Skip to content
2000
Volume 31, Issue 6
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Various ailments have been treated with pineapple ( (L.) Merr.) throughout medicinal history. Pineapple and its bioactive compound bromelain possess health-promoting benefits. Detailed information on the chemotherapeutic activities of pineapple and its bioactive compound bromelain is provided in this review, which analyses the current literature regarding their therapeutic potential in cancer. Research on disease models in cell cultures is the focus of much of the existing research. Several studies have demonstrated the benefits of pineapple extract and bromelain for and cancer models. Preliminary animal model results show promise, but they must be translated into the clinical setting. Research on these compounds represents a promising future direction and may be well-tolerated.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128303910240713180835
2024-09-12
2025-01-18
Loading full text...

Full text loading...

References

  1. MajérusM.A. The cause of cancer: The unifying theory.Adv. Canc Biol. Metast2022410003410.1016/j.adcanc.2022.100034
    [Google Scholar]
  2. JiangW.G. SandersA.J. KatohM. Tissue invasion and metastasis: Molecular, biological and clinical perspectives.Semin. Cancer Biol.201535S244S275
    [Google Scholar]
  3. NagaiH. KimY.H. Cancer prevention from the perspective of global cancer burden patterns.J. Thorac. Dis.20179344845110.21037/jtd.2017.02.75 28449441
    [Google Scholar]
  4. Chemotherapy Side Effects|American Cancer Society.Available from: https://www.cancer.org/treatment/treatments-and-side-effects/treatment-types/chemotherapy/chemotherapy-side-effects.html (accessed on 10 May 2022).
  5. YangM.H. KimJ. KhanI.A. WalkerL.A. KhanS.I. Nonsteroidal anti-inflammatory drug activated gene-1 (NAG-1) modulators from natural products as anti-cancer agents.Life Sci.20141002758410.1016/j.lfs.2014.01.075 24530873
    [Google Scholar]
  6. KourJ. ChopraH. BukhariS. Nutraceutical-A Deep and Profound Concept. In: Nutraceuticals and Health Care.Elsevier202212810.1016/B978‑0‑323‑89779‑2.00021‑1
    [Google Scholar]
  7. SchieberA. StintzingF.C. CarleR. By-products of plant food processing as a source of functional compounds recent developments.Trends Food Sci. Technol.2001121140141310.1016/S0924‑2244(02)00012‑2
    [Google Scholar]
  8. TacarO. SriamornsakP. DassC.R. Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems.J. Pharm. Pharmacol.201265215717010.1111/j.2042‑7158.2012.01567.x 23278683
    [Google Scholar]
  9. DebnathB. SinghW.S. MannaK. A phytopharmacological review on Ananas comosus.Adv Tradit Med202323229129810.1007/s13596‑021‑00563‑w
    [Google Scholar]
  10. JongrungraungchokS. MadakaF. WunnakupT. In vitro antioxidant, anti-inflammatory, and anticancer activities of mixture Thai medicinal plants.BMC Compl Med Therap20232314310.1186/s12906‑023‑03862‑8 36765341
    [Google Scholar]
  11. XieA. DongY. LiuZ. A review of plant-based drinks addressing nutrients, flavor, and processing technologies.Foods20231221395210.3390/foods12213952 37959070
    [Google Scholar]
  12. KumarV. DurejaH. GargV. Traditional use, phytochemistry and pharmacology of Ananas comosus (L.) Merr. (Family Bromeliaceae): An update.Curr. Nutr. Food Sci.202319442844110.2174/1573401318666220509140201
    [Google Scholar]
  13. LeeA. CreasyH. LancasterD. BoothS. DheansaB. Development of a treatment pathway for enzymatic debridement in cutaneous burns: A single centre experience.J. Plast. Reconstr. Aesthet. Surg.20227582831287010.1016/j.bjps.2022.06.061 35768290
    [Google Scholar]
  14. Nipa TochiB. WangZ. - Ying Xu S, Zhang W. Therapeutic application of pineapple protease (Bromelain): A review.Pak. J. Nutr.20087451352010.3923/pjn.2008.513.520
    [Google Scholar]
  15. KumarV. GargV. DurejaH. Role of traditional herbal medicine in treatment of malaria.TMR Mod Herb Med2022542010.53388/MHM2022B0816001
    [Google Scholar]
  16. JohnstonC.S. GaasC.A. Vinegar: Medicinal uses and antiglycemic effect.MedGenMed20068261 16926800
    [Google Scholar]
  17. MohamadN.E. YeapS.K. LimK.L. Antioxidant effects of pineapple vinegar in reversing of paracetamol-induced liver damage in mice.Chin. Med.2015101310.1186/s13020‑015‑0030‑4 25699088
    [Google Scholar]
  18. LiuR.H. Potential synergy of phytochemicals in cancer prevention: Mechanism of action.J. Nutr.200413412Suppl.3479S3485S10.1093/jn/134.12.3479S 15570057
    [Google Scholar]
  19. WengC.J. YenG.C. Chemopreventive effects of dietary phytochemicals against cancer invasion and metastasis: Phenolic acids, monophenol, polyphenol, and their derivatives.Cancer Treat. Rev.2012381768710.1016/j.ctrv.2011.03.001 21481535
    [Google Scholar]
  20. RoleiraF.M.F. Tavares-da-SilvaE.J. VarelaC.L. Plant derived and dietary phenolic antioxidants: Anticancer properties.Food Chem.201518323525810.1016/j.foodchem.2015.03.039 25863633
    [Google Scholar]
  21. HatanoK. SawanoY. TanokuraM. Structure-function relationship of bromelain isoinhibitors from pineapple stem.Biol. Chem.20023837-81151115610.1515/BC.2002.126 12437100
    [Google Scholar]
  22. TayabM.A. ChowdhuryK.A.A. JabedM. Antioxidant-rich Woodfordia fruticosa leaf extract alleviates depressive-like behaviors and impede hyperglycemia.Plants202110228710.3390/plants10020287
    [Google Scholar]
  23. HatanoK. TakahashiK. TanokuraM. Bromein, a bromelain inhibitor from pineapple stem: Structural and functional characteristics.Protein Pept. Lett.201825983885210.2174/0929866525666180821115432 30129400
    [Google Scholar]
  24. ChakrabortyA.J. MitraS. TalleiT.E. Bromelain a potential bioactive compound: A comprehensive overview from a pharmacological perspective.Life202111431710.3390/life11040317
    [Google Scholar]
  25. LuX.H. SunD.Q. WuQ.S. LiuS.H. SunG.M. Physico-chemical properties, antioxidant activity and mineral contents of pineapple genotypes grown in China.Molecules20141968518853210.3390/molecules19068518 24959679
    [Google Scholar]
  26. BratP. HoangL.N.T. SolerA. ReynesM. BrillouetJ.M. Physicochemical characterization of a new pineapple hybrid (FLHORAN41 Cv.).J. Agric. Food Chem.200452206170617710.1021/jf0492621 15453683
    [Google Scholar]
  27. MhatreM. Tilak-JainJ. DeS. DevasagayamT.P.A. Evaluation of the antioxidant activity of non-transformed and transformed pineapple: A comparative study.Food Chem. Toxicol.200947112696270210.1016/j.fct.2009.06.031 19563857
    [Google Scholar]
  28. ChopraH. Introduction to the Role of Fruits in Nutraceutical and Functional Foods. In: Fruits and Their Roles in Nutraceuticals and Functional Foods.CRC Press202312810.1201/9781003259213‑1
    [Google Scholar]
  29. Health Benefits of PineappleAvailable from: https://www.webmd.com/diet/ss/slideshow-health-benefits-pineapple (accessed on 18 November 2022).
