Skip to content
2000
Volume 31, Issue 6
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Hepatocellular carcinoma (HCC) is influenced by several factors, among which genetic polymorphisms play a key role. Polymorphisms in various genes affect key pathways involved in HCC development, including metabolism, expression of inflammatory cytokines, cell proliferation, and apoptosis regulation. These polymorphisms induce differential effects on susceptibility to HCC, disease progression, and treatment outcomes. Understanding the effect of genetic variations on HCC pathogenesis is essential to elucidate underlying mechanisms and identify potential therapeutic targets. This review explores the diverse roles of genetic polymorphisms in HCC, providing insights into the complex interplay between genetic factors and disease development.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128327773240827062719
2024-09-18
2025-01-18
Loading full text...

Full text loading...

References

  1. ZhouH.B. HuJ-Y. HuH-P. Hepatitis B virus infection and intrahepatic cholangiocarcinoma.World J. Gastroenterol.201420195721572910.3748/wjg.v20.i19.572124914333
    [Google Scholar]
  2. WangW. WangC. XuH. GaoY. Aldehyde dehydrogenase, liver disease and cancer.Int. J. Biol. Sci.202016692193410.7150/ijbs.4230032140062
    [Google Scholar]
  3. WongM.C.S. JiangJ.Y. GogginsW.B. LiangM. FangY. FungF.D.H. LeungC. WangH.H.X. WongG.L.H. WongV.W.S. ChanH.L.Y. International incidence and mortality trends of liver cancer: A global profile.Sci. Rep.2017714584610.1038/srep4584628361988
    [Google Scholar]
  4. YangW.S. ZengX.F. LiuZ.N. ZhaoQ.H. TanY.T. GaoJ. LiH.L. XiangY.B. Diet and liver cancer risk: A narrative review of epidemiological evidence.Br. J. Nutr.2020124333034010.1017/S000711452000120832234090
    [Google Scholar]
  5. AkinyemijuT. AberaS. AhmedM. AlamN. AlemayohuM.A. AllenC. Al-RaddadiR. Alvis-GuzmanN. AmoakoY. ArtamanA. AyeleT.A. BaracA. BensenorI. BerhaneA. BhuttaZ. Castillo-RivasJ. ChitheerA. ChoiJ.Y. CowieB. DandonaL. DandonaR. DeyS. DickerD. PhucH. EkwuemeD.U. ZakiM.E.S. FischerF. FürstT. HancockJ. HayS.I. HotezP. JeeS.H. KasaeianA. KhaderY. KhangY.H. KumarG.A. KutzM. LarsonH. LopezA. LuneviciusR. MalekzadehR. McAlindenC. MeierT. MendozaW. MokdadA. Moradi-LakehM. NagelG. NguyenQ. NguyenG. OgboF. PattonG. PereiraD.M. PourmalekF. QorbaniM. RadfarA. RoshandelG. SalomonJ.A. SanabriaJ. SartoriusB. SatpathyM. SawhneyM. SepanlouS. ShackelfordK. ShoreH. SunJ. MengistuD.T. Topór-MadryR. TranB. UkwajaK.N. VlassovV. VollsetS.E. VosT. WakayoT. WeiderpassE. WerdeckerA. YonemotoN. YounisM. YuC. ZaidiZ. ZhuL. MurrayC.J.L. NaghaviM. FitzmauriceC. Global Burden of Disease Liver Cancer Collaboration The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level: Results from the global burden of disease study 2015.JAMA Oncol.20173121683169110.1001/jamaoncol.2017.305528983565
    [Google Scholar]
  6. RoweJ.H. GhouriY.A. MianI. Review of hepatocellular carcinoma: Epidemiology, etiology, and carcinogenesis.J. Carcinog.2017161110.4103/jcar.JCar_9_1628694740
    [Google Scholar]
  7. WuZ. LongX. TsangS.Y. HuT. YangJ.F. MatW.K. WangH. XueH. Genomic subtyping of liver cancers with prognostic application.BMC Cancer20202018410.1186/s12885‑020‑6546‑832005109
    [Google Scholar]
  8. ChenZ. XieH. HuM. HuangT. HuY. SangN. ZhaoY. Recent progress in treatment of hepatocellular carcinoma.Am. J. Cancer Res.20201092993303633042631
    [Google Scholar]
  9. Garcia-LezanaT. Lopez-CanovasJ.L. VillanuevaA. Signaling pathways in hepatocellular carcinoma.Adv. Cancer Res.20211496310110.1016/bs.acr.2020.10.00233579428
    [Google Scholar]
