Skip to content
2000
Volume 31, Issue 9
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Breast cancer stands on the second position in the world in being common and women happen to have it with high rate of about five-folds around the world. The causes of occurrence can matter with different humans be it external factors or the internal genetic ones. Breast cancer is primarily driven by mutations in the BRCA1 and BRCA2 susceptibility genes. These BC susceptibility genes encode proteins critical for DNA homologous recombination repair (HRR). Poly (ADP ribose) polymerases (PARP) are the essential enzymes involved in the repairing of the damaged DNA. So the inhibition of these inhibitors can be considered as the promising strategy for targeting cancers with defective damage in the deoxyribonucleic acid. Olaparib and talazoparib are PARP inhibitors (PARPi) are being employed for the monotherapies in case of the deleterious germline HER2-negative and BRCA-mutated breast cancer. The potency of PARP for trapping on DNA and causes cytotoxicity may have difference in the safety and efficacy with the PARPi. The PARPi have been found its place in the all different types of breast cancers and have shown potential benefits. The purpose of this review is to provide an update on the oral poly (ADP-ribose) polymerase (PARP) inhibitors for the improvement in the treatment and management of breast cancer.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128322894241004051814
2024-10-17
2025-06-01
Loading full text...

Full text loading...

References

  1. HoxhaI. SadikuF. HoxhaL. NasimM. ButeauM.A. GrezdaK. ChamberlinM.D. Breast cancer and lifestyle factors: Umbrella review.Hematol. Oncol. Clin.2024381137170
    [Google Scholar]
  2. TsaiC.J. YangJ.T. ShaverdianN. PatelJ. ShepherdA.F. EngJ. GuttmannD. YehR. GelblumD.Y. NamakydoustA. PreeshagulI. ModiS. SeidmanA. TrainaT. DrullinskyP. FlynnJ. ZhangZ. RimnerA. GillespieE.F. GomezD.R. LeeN.Y. BergerM. RobsonM.E. Reis-FilhoJ.S. RiazN. RudinC.M. PowellS.N. BergerM. BrombergJ. ChenL. DangC. DasJ.P. DrullinskyP. EngJ. FlynnJ. GelblumD.Y. GillespieE.F. GirshmanJ. GomezD.R. GucalpA. GuttmannD. HajjC. HigginsonD. IqbalA. KhanA.J. LaPlantQ. LeeN.Y. MannJ.M. ModiS. NamakydoustA. NgK. PatelJ. PowellS.N. PreeshagulI. Reis-FilhoJ.S. ReyngoldM. RiazN. RimnerA. RobsonM.E. RudinC.M. SanfordR. SeidmanA.D. ShahR. ShaverdianN. ShepherdA.F. ShinJ.Y. SugarmanS. TrainaT.A. TsaiC.J. WuA.J. XuA.J. YangJ.T. YehR. ZhangZ. ZhiW. CURB Study Group Standard-of-care systemic therapy with or without stereotactic body radiotherapy in patients with oligoprogressive breast cancer or non-small-cell lung cancer (Consolidative Use of Radiotherapy to Block [CURB] oligoprogression): An open-label, randomised, controlled, phase 2 study.Lancet20244031042217118210.1016/S0140‑6736(23)01857‑338104577
    [Google Scholar]
  3. Al-BazzazH. JanicijevicM. StrandF. Reader bias in breast cancer screening related to cancer prevalence and artificial intelligence decision support-a reader study.Eur. Radiol.20243485415542410.1007/s00330‑023‑10514‑538165430
    [Google Scholar]
  4. KinaE. LaverdureJ.P. DuretteC. LanoixJ. CourcellesM. ZhaoQ. ApavaloaeiA. LaroucheJ.D. HardyM.P. VincentK. GendronP. HesnardL. ThériaultC. Ruiz CuevasM.V. EhxG. ThibaultP. PerreaultC. Breast cancer immunopeptidomes contain numerous shared tumor antigens.J. Clin. Invest.20241341e166740.10.1172/JCI16674037906288
    [Google Scholar]
  5. StubbinsR.J. AsomA.S. WangP. LagerA.M. GaryA. GodleyL.A. Germline loss-of-function BRCA1 and BRCA2 mutations and risk of de novo hematopoietic malignancies.Haematologica2024109135135637139596
    [Google Scholar]
  6. DalyG.R. AlRawashdehM.M. McGrathJ. DowlingG.P. CoxL. NaidooS. VareslijaD. HillA.D.K. YoungL. PARP inhibitors in breast cancer: A short communication.Curr. Oncol. Rep.202426210311310.1007/s11912‑023‑01488‑038236558