  30. GiannakourouM.C. TaoukisP.S. Effect of alternative preservation steps and storage on vitamin C stability in fruit and vegetable products: Critical review and kinetic modelling approaches.Foods20211011263010.3390/foods10112630 34828909
    [Google Scholar]
  31. HrubšaM. SiatkaT. NejmanováI. Biological properties of vitamins of the B-complex, Part 1: Vitamins B1, B2, B3, and B5.Nutrients202214348410.3390/nu14030484 35276844
    [Google Scholar]
  32. MamoJ. AssefaF. Antibacterial and anticancer property of bromelain: A plant protease enzyme from pineapples 002 (Ananas comosus).Curr. Trends Biomed. Eng. Biomedical.201919255600910.19080/CTBEB.2019.19.556009
    [Google Scholar]
  33. KritisP. KarampelaI. KokorisS. DalamagaM. The combination of bromelain and curcumin as an immune-boosting nutraceutical in the prevention of severe COVID-19.Metabolism. Open2020810006610.1016/j.metop.2020.100066 33205039
    [Google Scholar]
  34. LeyC.M. TsiamiA. NiQ. RobinsonN. A review of the use of bromelain in cardiovascular diseases.J. Chin. Integr. Med.20119770271010.3736/jcim20110702 21749819
    [Google Scholar]
  35. HaM. El-DinA. BekhitA. CarneA. HopkinsD.L. Characterisation of commercial papain, bromelain, actinidin and zingibain protease preparations and their activities toward meat proteins.Food Chemistry.201213419510510.1016/j.foodchem.2012.02.071
    [Google Scholar]
  36. AtaideJ.A. In vitro performance of free and encapsulated bromelain.Sci. Rep.20211111019510.1038/s41598‑021‑89376‑0
    [Google Scholar]
  37. Pineapple ClassificationAvailable from: http://bioweb.uwlax.edu/bio203/s2012/engebos_meag/classification.htm (accessed on 18 November 2022).
  38. The Genetics of Cancer | Cancer.Net. Available from: https://www.cancer.net/navigating-cancer-care/cancer-basics/genetics/genetics-cancer (accessed on 18 November 2022).
  39. CooperG.M. The development and causes of cancer.Sunderland, MASinauer Associates2000
    [Google Scholar]
  40. Cancer Pathophysiology A Section of Cancers.Available from: https://www.mdpi.com/journal/cancers/sections/Cancer_Pathophysiology (accessed on 18 November 2022).
    [Google Scholar]
  41. YousafS. QamarF. TahirZ. Nano-nutraceuticals for the treatment of cancer. In: Handbook of Nanotechnology in Nutraceuticals.CRC Press2022399416
    [Google Scholar]
  42. Pathophysiology, Types, Diagnosis and Treatment: Online Biology Notes.Available from: https://www.onlinebiologynotes.com/cancer-etiology-pathophysiology-types-diagnosis-and-treatment/ (accessed on 18 November 2022).