  10. RzhetskyA. WajngurtD. ParkN. ZhengT. Probing genetic overlap among complex human phenotypes.Proc. Natl. Acad. Sci. USA200710428116941169910.1073/pnas.070482010417609372
    [Google Scholar]
  11. MoldogazievaN.T. ZavadskiyS.P. TerentievA.A. Genomic landscape of liquid biopsy for hepatocellular carcinoma personalized medicine.Cancer Genomics Proteomics2021183 Suppl36938310.21873/cgp.2026633994362
    [Google Scholar]
  12. DingX.X. ZhuQ.G. ZhangS.M. GuanL. LiT. ZhangL. WangS.Y. RenW.L. ChenX.M. ZhaoJ. LinS. LiuZ.Z. BaiY.X. HeB. ZhangH.Q. Precision medicine for hepatocellular carcinoma: Driver mutations and targeted therapy.Oncotarget2017833557155573010.18632/oncotarget.1838228903454
    [Google Scholar]
  13. KarkiR. PandyaD. ElstonR.C. FerliniC. Defining “mutation” and “polymorphism” in the era of personal genomics.BMC Med. Genomics2015813710.1186/s12920‑015‑0115‑z26173390
    [Google Scholar]
  14. WunguC.D.K. AriyantoF.C. PrabowoG.I. Soetjipto HandajaniR. Association between five types of tumor necrosis factor-α gene polymorphism and hepatocellular carcinoma risk: A meta-analysis.BMC Cancer2020201113410.1186/s12885‑020‑07606‑6
    [Google Scholar]
  15. Abd El-BakyR.M. HettaH.F. KoneruG. AmmarM. ShafikE.A. MoharebD.A. Abbas El-MasryM. RamadanH.K. Abu RahmaM.Z. FawzyM.A. FathyM. Impact of interleukin IL-6 rs-1474347 and IL-10 rs-1800896 genetic polymorphisms on the susceptibility of HCV-infected Egyptian patients to hepatocellular carcinoma.Immunol. Res.202068311812510.1007/s12026‑020‑09126‑832504406
    [Google Scholar]
  16. BaghdadiI. Abu EllaK. El ShaarawayA. ElshayebE. El-RebeyH.S. El HoseenyM. NaguibM. NadaA. Genetic polymorphism of epidermal growth factor gene as a predictor of hepatocellular carcinoma in hepatitis C cirrhotic patients.Asian Pac. J. Cancer Prev.20202172047205310.31557/APJCP.2020.21.7.204732711431
    [Google Scholar]
  17. DengN. ZhouH. FanH. YuanY. Single nucleotide polymorphisms and cancer susceptibility.Oncotarget201786611063511064910.18632/oncotarget.2237229299175
    [Google Scholar]
  18. NahonP. Zucman-RossiJ. Single nucleotide polymorphisms and risk of hepatocellular carcinoma in cirrhosis.J. Hepatol.201257366367410.1016/j.jhep.2012.02.03522609306
    [Google Scholar]
  19. TangT. SongX. YangZ. HuangL. WangW. TanH. Association between murine double minute 2 T309G polymorphism and risk of liver cancer.Tumour Biol.20143511113531135710.1007/s13277‑014‑2432‑925119589
    [Google Scholar]
  20. NagamL.S. VaddeR. JinkaR. Polymorphisms in hepatocellular carcinoma.Theranostics and Precision Medicine for the Management of Hepatocellular Carcinoma.Elsevier202212513310.1016/B978‑0‑323‑98806‑3.00013‑1
    [Google Scholar]
  21. NiuZ.S. NiuX.J. WangW.H. Genetic alterations in hepatocellular carcinoma: An update.World J. Gastroenterol.201622419069909510.3748/wjg.v22.i41.906927895396
    [Google Scholar]
  22. YuB.W. ZhangL.Q. TengX.L. ZhangY. ZouL.B. YingH.Y. Association between the CYP1A1 polymorphisms and hepatocellular carcinoma: A meta-analysis.Genet. Mol. Res.20151411076108410.4238/2015.February.6.1125730047
    [Google Scholar]
  23. KimY.J. YoonJ.H. KimC.Y. KimL.H. ParkB.L. ShinH.D. LeeH.S. IGF2 polymorphisms are associated with hepatitis B virus clearance and hepatocellular carcinoma.Biochem. Biophys. Res. Commun.20063461384410.1016/j.bbrc.2006.05.08016750516
    [Google Scholar]
  24. HuangP. LiR. ShenL. HeW. ChenS. DongY. MaJ. ChenX. XuM. Single nucleotide polymorphisms in telomere length-related genes are associated with hepatocellular carcinoma risk in the Chinese Han population.Ther. Adv. Med. Oncol.202012175883592093302910.1177/175883592093302932577134
    [Google Scholar]
