoutoE.B. GarcíaM.L. Memantine loaded PLGA PEGylated nanoparticles for Alzheimer’s disease: In vitro and in vivo characterization.J. Nanobiotechnol20181613210.1186/s12951‑018‑0356‑z29587747
    [Google Scholar]
  141. KostarelosK. LacerdaL. PastorinG. WuW. WieckowskiS. LuangsivilayJ. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type.Nat. Nanotechnol.20072210811310.1038/nnano.2006.209
    [Google Scholar]
  142. CostaP.M. WangJ.T.W. MorfinJ.F. KhanumT. ToW. SosabowskiJ. TóthE. Al-JamalK.T. Functionalised carbon nanotubes enhance brain delivery of amyloid-targeting pittsburgh compound B (PiB)-derived ligands.Nanotheranostics20182216818310.7150/ntno.2312529577020
    [Google Scholar]
  143. JinH HellerDA StranoMS Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells.Nano Lett.20088615771585
    [Google Scholar]
  144. DresselhausM.S. DresselhausG. SaitoR. Physics of carbon nanotubes.Carbon199533788389110.1016/0008‑6223(95)00017‑8
    [Google Scholar]
  145. LewinskiN. ColvinV. DrezekR. Cytotoxicity of nanoparticles.Small200841264910.1002/smll.20070059518165959
    [Google Scholar]
  146. SargentL.M. ShvedovaA.A. HubbsA.F. SalisburyJ.L. BenkovicS.A. KashonM.L. LowryD.T. MurrayA.R. KisinE.R. FriendS. McKinstryK.T. BattelliL. ReynoldsS.H. Induction of aneuploidy by single-walled carbon nanotubes.Environ. Mol. Mutagen.200950870871710.1002/em.2052919774611
    [Google Scholar]
  147. SinghI RehniA KumarP KumarM. Carbon nanotubes: Synthesis, properties and pharmaceutical applications.Fullerenes Nanotub. Carbon Nanostruct.200917361377
    [Google Scholar]
  148. ZhangY. BaiY. YanB. Functionalized carbon nanotubes for potential medicinal applications.Drug Discov. Today20101511-1242843510.1016/j.drudis.2010.04.00520451656
    [Google Scholar]
  149. ZhangY. XuY. LiZ. ChenT. LantzS.M. HowardP.C. PauleM.G. SlikkerW.Jr WatanabeF. MustafaT. BirisA.S. AliS.F. Mechanistic toxicity evaluation of uncoated and PEGylated single-walled carbon nanotubes in neuronal PC12 cells.ACS Nano2011597020703310.1021/nn201625921866971
    [Google Scholar]
  150. LiuZ SunX Nakayama-ratchfordN DaiH. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery.ACS Nano2007115056
    [Google Scholar]
  151. ChenJ. ChenS. ZhaoX. KuznetsovaL.V. WongS.S. OjimaI. Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery.J. Am. Chem. Soc.200813049167781678510.1021/ja805570f19554734
    [Google Scholar]
  152. XieL. WangG. ZhouH. ZhangF. GuoZ. LiuC. ZhangX. ZhuL. Functional long circulating single walled carbon nanotubes for fluorescent/photoacoustic imaging-guided enhanced phototherapy.Biomaterials201610321922810.1016/j.biomaterials.2016.06.05827392290
    [Google Scholar]
  153. ZhaoD. AlizadehD. ZhangL. LiuW. FarrukhO. ManuelE. DiamondD.J. BadieB. Carbon nanotubes enhance CpG uptake and potentiate antiglioma immunity.Clin. Cancer Res.201117477178210.1158/1078‑0432.CCR‑10‑244421088258
    [Google Scholar]
  154. RenJ. ShenS. WangD. XiZ. GuoL. PangZ. QianY. SunX. JiangX. The targeted delivery of anticancer drugs to brain glioma by PEGylated oxidized multi-walled carbon nanotubes modified with angiopep-2.Biomaterials201233113324333310.1016/j.biomaterials.2012.01.02522281423
    [Google Scholar]
  155. MateaC. MocanT. TabaranF. PopT. MosteanuO. PuiaC. IancuC. MocanL. Quantum dots in imaging, drug delivery and sensor applications.Int. J. Nanomedicine2017125421543110.2147/IJN.S13862428814860
    [Google Scholar]