  43. ChangT.C. WeiP.L. MakondiP.T. ChenW.T. HuangC.Y. ChangY.J. Bromelain inhibits the ability of colorectal cancer cells to proliferate via activation of ROS production and autophagy.PLoS One2019141e021027410.1371/journal.pone.0210274 30657763
    [Google Scholar]
  44. HashemS. AliT.A. AkhtarS. Targeting cancer signaling pathways by natural products: Exploring promising anti-cancer agents.Biomed. Pharmacother.202215011305410.1016/j.biopha.2022.113054 35658225
    [Google Scholar]
  45. RajanP.K. DunnaN.R. VenkatabalasubramanianS. A comprehensive overview on the anti-inflammatory, antitumor, and ferroptosis functions of bromelain: An emerging cysteine protease.Expert Opin. Biol. Ther.202222561562510.1080/14712598.2022.2042250 35176951
    [Google Scholar]
  46. WangQ. ShaoX. ZhangY. Role of tumor microenvironment in cancer progression and therapeutic strategy.Cancer Med.20231210111491116510.1002/cam4.5698 36807772
    [Google Scholar]
  47. HerreraM. Galindo-PumariñoC. García-BarberánV. PeñaC. A snapshot of the tumor microenvironment in colorectal cancer: The liquid biopsy.Int. J. Mol. Sci.20192023601610.3390/ijms20236016
    [Google Scholar]
  48. Suarez-CarmonaM. LesageJ. CataldoD. GillesC. EMT and inflammation: Inseparable actors of cancer progression.Mol. Oncol.201711780582310.1002/1878‑0261.12095 28599100
    [Google Scholar]
  49. Arce-SillasA. Álvarez-LuquínD.D. Tamaya-DomínguezB. Regulatory T cells: Molecular actions on effector cells in immune regulation.J. Immunol. Res.2016201611210.1155/2016/1720827 27298831
    [Google Scholar]
  50. ChaudharyB. KumarP. AryaP. Recent developments in the study of the microenvironment of cancer and drug delivery.Curr. Drug Metab.202223131027105310.2174/1389200224666230110145513 36627789
    [Google Scholar]
  51. DalgleishA. LiuW. The role of immune modulation and anti inflammatory agents in the management of prostate cancer: A case report of six patients.Oncol. Lett.202224224710.3892/ol.2022.13367 35761946
    [Google Scholar]
  52. JuhaszB. ThirunavukkarasuM. PantR. Bromelain induces cardioprotection against ischemia-reperfusion injury through Akt/] FOXO pathway in rat myocardium.Am. J. Physiol. Heart Circ. Physiol.20082943H1365H137010.1152/ajpheart.01005.2007 18192224
    [Google Scholar]
  53. KarlsenM. HovdenA.O. VogelsangP. TysnesB.B. AppelS. Bromelain treatment leads to maturation of monocyte-derived dendritic cells but cannot replace PGE2 in a cocktail of IL-1β, IL-6, TNF-α and PGE2.Scand. J. Immunol.201174213514310.1111/j.1365‑3083.2011.02562.x 21449940
    [Google Scholar]
  54. ZavadovaE. DesserL. MohrT. Stimulation of reactive oxygen species production and cytotoxicity in human neutrophils in vitro and after oral administration of a polyenzyme preparation.Cancer Biother.200910214715210.1089/cbr.1995.10.147
    [Google Scholar]
  55. ManosroiA. ChankhampanC. ManosroiW. ManosroiJ. Toxicity reduction and MMP-2 stimulation of papain and bromelain loaded in elastic niosomes.J. Biomed. Nanotechnol.20128572072910.1166/jbn.2012.1458 22888742
    [Google Scholar]
  56. PezzaniR. Jiménez-GarciaM. CapóX. Anticancer properties of bromelain: State-of-the-art and recent trends.Front. Oncol.202312106877810.3389/fonc.2022.1068778 36698404
    [Google Scholar]
  57. MustachioL.M. Chelariu-RaicuA. SzekvolgyiL. RoszikJ. Targeting KRAS in cancer: Promising therapeutic strategies.Cancers 2021136120410.3390/cancers13061204 33801965
    [Google Scholar]
  58. MRTX1133 Targets Tumors with KRAS G12D Mutations: NCI.Available from: https://www.cancer.gov/news-events/cancer-currents-blog/2023/pancreatic-cancer-kras-g12d-mrtx1133 (accessed on 13 March 2023).
  59. JančíkS. DrábekJ. RadziochD. HajdúchM. Clinical relevance of KRAS in human cancers.J. Biomed. Biotechnol.2010201011310.1155/2010/150960 20617134
    [Google Scholar]
  60. HuangL. GuoZ. WangF. FuL. KRAS mutation: From undruggable to druggable in cancer.Signal Transduct. Target. Ther.20216138610.1038/s41392‑021‑00780‑4
    [Google Scholar]
  61. ParkS. OhJ. KimM. JinE.J. Bromelain effectively suppresses Kras-mutant colorectal cancer by stimulating ferroptosis.Anim. Cells Syst.201822533434010.1080/19768354.2018.1512521 30460115
    [Google Scholar]
  62. EngwerdaC.R. AndrewD. MurphyM. MynottT.L. Bromelain activates murine macrophages and natural killer cells in vitro.Cell. Immunol.2001210151010.1006/cimm.2001.1793 11485347
    [Google Scholar]
  63. YuF. YuC. LiF. Wnt/β-catenin signaling in cancers and targeted therapies.Signal Transduct. Target. Ther.20216130710.1038/s41392‑021‑00701‑5
    [Google Scholar]
  64. YuW.K. XuZ.Y. YuanL. Targeting β-catenin signaling by natural products for cancer prevention and therapy.Front. Pharmacol.20201198410.3389/fphar.2020.00984 32695004
    [Google Scholar]
  65. JankuF. YapT.A. Meric-BernstamF. Targeting the PI3K pathway in cancer: Are we making headway?Nat. Rev. Clin. Oncol.201815527329110.1038/nrclinonc.2018.28 29508857
    [Google Scholar]
  66. BhuiK. TyagiS. SrivastavaA.K. Bromelain inhibits nuclear factor kappa-B translocation, driving human epidermoid carcinoma A431 and melanoma A375 cells through G2/M arrest to apoptosis.Mol. Carcinog.201251323124310.1002/mc.20769 21432909
    [Google Scholar]
  67. YeM. HuD. TuL. Involvement of PI3K/Akt signaling pathway in hepatocyte growth factor-induced migration of uveal melanoma cells.Invest. Ophthalmol. Vis. Sci.200849249750410.1167/iovs.07‑0975 18234991
    [Google Scholar]
  68. LindströmM.S. BartekJ. Maya-MendozaA. p53 at the crossroad of DNA replication and ribosome biogenesis stress pathways.Cell Death Differ.202229597298210.1038/s41418‑022‑00999‑w
    [Google Scholar]
  69. AgrawalP. NikhadeP. PatelA. MankarN. SedaniS. Bromelain: A potent phytomedicine.Cureus2022148e2787610.7759/cureus.27876 36110474
    [Google Scholar]
  70. HarrisS.L. LevineA.J. The p53 pathway: Positive and negative feedback loops.Oncogene200524172899290810.1038/sj.onc.1208615
    [Google Scholar]
  71. KalraN. BhuiK. RoyP. Regulation of p53, nuclear factor κB and cyclooxygenase-2 expression by bromelain through targeting mitogen-activated protein kinase pathway in mouse skin.Toxicol. Appl. Pharmacol.20082261303710.1016/j.taap.2007.08.012 17889918
    [Google Scholar]
  72. ChenJ. The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression.Cold Spring Harb. Perspect. Med.201663a02610410.1101/cshperspect.a026104 26931810
    [Google Scholar]
  73. InsuanO. JanchaiP. ThongchuaiB. Anti-inflammatory effect of pineapple rhizome bromelain through downregulation of the NF-κB- and MAPKs-signaling pathways in lipopolysaccharide (LPS)-stimulated RAW264.7 cells.Curr. Issues Mol. Biol.20214319310610.3390/cimb43010008
    [Google Scholar]
  74. CarrM.I. JonesS.N. Regulation of the Mdm2-p53 signaling axis in the DNA damage response and tumorigenesis.Transl. Cancer Res.20165670772410.21037/tcr.2016.11.75 28690977
    [Google Scholar]
  75. Modulation of P53 in 7,12-Dimethylbenz[a]Anthracene-induced Skin Tumors by Diallyl Sulfide in Swiss Albino Mice: PubMed.Available from: https://pubmed.ncbi.nlm.nih.gov/15542785/ (accessed on 30 December 2022).