  25. LiR.D. TangY.H. WangH.L. YangD. SunL.J. LiW. The SMYD3 VNTR 3/3 polymorphism confers an increased risk and poor prognosis of hepatocellular carcinoma in a Chinese population.Pathol. Res. Pract.2018214562563010.1016/j.prp.2018.04.00529691085
    [Google Scholar]
  26. ChuE.C. TarnawskiA.S. PTEN regulatory functions in tumor suppression and cell biology.Med. Sci. Monit.20041010RA235RA24115448614
    [Google Scholar]
  27. VinciguerraM. FotiM. PTEN at the crossroad of metabolic diseases and cancer in the liver.Ann. Hepatol.20087319219910.1016/S1665‑2681(19)31848‑418772845
    [Google Scholar]
  28. HuT.H. WangC.C. HuangC.C. ChenC.L. HungC.H. ChenC.H. WangJ.H. LuS.N. LeeC.M. ChangchienC.S. TaiM.H. Down-regulation of tumor suppressor gene PTEN, overexpression of p53, plus high proliferating cell nuclear antigen index predict poor patient outcome of hepatocellular carcinoma after resection.Oncol. Rep.20071861417142610.3892/or.18.6.141717982625
    [Google Scholar]
  29. YimingZ. ZhaoyiL. JingL. JinliangW. ZhiqiangS. GuangliangS. ShuL. Cadmium induces the thymus apoptosis of pigs through ROS-dependent PTEN/PI3K/AKT signaling pathway.Environ. Sci. Pollut. Res. Int.20212829399823999210.1007/s11356‑021‑13517‑133765263
    [Google Scholar]
  30. LiH-G. LiuF-F. ZhuH-Q. ZhouX. LuJ. ChangH. HuJ-H. Association of PTEN gene polymorphisms with liver cancer risk.Int. J. Clin. Exp. Pathol.2015811151981520326823866
    [Google Scholar]
  31. MunirajanA.K. AndoK. MukaiA. TakahashiM. SuenagaY. OhiraM. KodaT. HirotaT. OzakiT. NakagawaraA. KIF1Bbeta functions as a haploinsufficient tumor suppressor gene mapped to chromosome 1p36.2 by inducing apoptotic cell death.J. Biol. Chem.200828336244262443410.1074/jbc.M80231620018614535
    [Google Scholar]
  32. SchlisioS. KenchappaR.S. VredeveldL.C.W. GeorgeR.E. StewartR. GreulichH. ShahriariK. NguyenN.V. PignyP. DahiaP.L. PomeroyS.L. MarisJ.M. LookA.T. MeyersonM. PeeperD.S. CarterB.D. KaelinW.G.Jr The kinesin KIF1Bβ acts downstream from EglN3 to induce apoptosis and is a potential 1p36 tumor suppressor.Genes Dev.200822788489310.1101/gad.164860818334619
    [Google Scholar]
  33. WangZ.C. GaoQ. ShiJ.Y. YangL.X. ZhouJ. WangX.Y. ShiY.H. KeA.W. ShiG.M. DingZ.B. DaiZ. QiuS.J. FanJ. Genetic polymorphism of the kinesin-like protein KIF1B gene and the risk of hepatocellular carcinoma.PLoS One201384e6257110.1371/journal.pone.006257123634229
    [Google Scholar]
  34. ZhangZ. Association between KIF1B rs17401966 polymorphism and hepatocellular carcinoma risk: A meta-analysis involving 17,210 subjects.Tumour Biol.20143599405941010.1007/s13277‑014‑2192‑624952890
    [Google Scholar]
  35. LuoY. ZhangH. HuangA. HuJ. Association between KIF1B rs17401966 genetic polymorphism and hepatocellular carcinoma susceptibility: An updated meta-analysis.BMC Med. Genet.20192015910.1186/s12881‑019‑0778‑y30606125
    [Google Scholar]
  36. KennyF.S. HuiR. MusgroveE.A. GeeJ.M. BlameyR.W. NicholsonR.I. SutherlandR.L. RobertsonJ.F. Overexpression of cyclin D1 messenger RNA predicts for poor prognosis in estrogen receptor-positive breast cancer.Clin. Cancer Res.1999582069207610473088
    [Google Scholar]
  37. HuangX. JianW. WuZ. ZhaoJ. WangH. LiW. XiaJ. Small interfering RNA (siRNA)- mediated knockdown of macrophage migration inhibitory factor (MIF) suppressed cyclin D1 expression and hepatocellular carcinoma cell proliferation.Oncotarget20145145570558010.18632/oncotarget.214125015194
    [Google Scholar]
  38. WangD. DuanW. ZhuZ. TuY. DouC. HanM. ZhangB. ZhaoW. JiangK. CCND1 rs9344 polymorphism is associated with the risk of hepatocellular carcinoma in Caucasian population.J. Cancer Res. Ther.2018149Suppl. 2S516S51810.4103/0973‑1482.20359829970717