  156. AnnuR.S. RehmanS. MdS. BabootaS. AliJ. Analyzing nanotheraputics-based approaches for the management of psychotic disorders.J. Pharm. Sci.2019108123757376810.1016/j.xphs.2019.08.02731499066
    [Google Scholar]
  157. LimS.Y. ShenW. GaoZ. Carbon quantum dots and their applications.Chem. Soc. Rev.201544136238110.1039/C4CS00269E25316556
    [Google Scholar]
  158. KulkarniN. GuererroY. GuptaN. MuthA. GuptaV. Exploring potential of quantum dots as dual modality for cancer therapy and diagnosis.J. Drug Deliv. Sci. Technol.201949352-64
    [Google Scholar]
  159. MadhankumarA.B. MrowczynskiO.D. PatelS.R. WestonC.L. ZachariaB.E. GlantzM.J. SiedleckiC.A. XuL.C. ConnorJ.R. Interleukin-13 conjugated quantum dots for identification of glioma initiating cells and their extracellular vesicles.Acta Biomater.20175820521310.1016/j.actbio.2017.06.00228583903
    [Google Scholar]
  160. Paris-RobidasS. BrouardD. EmondV. ParentM. CalonF. Internalization of targeted quantum dots by brain capillary endothelial cells in vivo.J. Cereb. Blood Flow Metab.201636473174210.1177/0271678X1560820126661181
    [Google Scholar]
  161. ShamsipourM. MansouriA.M. MoradipourP. Temozolomide conjugated carbon quantum dots embedded in core/shell nanofibers prepared by coaxial electrospinning as an implantable delivery system for cell imaging and sustained drug release.AAPS PharmSciTech201920725910.1208/s12249‑019‑1466‑031332574
    [Google Scholar]
  162. LiS. AmatD. PengZ. VanniS. RaskinS. De AnguloG. OthmanA.M. GrahamR.M. LeblancR.M. Transferrin conjugated nontoxic carbon dots for doxorubicin delivery to target pediatric brain tumor cells.Nanoscale2016837166621666910.1039/C6NR05055G27714111
    [Google Scholar]
  163. XiaoS. ZhouD. LuanP. GuB. FengL. FanS. LiaoW. FangW. YangL. TaoE. GuoR. LiuJ. Graphene quantum dots conjugated neuroprotective peptide improve learning and memory capability.Biomaterials20161069811010.1016/j.biomaterials.2016.08.02127552320
    [Google Scholar]
  164. SantanaC.P. MansurA.A.P. CarvalhoS.M. da Silva-CunhaA.Jr MansurH.S. Bi-functional quantum dot-polysaccharide-antibody immunoconjugates for bioimaging and killing brain cancer cells in vitro.Mater. Lett.201925233333710.1016/j.matlet.2019.06.022
    [Google Scholar]
  165. KimJ. AhnS.I. KimY. Nanotherapeutics engineered to cross the blood-brain barrier for advanced drug delivery to the central nervous system.J. Ind. Eng. Chem.20197381810.1016/j.jiec.2019.01.02131588177
    [Google Scholar]
  166. HerizchiR. AbbasiE. MilaniM. AkbarzadehA. Current methods for synthesis of gold nanoparticles.Artif. Cells Nanomed. Biotechnol.201644259660210.3109/21691401.2014.97180725365243
    [Google Scholar]
  167. JohnsenK.B. BakM. KempenP.J. MelanderF. BurkhartA. ThomsenM.S. NielsenM.S. MoosT. AndresenT.L. Antibody affinity and valency impact brain uptake of transferrin receptor-targeted gold nanoparticles.Theranostics20188123416343610.7150/thno.2522829930740
    [Google Scholar]
  168. Lasagna-ReevesC. Gonzalez-RomeroD. BarriaM.A. OlmedoI. ClosA. Sadagopa RamanujamV.M. UrayamaA. VergaraL. KoganM.J. SotoC. Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice.Biochem. Biophys. Res. Commun.2010393464965510.1016/j.bbrc.2010.02.04620153731
    [Google Scholar]
  169. ClarkA.J. DavisM.E. Increased brain uptake of targeted nanoparticles by adding an acid-cleavable linkage between transferrin and the nanoparticle core.Proc. Natl. Acad. Sci. USA201511240124861249110.1073/pnas.151704811226392563