  76. ParoulekA.F. JaffeM. RathinaveluA. The effects of the herbal enzyme bromelain against breast cancer cell line GI101A.FASEB J.200923S1LB18LB810.1096/fasebj.23.1_supplement.LB18
    [Google Scholar]
  77. DurandP.M. RamseyG. The concepts and origins of cell mortality.Hist. Philos. Life Sci.20234522310.1007/s40656‑023‑00581‑8 37289372
    [Google Scholar]
  78. VermeulenK. Van BockstaeleD.R. BernemanZ.N. Apoptosis: Mechanisms and relevance in cancer.Ann. Hematol.2005841062763910.1007/s00277‑005‑1065‑x 16041532
    [Google Scholar]
  79. ChopraH. SharmaS. YousafS. NaseerR. AhmedS. BaigA.A. Applications of nanotechnology-based approaches for targeted delivery of nutraceuticals. In: Handbook of Nanotechnology in Nutraceuticals.CRC Press2022329346
    [Google Scholar]
  80. BhuiK. PrasadS. GeorgeJ. ShuklaY. Bromelain inhibits COX-2 expression by blocking the activation of MAPK regulated NF-kappa B against skin tumor-initiation triggering mitochondrial death pathway.Cancer Lett.2009282216717610.1016/j.canlet.2009.03.003 19339108
    [Google Scholar]
  81. HauptS. BergerM. GoldbergZ. HauptY. Apoptosis the p53 network.J. Cell Sci.2003116204077408510.1242/jcs.00739 12972501
    [Google Scholar]
  82. ZhangL. YuJ. ParkB.H. KinzlerK.W. VogelsteinB. Role of BAX in the apoptotic response to anticancer agents.Science2000290549398999210.1126/science.290.5493.989 11062132
    [Google Scholar]
  83. CohenG.M. Caspases: the executioners of apoptosis.Biochem. J.1997326111610.1042/bj3260001 9337844
    [Google Scholar]
  84. AhnC.S. MetalloC.M. Mitochondria as biosynthetic factories for cancer proliferation.Cancer Metab.201531110.1186/s40170‑015‑0128‑2 25621173
    [Google Scholar]
  85. WongR.S.Y. Apoptosis in cancer: From pathogenesis to treatment.J. Exp. Clin. Cancer Res.20113018710.1186/1756‑9966‑30‑87 21943236
    [Google Scholar]
  86. ChiH. LiB. WangQ. Opportunities and challenges related to ferroptosis in glioma and neuroblastoma.Front. Oncol.202313106599410.3389/fonc.2023.1065994 36937406
    [Google Scholar]
  87. LiuT. ZhuC. ChenX. Ferroptosis, as the most enriched programmed cell death process in glioma, induces immunosuppression and immunotherapy resistance.Neuro-oncol.20222471113112510.1093/neuonc/noac033 35148413
    [Google Scholar]
  88. WeinzierlA. HarderY. SchmaussD. MengerM.D. LaschkeM.W. Bromelain protects critically perfused musculocutaneous flap tissue from necrosis.Biomedicines2022106144910.3390/biomedicines10061449
    [Google Scholar]
  89. BhuiK. TyagiS. PrakashB. ShuklaY. Pineapple bromelain induces autophagy, facilitating apoptotic response in mammary carcinoma cells.Biofactors201036647448210.1002/biof.121 20848558
    [Google Scholar]
  90. DhandayuthapaniS. PerezH.D. ParoulekA. Bromelain-induced apoptosis in GI-101A breast cancer cells.J. Med. Food201215434434910.1089/jmf.2011.0145 22191568
    [Google Scholar]
  91. MekkawyM.H. FahmyH.A. NadaA.S. AliO.S. Study of the radiosensitizing and radioprotective efficacy of bromelain (a pineapple extract): In vitro and in vivo.Integr. Cancer Ther.202019153473542095846810.1177/1534735420950468 32783540
    [Google Scholar]
  92. FouzN. AmidA. HashimY.Z.H.Y. Cytokinetic study of MCF-7 cells treated with commercial and recombinant bromelain.Asian Pac. J. Cancer Prev.201314116709671410.7314/APJCP.2013.14.11.6709 24377593
    [Google Scholar]
  93. OlusanyaT. Haj AhmadR. IbegbuD. SmithJ. ElkordyA. Liposomal drug delivery systems and anticancer drugs.Molecules201823490710.3390/molecules23040907 29662019
    [Google Scholar]
  94. KumarV. GargV. DurejaH. LingC. Nanomedicine-based approaches for delivery of herbal compounds.Trad Med Res2022754810.53388/TMR20220223001
    [Google Scholar]
  95. BhatnagarP. PantA.B. ShuklaY. PandaA. GuptaK.C. Hyaluronic acid grafted PLGA copolymer nanoparticles enhance the targeted delivery of Bromelain in Ehrlich’s Ascites Carcinoma.Eur. J. Pharm. Biopharm.201610517619210.1016/j.ejpb.2016.06.002 27287553
    [Google Scholar]
  96. AminiA. Masoumi-MoghaddamS. EhtedaA. MorrisD.L. Bromelain and N-acetylcysteine inhibit proliferation and survival of gastrointestinal cancer cells in vitro: Significance of combination therapy.J. Exp. Clin. Cancer Res.20143319210.1186/s13046‑014‑0092‑7 25425315
    [Google Scholar]
  97. BáezR. LopesM. SalasC. HernándezM. In vivo antitumoral activity of stem pineapple (Ananas comosus) bromelain.Planta Med.200773131377138310.1055/s‑2007‑990221 17893836
    [Google Scholar]
  98. FitzhughD.J. ShanS. DewhirstM.W. HaleL.P. Bromelain treatment decreases neutrophil migration to sites of inflammation.Clin. Immunol.20081281667410.1016/j.clim.2008.02.015 18482869
    [Google Scholar]
  99. DesserL. RehbergerA. KokronE. PaukovitsW. Cytokine synthesis in human peripheral blood mononuclear cells after oral administration of polyenzyme preparations.Oncology199350640340710.1159/000227219 7694216
    [Google Scholar]
  100. TaussigS. SzekerczesJ. BatkinS. Inhibition of tumour growth in vitro by bromelain, an extract of the pineapple plant (Ananas comosus).Planta Med.198551653853910.1055/s‑2007‑969596 17345291
    [Google Scholar]
  101. MorrisD. Ehteda, Masoumi Moghaddam S, Akhter, Pillai, Morris D. Cytotoxic effects of bromelain in human gastrointestinal carcinoma cell lines (MKN45, KATO-III, HT29-5F12, and HT29-5M21).OncoTargets Ther.2013640310.2147/OTT.S43072
    [Google Scholar]