    [Google Scholar]
  39. WangY. LiuD. ZhangT. XiaL. FGF/FGFR signaling in hepatocellular carcinoma: From carcinogenesis to recent therapeutic intervention.Cancers2021136136010.3390/cancers1306136033802841
    [Google Scholar]
  40. Al-KhaykaneeA.M. Abdel-RahmanA.A.H. EssaA. GadallahA.A. AliB.H. Al-AqarA.A. BadrE.A.E. Shehab-EldeenS. Genetic polymorphism of fibroblast growth factor receptor 2 and trinucleotide repeat-containing 9 influence the susceptibility to HCV-induced hepatocellular carcinoma.Clin. Res. Hepatol. Gastroenterol.202145610163610.1016/j.clinre.2021.10163633740609
    [Google Scholar]
  41. NoureddinM. AbdelmalekM.F. ACE inhibitors: The secret to prevent cirrhosis complications and HCC in NAFLD?Hepatology202276229529710.1002/hep.3239935124826
    [Google Scholar]
  42. YuanF. ZhangL.S. LiH.Y. LiaoM. LvM. ZhangC. Influence of angiotensin I-converting enzyme gene polymorphism on hepatocellular carcinoma risk in China.DNA Cell Biol.201332526827310.1089/dna.2012.191023570557
    [Google Scholar]
  43. BerasainC. AvilaM.A. The EGFR signalling system in the liver: From hepatoprotection to hepatocarcinogenesis.J. Gastroenterol.201449192310.1007/s00535‑013‑0907‑x24318021
    [Google Scholar]
  44. CasulaM. AlaibacM. PizzichettaM.A. BonoR. AsciertoP.A. StanganelliI. CanzanellaS. PalombaG. ZattraE. PalmieriG. Italian Melanoma Intergroup (IMI) Role of the EGF +61A>G polymorphism in melanoma pathogenesis: An experience on a large series of Italian cases and controls.BMC Dermatol.200991710.1186/1471‑5945‑9‑719624835
    [Google Scholar]
  45. WuD. WuY. ZhangX. CongP. LvX. Lack of association between EGF +61A>G polymorphism and melanoma susceptibility in Caucasians: A HuGE review and meta-analysis.Gene2013515235936610.1016/j.gene.2012.11.01423201894
    [Google Scholar]
  46. ChenZ. SunY. XuZ. XuJ. LiJ. YanM. LiJ. JinT. LinH. ACYP2 polymorphisms are associated with the risk of liver cancer in a Han Chinese population.Oncotarget2017840677236773110.18632/oncotarget.1857428978066
    [Google Scholar]
  47. ZhaoW. LiuX. YuZ. XiongZ. WuJ. SunY. NiuF. LiuJ. JinT. Associations between polymorphisms of the ACYP2 gene and liver cancer risk: A case-control study and meta-analysis.Mol. Genet. Genomic Med.201977e0071610.1002/mgg3.71631124313
    [Google Scholar]
  48. ZhaoX. HuS. WangL. ZhangQ. ZhuX. ZhaoH. WangC. TaoR. GuoS. WangJ. XuJ. HeY. GaoY. Functional short tandem repeat polymorphism of PTPN11 and susceptibility to hepatocellular carcinoma in Chinese populations.PLoS One201499e10684110.1371/journal.pone.010684125198338
    [Google Scholar]
  49. AL-EitanL.N. Rababa’hD.M. Correlation between a variable number tandem repeat (VNTR) polymorphism in SMYD3 gene and breast cancer: A genotype-phenotype study.Gene202072814428110.1016/j.gene.2019.14428131836525
    [Google Scholar]
  50. WangH. LiuY. TanW. ZhangY. ZhaoN. JiangY. LinC. HaoB. ZhaoD. QianJ. LuD. JinL. WeiQ. LinD. HeF. Association of the variable number of tandem repeats polymorphism in the promoter region of the SMYD3 gene with risk of esophageal squamous cell carcinoma in relation to tobacco smoking.Cancer Sci.200899478779110.1111/j.1349‑7006.2008.00729.x18294291
    [Google Scholar]
  51. BinhM.T. HoanN.X. GiangD.P. TongH.V. BockC.T. WedemeyerH. ToanN.L. BangM.H. KremsnerP.G. MeyerC.G. SongL.H. VelavanT.P. Upregulation of SMYD3 and SMYD3 VNTR 3/3 polymorphism increase the risk of hepatocellular carcinoma.Sci. Rep.2020101279710.1038/s41598‑020‑59667‑z32071406
    [Google Scholar]
  52. WangX.Q. MiaoX. CaiQ. Garcia-BarceloM.M. FanS.T. SMYD3 tandem repeats polymorphism is not associated with the occurrence and metastasis of hepatocellular carcinoma in a Chinese population.Exp. Oncol.2007291717317431393