    [Google Scholar]
  170. GeorganopoulouD.G. ChangL. NamJ.M. ThaxtonC.S. MufsonE.J. KleinW.L. MirkinC.A. Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer’s disease.Proc. Natl. Acad. Sci. USA200510272273227610.1073/pnas.040933610215695586
    [Google Scholar]
  171. JensenS.A. DayE.S. KoC.H. HurleyL.A. LucianoJ.P. KouriF.M. MerkelT.J. LuthiA.J. PatelP.C. CutlerJ.I. DanielW.L. ScottA.W. RotzM.W. MeadeT.J. GiljohannD.A. MirkinC.A. SteghA.H. Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma.Sci. Transl. Med.20135209209ra15210.1126/scitranslmed.300683924174328
    [Google Scholar]
  172. RuffJ. HüwelS. KoganM.J. SimonU. GallaH.J. The effects of gold nanoparticles functionalized with ß-amyloid specific peptides on an in vitro model of blood-brain barrier.Nanomedicine20171351645165210.1016/j.nano.2017.02.01328285163
    [Google Scholar]
  173. MirsadeghiS. DinarvandR. GhahremaniM.H. Hormozi-NezhadM.R. MahmoudiZ. HajipourM.J. AtyabiF. GhavamiM. MahmoudiM. Protein corona composition of gold nanoparticles/nanorods affects amyloid beta fibrillation process.Nanoscale20157115004501310.1039/C4NR06009A25695421
    [Google Scholar]
  174. GarridoC. SimpsonC.A. DahlN.P. BreseeJ. WhiteheadD.C. LindseyE.A. HarrisT.L. SmithC.A. CarterC.J. FeldheimD.L. MelanderC. MargolisD.M. Gold nanoparticles to improve HIV drug delivery.Future Med. Chem.2015791097110710.4155/fmc.15.5726132521
    [Google Scholar]
  175. ZhangX.F. LiuZ.G. ShenW. GurunathanS. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches.Int. J. Mol. Sci.2016179153410.3390/ijms1709153427649147
    [Google Scholar]
  176. KaabipourS. HemmatiS. A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures.Beilstein J. Nanotechnol.20211210213610.3762/bjnano.12.933564607
    [Google Scholar]
  177. ZebN AliJ BilalM OmerM AlamzebM SalmanSM Green nanotechnology: A review on green synthesis of silver nanoparticles - An ecofriendly approach.Int. J. Nanomed.20191450875107
    [Google Scholar]
  178. AkterM. SikderM.T. RahmanM.M. UllahA.K.M.A. HossainK.F.B. BanikS. HosokawaT. SaitoT. KurasakiM. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives.J. Adv. Res.2018911610.1016/j.jare.2017.10.00830046482
    [Google Scholar]
  179. TareqM. KhadrawyY.A. RagehM.M. MohammedH.S. Dose-dependent biological toxicity of green synthesized silver nanoparticles in rat’s brain.Sci. Rep.20221212264210.1038/s41598‑022‑27171‑136587179
    [Google Scholar]
  180. JanzadehA. BehrooziZ. SaliminiaF. JanzadehN. ArzaniH. TanhaK. HamblinM.R. RamezaniF. Neurotoxicity of silver nanoparticles in the animal brain: A systematic review and meta-analysis.Forensic Toxicol.2022401496310.1007/s11419‑021‑00589‑436454484
    [Google Scholar]
  181. AdeyemiO.S. UlokoR.A. AwakanO.J. AdeyanjuA.A. OtohinoyiD.A. The oral administration of silver nanoparticles activates the kynurenine pathway in rat brain independently of oxidative stress.Chem. Biol. Interact.2019302222710.1016/j.cbi.2019.01.03430707977
    [Google Scholar]
  182. SungJ.H. JiJ.H. SongK.S. LeeJ.H. ChoiK.H. LeeS.H. YuI.J. Jae Hyuck Sung Jun Ho Ji Kyung Seuk Song Ji Hyun Lee Kyung Hee Choi Sang Hee Lee Il Je Yu Acute inhalation toxicity of silver nanoparticles.Toxicol. Ind. Health201127214915410.1177/074823371038254020870693
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128328722240828184410
Loading
/content/journals/cpd/10.2174/0113816128328722240828184410
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test