  102. GrimmelM. BackhausC. Proikas-CezanneT. WIPI-mediated autophagy and longevity.Cells20154220221710.3390/cells4020202 26010754
    [Google Scholar]
  103. TsoukalasD. FragkiadakiP. DoceaA. Association of nutraceutical supplements with longer telomere length.Int. J. Mol. Med.201944121822610.3892/ijmm.2019.4191 31115552
    [Google Scholar]
  104. IqbalM.J. JavedZ. Herrera-BravoJ. Biosensing chips for cancer diagnosis and treatment: A new wave towards clinical innovation.Cancer Cell Int.202222135410.1186/s12935‑022‑02777‑7
    [Google Scholar]
  105. ScheauC. CaruntuC. BadarauI.A. Cannabinoids and inflammations of the gut-lung-skin barrier.J. Pers. Med.202111649410.3390/jpm11060494 34072930
    [Google Scholar]
  106. MondalS. BandyopadhyayS. Natural products: Promising resources for cancer drug discovery.Anti-Canc Agent Med Chem20121214975
    [Google Scholar]
  107. TsaiK.Y. WeiP.L. AzarkanM. Cytotoxic properties of unfractionated and fractionated bromelain alone or in combination with chemotherapeutic agents in colorectal cancer cells.PLoS One2023186e028597010.1371/journal.pone.0285970 37262048
    [Google Scholar]
  108. KimJ.K. KimY. NaK.M. SurhY.J. KimT.Y. [6]-Gingerol prevents UVB-induced ROS production and COX-2 expression in vitro and in vivo.Free Radic. Res.200741560361410.1080/10715760701209896 17454143
    [Google Scholar]
  109. WallaceJ.M. Nutritional and botanical modulation of the inflammatory cascade-eicosanoids, cyclooxygenases, and lipoxygenases-as an adjunct in cancer therapy.Integr. Cancer Ther.20021173710.1177/153473540200100102 14664746
    [Google Scholar]
  110. HarjunpääH. Llort AsensM. GuentherC. FagerholmS.C. Cell adhesion molecules and their roles and regulation in the immune and tumor microenvironment.Front. Immunol.201910107810.3389/fimmu.2019.01078 31231358
    [Google Scholar]
  111. MohamadN.E. AbuN. YeapS.K. AlitheenN.B. Bromelain enhances the anti-tumor effects of cisplatin on 4T1 breast tumor model in vivo.Integr. Cancer Ther.201918153473541988025810.1177/1534735419880258 31752555
    [Google Scholar]
  112. AlateyahN. AlsafranM. UsmanK. OuhtitA. Molecular evidence of breast cancer cell proliferation inhibition by a combination of selected qatari medicinal plants crude extracts.Nutrients20231519427610.3390/nu15194276 37836560
    [Google Scholar]
  113. TalibW.H. AlsalahatI. DaoudS. AbutayehR.F. MahmodA.I. Plant-derived natural products in cancer research: Extraction, mechanism of action, and drug formulation.Molecules20202522531910.3390/molecules25225319 33202681
    [Google Scholar]
  114. MuellerA.L. BrockmuellerA. KunnumakkaraA.B. ShakibaeiM. Modulation of inflammation by plant-derived nutraceuticals in tendinitis.Nutrients20221410203010.3390/nu14102030 35631173
    [Google Scholar]
  115. HouR.C.W. ChenY.S. HuangJ.R. JengK.C.G. Cross-linked bromelain inhibits lipopolysaccharide-induced cytokine production involving cellular signaling suppression in rats.J. Agric. Food Chem.20065462193219810.1021/jf052390k 16536595
    [Google Scholar]
  116. HuangJ.R. WuC.C. HouR.C.W. JengK.C. Bromelain inhibits lipopolysaccharide-induced cytokine production in human THP-1 monocytes via the removal of CD14.Immunol. Invest.200837426327710.1080/08820130802083622 18569070
    [Google Scholar]
  117. ChobotovaK. VernallisA.B. MajidF.A.A. Bromelain’s activity and potential as an anti-cancer agent: Current evidence and perspectives.Cancer Lett.2010290214815610.1016/j.canlet.2009.08.001 19700238
    [Google Scholar]
  118. LogsdonC. FuentesM. HuangE. ArumugamT. RAGE and RAGE ligands in cancer.Curr. Mol. Med.20077877778910.2174/156652407783220697 18331236
    [Google Scholar]
  119. HaiyanS. FuningM. KemingL. Growth of breast cancer cells inhibited by bromelains extracted from the different tissues of pineapple.Folia Biol2020683818810.3409/fb_68‑3.10
    [Google Scholar]
  120. YibletY AdamuE Nutritional composition and phytochemical evaluation of some selected wild edible plants in tach gaint district, northwestern ethiopia. ScientificWorldJournal 202320231810.1155/2023/667064837876588
    [Google Scholar]
  121. RaeisiE. RaeisiF. HeidarianE. Shahbazi-GahrouiD. LemoigneY. Bromelain inhibitory effect on colony formation: An in vitro study on human AGS, PC3, and MCF7 cancer cells.J. Med. Signals Sens.20199426727310.4103/jmss.JMSS_42_18 31737556
    [Google Scholar]
  122. SobolewskiC. CerellaC. DicatoM. GhibelliL. DiederichM. The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies.Int. J. Cell Biol.2010201021515810.1155/2010/215158
    [Google Scholar]
  123. KumarV. KumarD. GargV. DurejaH. An updated review of pineapple and its bioactive compounds in breast cancer.Cancer Adv20236e2300510.53388/2023623005
    [Google Scholar]
  124. MekkawyM.H. FahmyH.A. NadaA.S. AliO.S. Radiosensitizing effect of bromelain using tumor mice model via Ki-67 and PARP-1 inhibition.Integr. Cancer Ther.2021201534735421106036910.1177/15347354211060369 34825602
    [Google Scholar]
  125. BhatnagarP. PatnaikS. SrivastavaA.K. Anti-cancer activity of bromelain nanoparticles by oral administration.J. Biomed. Nanotechnol.201410123558357510.1166/jbn.2014.1997 26000370
    [Google Scholar]
  126. Lymphoma Survival Rate | Blood Cancer Survival Rates | LLS.Available from: https://www.lls.org/facts-and-statistics/facts-and-statistics-overview (accessed on 10 May 2022).