    [Google Scholar]
  53. WanJ. HuangM. ZhaoH. WangC. ZhaoX. JiangX. BianS. HeY. GaoY. A novel tetranucleotide repeat polymorphism within KCNQ1OT1 confers risk for hepatocellular carcinoma.DNA Cell Biol.2013321162863410.1089/dna.2013.211823984860
    [Google Scholar]
  54. MillerD.M. ThomasS.D. IslamA. MuenchD. SedorisK. c-Myc and cancer metabolism.Clin. Cancer Res.201218205546555310.1158/1078‑0432.CCR‑12‑097723071356
    [Google Scholar]
  55. ZhaoX.M. XiangZ.L. ChenY.X. YangP. HuY. ZengZ.C. A sequence polymorphism on 8q24 is associated with survival in hepatocellular carcinoma patients who received radiation therapy.Sci. Rep.201881226410.1038/s41598‑018‑20700‑x29396413
    [Google Scholar]
  56. NaultJ.C. Zucman-RossiJ. TERT promoter mutations in primary liver tumors.Clin. Res. Hepatol. Gastroenterol.201640191410.1016/j.clinre.2015.07.00626336998
    [Google Scholar]
  57. KoE. SeoH.W. JungE.S. KimB. JungG. The TERT promoter SNP rs2853669 decreases E2F1 transcription factor binding and increases mortality and recurrence risks in liver cancer.Oncotarget20167168469910.18632/oncotarget.633126575952
    [Google Scholar]
  58. García-PrasE. Fernández-IglesiasA. Gracia-SanchoJ. Pérez-del-PulgarS. Cell death in hepatocellular carcinoma: Pathogenesis and therapeutic opportunities.Cancers20211414810.3390/cancers1401004835008212
    [Google Scholar]
  59. TianZ. LiY.L. ZhaoL. ZhangC.L. CYP2E1 RsaI/PstI polymorphism and liver cancer risk among east Asians: A HuGE review and meta-analysis.Asian Pac. J. Cancer Prev.201213104915492110.7314/APJCP.2012.13.10.491523244081
    [Google Scholar]
  60. XiongQ. JiaoY. YangP. LiaoY. GuX. HuF. ChenB. The association study between CYP24A1 gene polymorphisms and risk of liver, lung and gastric cancer in a Chinese population.Pathol. Res. Pract.20202161215323710.1016/j.prp.2020.15323733065483
    [Google Scholar]
  61. VáclavíkováR. HughesD.J. SoučekP. Microsomal epoxide hydrolase 1 (EPHX1): Gene, structure, function, and role in human disease.Gene201557111810.1016/j.gene.2015.07.07126216302
    [Google Scholar]
  62. WangD. ZhaiJ.X. ZhangL.M. LiuD.W. LiuX.H. EPHX1 Tyr113His polymorphism contributes to hepatocellular carcinoma risk: Evidfnce from a meta-analysis.Mol. Biol.201549235136110.7868/S002689841502016026065263
    [Google Scholar]
  63. SophonnithiprasertT. SaeleeP. PongtheeratT. Glutathione S- transferase P1 polymorphism on Exon 6 and risk of hepatocellular carcinoma in Thai male patients.Oncology202098424324710.1159/00050521331958798
    [Google Scholar]
  64. MarahattaS.B. PunyaritP. BhudisawasdiV. PaupairojA. WongkhamS. PetmitrS. Polymorphism of glutathione S-transferase Omega gene and risk of cancer.Cancer Lett.2006236227628110.1016/j.canlet.2005.05.02015992993
    [Google Scholar]
  65. YaoS. YinX. ChenT. ChenW. ZuoH. BiZ. ZhangX. JingY. PangL. ChengH. ALDH2 is a prognostic biomarker and related with immune infiltrates in HCC.Am. J. Cancer Res.202111115319533734873463
    [Google Scholar]
  66. SeoW. GaoY. HeY. SunJ. XuH. FengD. ParkS.H. ChoY.E. GuillotA. RenT. WuR. WangJ. KimS.J. HwangS. LiangpunsakulS. YangY. NiuJ. GaoB. ALDH2 deficiency promotes alcohol-associated liver cancer by activating oncogenic pathways via oxidized DNA-enriched extracellular vesicles.J. Hepatol.20197151000101110.1016/j.jhep.2019.06.01831279903
    [Google Scholar]
  67. AbeH. AidaY. SekiN. SugitaT. TomitaY. NaganoT. ItagakiM. SutohS. NagatsumaK. ItohK. MatsuuraT. AizawaY. Aldehyde dehydrogenase 2 polymorphism for development to hepatocellular carcinoma in E ast A sian alcoholic liver cirrhosis.J. Gastroenterol. Hepatol.20153091376138310.1111/jgh.1294825778454