  127. TysnesB.B. MaurertH.R. PorwolT. ProbstB. BjerkvigR. HooverF. Bromelain reversibly inhibits invasive properties of glioma cells.Neoplasia20013646947910.1038/sj.neo.7900196 11774029
    [Google Scholar]
  128. KumarV. GargV. DurejaH. Ananas comosus loaded nanoemulsion a promising therapeutic approach for cancer.Cancer Adv2022531310.53388/2022522017
    [Google Scholar]
  129. Liver Cancer: Statistics | Cancer.Net. Available from: https://www.cancer.net/cancer-types/liver-cancer/statistics (accessed on 10 May 2022).
  130. SharmaS. TanwarA. GuptaD.K. Curcumin: An adjuvant therapeutic remedy for liver cancer.Hepatoma Res.201623627010.20517/2394‑5079.2015.59
    [Google Scholar]
  131. MurthyS.S. NarsaiahT.B. Cytotoxic effect of bromelain on hepg2 hepatocellular carcinoma cell line.Appl. Biochem. Biotechnol.202119361873189710.1007/s12010‑021‑03505‑z 33735410
    [Google Scholar]
  132. PillaiK. MekkawyA.H. AkhterJ. Enhancing the potency of chemotherapeutic agents by combination with bromelain and] N-acetylcysteine - An in vitro study with pancreatic and hepatic cancer cells.Am. J. Transl. Res.2020121174047419 33312377
    [Google Scholar]
  133. JoseJ. BandiwadekarA. KhotK.B. Nanonutraceuticals and their therapeutic applications in colon cancer.Int. J. Surg.202210610690110.1016/j.ijsu.2022.106901 36103965
    [Google Scholar]
  134. YinS.Y. WeiW.C. JianF.Y. YangN.S. Therapeutic applications of herbal medicines for cancer patients.Evid. Based Complement. Alternat. Med.2013201311510.1155/2013/302426 23956768
    [Google Scholar]
  135. PakbinB. DibazarS.P. AllahyariS. ShariatifarH. BrückW.M. FarasatA. ACE2-inhibitory effects of bromelain and ficin in colon cancer cells.Medicina 202359230110.3390/medicina59020301 36837502
    [Google Scholar]
  136. MonteiroL.S. BastosK.X. Barbosa-FilhoJ.M. de Athayde-FilhoP.F. DinizM.F.F.M. SobralM.V. Medicinal plants and other living organisms with antitumor potential against lung cancer.Evid. Based Complement. Alternat. Med.2014201411510.1155/2014/604152 25147575
    [Google Scholar]
  137. NaseerR. NawazS. MunirM. Nano-nutraceuticals and oxidative stress. In: Handbook of Nanotechnology in Nutraceuticals.CRC press2022377398
    [Google Scholar]
  138. MajumderD. DebnathR. NathP. Bromelain and Olea europaea (L.) leaf extract mediated alleviation of benzo(a)pyrene induced lung cancer through Nrf2 and NFκB pathway.Environ. Sci. Pollut. Res. Int.20212834473064732610.1007/s11356‑021‑13803‑y 33893581
    [Google Scholar]
  139. SinghS.K. VuddandaP.R. SinghS. SrivastavaA.K. A comparison between use of spray and freeze drying techniques for preparation of solid self-microemulsifying formulation of valsartan and in vitro and in vivo evaluation.BioMed Res. Int.2013201311310.1155/2013/909045 23971048
    [Google Scholar]
  140. BatkinS. TaussigS. SzekerczesJ. Modulation of pulmonary metastasis (Lewis lung carcinoma) by bromelain, an extract of the pineapple stem (Ananas comosus).Cancer Invest.20096224124210.3109/07357908809077053
    [Google Scholar]
  141. GrabowskaE. EckertK. FichtnerI. SchulzeForster K, Maurer H. Bromelain proteases suppress growth, invasion and lung metastasis of B16F10 mouse melanoma cells.Int. J. Oncol.199711224324810.3892/ijo.11.2.243 21528206
    [Google Scholar]
  142. Cortés-GuiralD. HübnerM. AlyamiM. Primary and metastatic peritoneal surface malignancies.Nat. Rev. Dis. Primers2021719110.1038/s41572‑021‑00326‑6 34916522
    [Google Scholar]
  143. IramS. ZaheraM. WahidI. Cisplatin bioconjugated enzymatic GNPs amplify the effect of cisplatin with acquiescence.Sci. Rep.2019911382610.1038/s41598‑019‑50215‑y
    [Google Scholar]
  144. Ovarian Cancer Statistics | How Common is Ovarian Cancer.Available from: https://www.cancer.org/cancer/ovarian-cancer/about/key-statistics.html (accessed on 10 May 2022)
  145. GaniM.B.A. NasiriR. Hamzehalipour AlmakiJ. In vitro antiproliferative activity of fresh pineapple juices on ovarian and colon cancer cell lines.Int. J. Pept. Res. Ther.201521335336410.1007/s10989‑015‑9462‑z
    [Google Scholar]
  146. AdiseshaiahP.P. CristR.M. HookS.S. McNeilS.E. Nanomedicine strategies to overcome the pathophysiological barriers of pancreatic cancer.Nat. Rev. Clin. Oncol.2016131275076510.1038/nrclinonc.2016.119 27531700
    [Google Scholar]
  147. PosoccoB. DreussiE. De SantaJ. Polysaccharides for the delivery of antitumor drugs.Materials 2015852569261510.3390/ma8052569
    [Google Scholar]
  148. MekkawyA.H. PillaiK. SuhH. Bromelain and acetylcysteine (BromAc®) alone and in combination with gemcitabine inhibit subcutaneous deposits of pancreatic cancer after intraperitoneal injection.Am. J. Transl. Res.202113121352413539 35035694
    [Google Scholar]
  149. GuyG.P.Jr MachlinS.R. EkwuemeD.U. YabroffK.R. Prevalence and costs of skin cancer treatment in the U.S., 2002-2006 and 2007-2011.Am. J. Prev. Med.201548218318710.1016/j.amepre.2014.08.036 25442229
    [Google Scholar]
  150. SinikumpuS.P. JokelainenJ. Keinänen-KiukaanniemiS. HuilajaL. Skin cancers and their risk factors in older persons: A population-based study.BMC Geriatr.202222126910.1186/s12877‑022‑02964‑1 35361154
    [Google Scholar]