    [Google Scholar]
  68. GrimmD. LiebJ. WeyerV. VollmarJ. DarsteinF. LautemA. Hoppe-LotichiusM. KochS. SchadA. SchattenbergJ.M. WörnsM.A. WeinmannA. GalleP.R. ZimmermannT. Organic cation transporter 1 (OCT1) mRNA expression in hepatocellular carcinoma as a biomarker for sorafenib treatment.BMC Cancer20161619410.1186/s12885‑016‑2150‑326872727
    [Google Scholar]
  69. CabralL.K.D. TiribelliC. SukowatiC.H.C. Sorafenib resistance in hepatocellular carcinoma: The relevance of genetic heterogeneity.Cancers2020126157610.3390/cancers1206157632549224
    [Google Scholar]
  70. ChangQ. HeZ. PengY. DuanS. DaiY. ZhaoX. A meta-analysis of MDR1 polymorphisms rs1128503 and rs1045642 and susceptibility to hepatocellular carcinoma.J. Int. Med. Res.20194772800280910.1177/030006051985586931234681
    [Google Scholar]
  71. ChungG.E. LeeY. YimJ.Y. ChoeE.K. KwakM.S. YangJ.I. ParkB. LeeJ.E. KimJ.A. KimJ.S. Genetic polymorphisms of PNPLA3 and SAMM50 are associated with nonalcoholic fatty liver disease in a Korean population.Gut Liver201812331632310.5009/gnl1730629271184
    [Google Scholar]
  72. WangZ. BudhuA.S. ShenY. WongL.L. HernandezB.Y. TiirikainenM. MaX. IrwinM.L. LuL. ZhaoH. LimJ.K. TaddeiT. MishraL. PawlishK. StroupA. BrownR. NguyenM.H. KoshiolJ. HernandezM.O. ForguesM. YangH.I. LeeM.H. HuangY.H. IwasakiM. GotoA. SuzukiS. MatsudaK. TanikawaC. KamataniY. MannD. GuarneraM. ShettyK. ThomasC.E. YuanJ.M. KhorC.C. KohW.P. RischH. WangX.W. YuH. Genetic susceptibility to hepatocellular carcinoma in chromosome 22q13.31, findings of a genome-wide association study.JGH Open20215121363137210.1002/jgh3.1268234950780
    [Google Scholar]
  73. ZhouJ. WenQ. LiS.F. ZhangY.F. GaoN. TianX. FangY. GaoJ. CuiM.Z. HeX.P. JiaL.J. JinH. QiaoH.L. Significant change of cytochrome P450s activities in patients with hepatocellular carcinoma.Oncotarget2016731506125062310.18632/oncotarget.943727203676
    [Google Scholar]
  74. ChungT.T. YehC.B. LiY.C. SuS.C. ChienM.H. YangS.F. HsiehY.H. Effect of RECK gene polymorphisms on hepatocellular carcinoma susceptibility and clinicopathologic features.PLoS One201273e3351710.1371/journal.pone.003351722428065
    [Google Scholar]
  75. ZhouQ. FuY. WenL. DengY. ChenJ. LiuK. XPD polymorphisms and risk of hepatocellular carcinoma and gastric cancer: A meta-analysis.Technol. Cancer Res. Treat.20212010.1177/153303382199004633517857
    [Google Scholar]
  76. ElmougyR. ElkhoudaryA.F. ElsaidA. WahbaY. Abdel-AzizA.A. Genetic and biochemical studies of hepatic carcinoma in the Egyptian population.J. Res. Med. Sci.20212616210.4103/jrms.JRMS_846_1734729070
    [Google Scholar]
  77. MalikA. ThanekarU. AmarachinthaS. MouryaR. NalluriS. BondocA. ShivakumarP. “Complimenting the complement”: Mechanistic insights and opportunities for therapeutics in hepatocellular carcinoma.Front. Oncol.20211062770110.3389/fonc.2020.62770133718121
    [Google Scholar]
  78. AkkızH. BayramS. BekarA. AkgöllüE. ÜlgerY. Functional polymorphisms of cyclooxygenase-2 gene and risk for hepatocellular carcinoma.Mol. Cell. Biochem.20113471-220120810.1007/s11010‑010‑0629‑921042835
    [Google Scholar]
  79. LuoL. LiQ. SuZ. LiL. CaiB. PengY. BaiY. LiuF. Genetic polymorphisms in CD35 gene contribute to the susceptibility and prognosis of hepatocellular carcinoma.Front. Oncol.20211170071110.3389/fonc.2021.70071134422654
    [Google Scholar]
  80. LuS.C. ZhongJ.H. TanJ.T. TangH.L. LiuX.G. XiangB.D. LiL.Q. PengT. Association between COX-2 gene polymorphisms and risk of hepatocellular carcinoma development: A meta-analysis.BMJ Open2015510e00826310.1136/bmjopen‑2015‑00826326438136
    [Google Scholar]
  81. ChenX. ZhouP. DeL. LiB. SuS. The roles of transmembrane 6 superfamily member 2 rs58542926 polymorphism in chronic liver disease: A meta-analysis of 24,147 subjects.Mol. Genet. Genomic Med.201978e82410.1002/mgg3.82431309745
    [Google Scholar]
  82. JiangX. QianH. DingW.X. New glance at the role of TM6SF2 in lipid metabolism and liver cancer.Wiley Online Library202111411144
    [Google Scholar]
  83. DongX.C. PNPLA3-A potential therapeutic target for personalized treatment of chronic liver disease.Front. Med.2019630410.3389/fmed.2019.0030431921875
    [Google Scholar]
  84. BingH. WangW. LiY.L. Correlation between PNPLA3 rs738409 and TM6SF2 rs58542926 gene polymorphism and primary liver cancer in the Han population of China’s Northeast region.Zhonghua Gan Zang Bing Za Zhi202129215616233685085
    [Google Scholar]
  85. WuM.T. YeW.T. WangY.C. ChenP.M. LiuJ.Y. TaiC.K. TangF.Y. LiJ.R. LiuC.C. ChiangE.P.I. MTHFR knockdown assists cell defense against folate depletion induced chromosome segregation and uracil misincorporation in DNA.Int. J. Mol. Sci.20212217939210.3390/ijms2217939234502300
    [Google Scholar]
  86. LiangT.J. LiuH. ZhaoX.Q. TanY.R. JingK. QinC.Y. Quantitative assessment of the association between MTHFR rs1801131 polymorphism and risk of liver cancer.Tumour Biol.201435133934310.1007/s13277‑013‑1046‑y24014085
    [Google Scholar]
  87. ZhengR. ZhaoW. DaiD. LiC. Associations between MTHFR Ala222Val polymorphism and risks of hepatitis and hepatitis-related liver cancer: A meta-analysis.Tumour Biol.20143521313131810.1007/s13277‑013‑1174‑424155211
    [Google Scholar]
  88. ZhaoM. LiS. ZhouL. ShenQ. ZhuH. ZhuX. Prognostic values of excision repair cross-complementing genes mRNA expression in ovarian cancer patients.Life Sci.2018194343910.1016/j.lfs.2017.12.01829247747
    [Google Scholar]
  89. ZhuM.L. ShiT.Y. HuH.C. HeJ. WangM. JinL. YangY.J. WangJ.C. SunM.H. ChenH. ZhaoK.L. ZhangZ. ChenH.Q. XiangJ.Q. WeiQ.Y. Polymorphisms in the ERCC5 gene and risk of esophageal squamous cell carcinoma (ESCC) in Eastern Chinese populations.PLoS One201277e4150010.1371/journal.pone.004150022848513
    [Google Scholar]
  90. RybickaM. WoziwodzkaA. SznarkowskaA. RomanowskiT. StalkeP. DręczewskiM. VerrierE.R. BaumertT.F. BielawskiK.P. Liver cirrhosis in chronic hepatitis B patients is associated with genetic variations in DNA repair pathway genes.Cancers20201211329510.3390/cancers1211329533171788
    [Google Scholar]
  91. YangG. YangY. MaX. HuangL. LiW. SongX. ZhangH. LiuW. LuJ. Association of ERCC5 genetic polymorphisms with cirrhosis and liver cancer.Technol. Cancer Res. Treat.202019153303382094324410.1177/153303382094324432812509
    [Google Scholar]
  92. HuZ-J XueJ-F ZhangX-Y ShiX-S ZhouH Relationship between genetic polymorphism of ERCC1 and susceptibility to liver cancer.Z Safflower IU Venereol Value2010311112881291
    [Google Scholar]
  93. SantonocitoC. ScapaticciM. NedovicB. AnnicchiaricoE.B. GuarinoD. LeonciniE. BocciaS. GasbarriniA. CapoluongoE. XRCC1 Arg399Gln gene polymorphism and hepatocellular carcinoma risk in the Italian population.Int. J. Biol. Markers201732219019410.5301/jbm.500024128058700
    [Google Scholar]
  94. HeG. KarinM. HeG KM NF-κB and STAT3 – key players in liver inflammation and cancer.Cell Res.201121115916810.1038/cr.2010.18321187858
    [Google Scholar]
  95. BerasainC. CastilloJ. PerugorriaM.J. LatasaM.U. PrietoJ. AvilaM.A. Inflammation and liver cancer: New molecular links.Ann. N. Y. Acad. Sci.20091155120622110.1111/j.1749‑6632.2009.03704.x19250206
    [Google Scholar]