  151. IjazS. AkhtarN. KhanM.S. Plant derived anticancer agents: A green approach towards skin cancers.Biomed. Pharmacother.20181031643165110.1016/j.biopha.2018.04.113 29864953
    [Google Scholar]
  152. ArshadZ.I.M. AmidA. YusofF. JaswirI. AhmadK. LokeS.P. Bromelain: An overview of industrial application and purification strategies.Appl. Microbiol. Biotechnol.201498177283729710.1007/s00253‑014‑5889‑y 24965557
    [Google Scholar]
  153. Cuevas-CiancaS.I. Romero-CastilloC. Gálvez-RomeroJ.L. JuárezZ.N. HernándezL.R. Antioxidant and anti-inflammatory compounds from edible plants with anti-cancer activity and their potential use as drugs.Molecules2023283148810.3390/molecules28031488 36771154
    [Google Scholar]
  154. KumarV. MinochaN. GargV. DurejaH. Nanostructured materials used in drug delivery.Mater. Today Proc.20226917418010.1016/j.matpr.2022.08.306
    [Google Scholar]
  155. MinochaN. KumarV. Nanostructure system: Liposome: A bioactive carrier in drug delivery systems.Mater. Today Proc.20226961461910.1016/j.matpr.2022.09.494
    [Google Scholar]
  156. BhatnagarP. PantA.B. ShuklaY. ChaudhariB. KumarP. GuptaK.C. Bromelain nanoparticles protect against 7,12-dimethylbenz [a]anthracene induced skin carcinogenesis in mouse model.Eur. J. Pharm. Biopharm.201591354610.1016/j.ejpb.2015.01.015 25619920
    [Google Scholar]
  157. IsmailN.I. OthmanI. AbasF.H. LajisN. NaiduR. Mechanism of apoptosis induced by curcumin in colorectal cancer.Int. J. Mol. Sci.20192010245410.3390/ijms20102454 31108984
    [Google Scholar]
  158. HeX. LiY. DengB. The PI3K/AKT signalling pathway in inflammation, cell death and glial scar formation after traumatic spinal cord injury: Mechanisms and therapeutic opportunities.Cell Prolif.2022559e1327510.1111/cpr.13275 35754255
    [Google Scholar]
  159. RomanoB. FasolinoI. PaganoE. The chemopreventive action of bromelain, from pineapple stem (Ananas comosus L.), on colon carcinogenesis is related to antiproliferative and proapoptotic effects.Mol. Nutr. Food Res.201458345746510.1002/mnfr.201300345 24123777
    [Google Scholar]
  160. DebnathR. ChatterjeeN. DasS. Bromelain with peroxidase from pineapple are more potent to target leukemia growth inhibition: A comparison with only bromelain.Toxicol. In Vitro201955243210.1016/j.tiv.2018.11.004 30453006
    [Google Scholar]
  161. ElmoreS. Apoptosis: A review of programmed cell death.Toxicol. Pathol.200735449551610.1080/01926230701320337 17562483
    [Google Scholar]
  162. MohamadN.E. AbuN. YeapS.K. Apoptosis and metastasis inhibitory potential of pineapple vinegar against mouse mammary gland cells in vitro and in vivo.Nutr. Metab. 20191614910.1186/s12986‑019‑0380‑5 31372176
    [Google Scholar]
  163. BatkinS. TaussigS.J. SzekerezesJ. Antimetastatic effect of bromelain with or without its proteolytic and anticoagulant activity.J. Cancer Res. Clin. Oncol.1988114550750810.1007/BF00391501
    [Google Scholar]
  164. SurotoH. AsrielA. De VegaB. SamijoS.K. Early and late apoptosis protein expression (Bcl-2, BAX and p53) in traumatic brachial plexus injury.J. Musculoskelet. Neuronal Interact.2021214528532 34854392
    [Google Scholar]
  165. Jazvinšćak JembrekM. OršolićN. MandićL. SadžakA. ŠegotaS. Anti-oxidative, anti-inflammatory and anti-apoptotic effects of flavonols: Targeting Nrf2, NF-κB and p53 pathways in neurodegeneration.Antioxidants20211010162810.3390/antiox10101628 34679762
    [Google Scholar]
  166. ThomasA. GieslerT. WhiteE. p53 mediates Bcl-2 phosphorylation and apoptosis via activation of the Cdc42/JNK1 pathway.Oncogene200019465259526910.1038/sj.onc.1203895 11077443
    [Google Scholar]
  167. YuanL. CaiY. ZhangL. LiuS. LiP. LiX. Promoting apoptosis, a promising way to treat breast cancer with natural products: A comprehensive review.Front. Pharmacol.20221280166210.3389/fphar.2021.801662 35153757
    [Google Scholar]
  168. HigashiT. KogoT. SatoN. Efficient anticancer drug delivery for pancreatic cancer treatment utilizing supramolecular polyethylene-glycosylated bromelain.ACS Appl. Bio Mater.2020353005301410.1021/acsabm.0c00070 35025347
    [Google Scholar]
  169. LeeJ.H. LeeJ.T. ParkH.R. KimJ.B. The potential use of bromelain as a natural oral medicine having anticarcinogenic activities.Food Sci. Nutr.2019751656166710.1002/fsn3.999 31139378
    [Google Scholar]
  170. NagarajahN.S. VigneswaranN. ZachariasW. Hypoxia-mediated apoptosis in oral carcinoma cells occurs via two independent pathways.Mol. Cancer2004313810.1186/1476‑4598‑3‑38 15613236
    [Google Scholar]
  171. TaylorW.R. StarkG.R. Regulation of the G2/M transition by p53.Oncogene200120151803181510.1038/sj.onc.1204252 11313928
    [Google Scholar]
  172. PengF. LiaoM. QinR. Regulated cell death (RCD) in cancer: key pathways and targeted therapies.Signal Transduct. Target. Ther.20227128610.1038/s41392‑022‑01110‑y 35963853
    [Google Scholar]
  173. AustinC.P. Translating translation.Nat. Rev. Drug Discov.201817745545610.1038/nrd.2018.27 29674698
    [Google Scholar]
  174. Bromelain, Comosain as a New Drug for Treating and Preventing Various Types of Cancer in the HumansAvailable from: https://clinicaltrials.gov/ct2/show/NCT02340845 (accessed on 18 November 2022).
  175. BromAc for Recurrent Peritoneal Mucinous Tumour or Pseudomyxoma peritonei. Available from: https://clinicaltrials.gov/ct2/show/NCT03976973?term=BromAc+and+MUC1&draw=2&rank=1 (accessed on 18 November 2022).
  176. DongL. KeK. BadarS. A novel method for potentiation of chemotherapy in soft tissue sarcomas with BromAc.Am. J. Transl. Res.202214528942909 35702130
    [Google Scholar]
  177. KargutkarS. BrijeshS. Anti-rheumatic activity of Ananas comosus fruit peel extract in a complete freund’s adjuvant rat model.Pharm. Biol.201654112616262210.3109/13880209.2016.1173066
    [Google Scholar]
  178. CollettiA. LiS. MarengoM. AdinolfiS. CravottoG. Recent advances and insights into bromelain processing, pharmacokinetics and therapeutic uses.Appl. Sci. 20211118842810.3390/app11188428
    [Google Scholar]
  179. HossainM.M. LeeS.I. KimI.H. Effects of bromelain supplementation on growth performance, nutrient digestibility, blood profiles,faecal microbial shedding, faecal score and faecal noxious gas emission in weanling pigs.Veterinarni Medicina2015601054455210.17221/8493‑VETMED
    [Google Scholar]
  180. ManatakisD.K. AcheimastosV. AntonopoulouM.I. BalalisD. KorkolisD.P. Gastrointestinal seed bezoars: A systematic review of case reports and case series.Cureus2019115e468610.7759/cureus.4686 31333915
    [Google Scholar]
  181. CervoM.M.C. LlidoL.O. BarriosE.B. PanlasiguiL.N. Effects of canned pineapple consumption on nutritional status, immunomodulation, and physical health of selected school children.J. Nutr. Metab.201420141910.1155/2014/861659 25505983
    [Google Scholar]
  182. SaxenaP. PanjwaniD. Cardioprotective potential of hydro-alcoholic fruit extract of Ananas comosus against isoproterenol induced myocardial infraction in wistar albino rats.J. Acute Dis.20143322823410.1016/S2221‑6189(14)60051‑2
    [Google Scholar]
  183. DuttaS. BhattacharyyaD. Enzymatic, antimicrobial and toxicity studies of the aqueous extract of Ananas comosus (pineapple) crown leaf.J. Ethnopharmacol.2013150245145710.1016/j.jep.2013.08.024 24076462
    [Google Scholar]
  184. Mohd RidzaP.N.Y. Application of two level factorial design to study the microbe growth inhibition by pineapple leaves juice.IOP Conf Ser Mater Sci Eng202073602201110.1088/1757‑899X/736/2/022011
    [Google Scholar]
  185. KumarV. GargV. DurejaH. Therapeutic application of pineapple: A review.Rec Adv. Food Nutr. Agricul.202314210712510.2174/2772574X14666230522114039 37218195
    [Google Scholar]
  186. ZielińskaA. SzalataM. GorczyńskiA. Cancer nanopharmaceuticals: Physicochemical characterization and in vitro/in vivo applications.Cancers 2021138189610.3390/cancers13081896 33920840
    [Google Scholar]
  187. KumarV. ManglaB. JavedS. Bromelain: A review of its mechanisms, pharmacological effects and potential applications.Food Funct.202314188101812810.1039/D3FO01060K 37650738
    [Google Scholar]
  188. Aili HamzahA.F. HamzahM.H. Che ManH. JamaliN.S. SiajamS.I. IsmailM.H. Recent updates on the conversion of pineapple waste (Ananas comosus) to value-added products, future perspectives and challenges.Agronomy 20211111222110.3390/agronomy11112221
    [Google Scholar]
  189. KumarV. GargV. DurejaH. Ananas comosus loaded nanoemulsion a promising therapeutic approach for cancer.Med Theory Hypothesis20225313
    [Google Scholar]
  190. KumarV. GargV. DurejaH. Plant derived anticancer agents for treatment of cancer.Int. J. Pharm. Sci. Res.20221393375339610.13040/IJPSR.0975‑8232.13(9).3375‑96
    [Google Scholar]
  191. KumarV. GargV. DurejaH. Pharmacognostical standardization and preliminary phytochemical investigations on Ananas comosus (L.) Merr.Int. J. Pharm. Sci. Res.202213114671467910.13040/IJPSR.0975‑8232.13(11).4671‑79
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128303910240713180835
Loading
/content/journals/cpd/10.2174/0113816128303910240713180835
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test