  96. GaoJ. XuH.L. GaoS. ZhangW. TanY.T. RothmanN. PurdueM. GaoY.T. ZhengW. ShuX.O. XiangY.B. Genetic polymorphism of NFKB1 and NFKBIA genes and liver cancer risk: A nested case–control study in Shanghai, China.BMJ Open201442e00442710.1136/bmjopen‑2013‑00442724578542
    [Google Scholar]
  97. GurevichI. ZhangC. FrancisN. AneskievichB.J. TNIP1, a retinoic acid receptor corepressor and A20-binding inhibitor of NF-κB, distributes to both nuclear and cytoplasmic locations.J. Histochem. Cytochem.201159121101111210.1369/002215541142772822147607
    [Google Scholar]
  98. ChengY. JiangX. JinJ. LuoX. ChenW. LiQ. ZhangC. TNIP1 polymorphisms with the risk of hepatocellular carcinoma based on chronic hepatitis B infection in Chinese Han population.Biochem. Genet.201957111712810.1007/s10528‑018‑9882‑530073579
    [Google Scholar]
  99. ShiY. ZhangL. BaoY. WuP. ZhangX. Association of TNIP1 polymorphisms with hepatocellular carcinoma in a Northwest Chinese Han population.Medicine202110012e2484310.1097/MD.000000000002484333761643
    [Google Scholar]
  100. HsuL.M. HuangY.S. YangS.Y. ChangF.Y. LeeS.D. Polymorphism of T-cell receptor gamma short tandem repeats as a susceptibility risk factor of hepatocellular carcinoma.Anticancer Res.2006265B3787379117094402
    [Google Scholar]
  101. TakK.H. YuG.I. LeeM.Y. ShinD.H. Association between polymorphisms of interleukin 1 family genes and hepatocellular carcinoma.Med. Sci. Monit.2018243488349510.12659/MSM.90752429802240
    [Google Scholar]
  102. HirankarnN. KimkongI. KummeeP. TangkijvanichP. PoovorawanY. Interleukin-1β gene polymorphism associated with hepatocellular carcinoma in hepatitis B virus infection.World J. Gastroenterol.200612577677910.3748/wjg.v12.i5.77616521194
    [Google Scholar]
  103. WangY. KatoN. HoshidaY. YoshidaH. TaniguchiH. GotoT. MoriyamaM. OtsukaM. ShiinaS. ShiratoriY. ItoY. OmataM. Interleukin-1β gene polymorphisms associated with hepatocellular carcinoma in hepatitis C virus infection.Hepatology2003371657110.1053/jhep.2003.5001712500190
    [Google Scholar]
  104. KongC. ChenM. FanX. ChenX. Associations between hepatocellular carcinoma risk and rs3212227 and rs568408 polymorphisms: A systematic review and meta-analysis.J. Int. Med. Res.2020488030006052094342010.1177/030006052094342032809897
    [Google Scholar]
  105. RingelhanM. PfisterD. O’ConnorT. PikarskyE. HeikenwalderM. The immunology of hepatocellular carcinoma.Nat. Immunol.201819322223210.1038/s41590‑018‑0044‑z29379119
    [Google Scholar]
  106. AnP.P. FengL.N. ZhangX.X. JinQ.L. Association of interleukin-6 gene polymorphisms with the risk of hepatocellular carcinoma.Medicine20209950e2365910.1097/MD.000000000002365933327352
    [Google Scholar]
  107. LuX.H. MaoG.X. ZhangY.Y. ChuY.S. YuanH.X. ZhuX.Q. Association between variants of IL-8 and IL-10 genes, and efficacy of transcatheter arterial chemoembolization and subsequent prognosis in patients with liver cancer.Eur. Rev. Med. Pharmacol. Sci.201519173218322326400525
    [Google Scholar]
  108. SaadH. ZahranM. HendyO. Abdel-SamieeM. BedairH.M. AbdelsameeaE. Matrix metalloproteinase-11 gene polymorphisms as a risk for hepatocellular carcinoma development in egyptian patients.Asian Pac. J. Cancer Prev.202021123725373410.31557/APJCP.2020.21.12.372533369474
    [Google Scholar]
  109. KuangX.J. MoD.C. QinY. AhirB.K. WangJ.J. PengZ. DengZ.L. Single nucleotide polymorphism of rs2596542 and the risk of hepatocellular carcinoma development.Medicine20199811e1476710.1097/MD.000000000001476730882647
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128327773240827062719
Loading
/content/journals/cpd/10.2174/0113816128327773240827062719
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test