    [Google Scholar]
  7. XueH. ZhangR. YanX. WangR. ZhangP. Study of PARP inhibitors for breast cancer based on enhanced multiple kernel function SVR with PSO.Front. Pharmacol.2024151257253.10.3389/fphar.2024.125725338370471
    [Google Scholar]
  8. BrandN.R. YangY.W. DingV. DuttaH. PetoC.J. Lemjabbar-AlaouiH. JablonsD.M. Novel dual action PARP and microtubule polymerization inhibitor AMXI-5001 powerfully inhibits growth of esophageal carcinoma both alone and in combination with radiotherapy.Am. J. Cancer Res.202414137838910.62347/UHLU659838323288
    [Google Scholar]
  9. HuY. ChenF. SunS. XvL. WangX. WangM. ZhaoS. ZhaoZ. LiM. mTOR inhibitor introduce disitamab vedotin (RC48-ADC) rechallenge microtubule-chemotherapy resistance in HER2-low MBC patients with PI3K mutation.Front. Oncol.2024141312634.10.3389/fonc.2024.131263438344201
    [Google Scholar]
  10. Al-AkhrasA. Hage ChehadeC. NarangA. SwamiU. PARP inhibitors in metastatic castration-resistant prostate cancer: Unraveling the therapeutic landscape.Life (Basel)202414219810.3390/life1402019838398706
    [Google Scholar]
  11. WalmsleyC.S. JonssonP. ChengM.L. McBrideS. KaeserC. VargasH.A. LaudoneV. TaylorB.S. KappagantulaR. BaezP. RichardsA.L. Convergent evolution of BRCA 2 reversion mutations under therapeutic pressure by PARP inhibition and platinum chemotherapy.NPJ Precis. Oncol.20248134
    [Google Scholar]
  12. MateoJ. LordC.J. SerraV. TuttA. BalmañaJ. Castroviejo-BermejoM. CruzC. OakninA. KayeS.B. de BonoJ.S. A decade of clinical development of PARP inhibitors in perspective.Ann. Oncol.20193091437144710.1093/annonc/mdz19231218365
    [Google Scholar]
  13. GrazianiG. SzabóC. Clinical perspectives of PARP inhibitors.Pharmacol. Res.200552110911810.1016/j.phrs.2005.02.01315911339
    [Google Scholar]
  14. CurtinN.J. PARP inhibitors for cancer therapy.Expert Rev. Mol. Med.20057412010.1017/S146239940500904X15836799
    [Google Scholar]
  15. ChanC.Y. TanK.V. CornelissenB. PARP inhibitors in cancer diagnosis and therapy.Clin. Cancer Res.20212761585159410.1158/1078‑0432.CCR‑20‑276633082213
    [Google Scholar]
  16. MacMahonB. ColeP. BrownJ. Etiology of human breast cancer: A review.J. Natl. Cancer Inst.1973501214210.1093/jnci/50.1.214571238
    [Google Scholar]
  17. SarkarS. MandalM. Breast cancer: Classification based on molecular etiology influencing prognosis and prediction.Breast Cancer- Focusing Tumor Microenvironment, Stem cells and MetastasisIntech Open201110.5772/22979
    [Google Scholar]
  18. CoeK. SteadmanL.B. The human breast and the ancestral reproductive cycle.Hum. Nat.19956319722010.1007/BF0273413924203090
    [Google Scholar]
  19. TworogerS.S. HankinsonS.E. Prolactin and breast cancer etiology: An epidemiologic perspective.J. Mammary Gland Biol. Neoplasia2008131415310.1007/s10911‑008‑9063‑y18246319
    [Google Scholar]
  20. WellsH.G. The nature and etiology of cancer.Am. J. Cancer193115319191968
    [Google Scholar]
  21. TrichopoulosD. LagiouP. AdamiH.O. Towards an integrated model for breast cancer etiology: The crucial role of the number of mammary tissue-specific stem cells.Breast Cancer Res.200471131710.1186/bcr96615642176
    [Google Scholar]
  22. RoseM. BurgessJ.T. O’ByrneK. RichardD.J. BoldersonE. PARP inhibitors: Clinical relevance, mechanisms of action and tumor resistance.Front. Cell Dev. Biol.20208564601.10.3389/fcell.2020.56460133015058
    [Google Scholar]
  23. CurtinN.J. SzaboC. Therapeutic applications of PARP inhibitors: Anticancer therapy and beyond.Mol. Aspects Med.20133461217125610.1016/j.mam.2013.01.00623370117
    [Google Scholar]
  24. BitlerB.G. WatsonZ.L. WheelerL.J. BehbakhtK. PARP inhibitors: Clinical utility and possibilities of overcoming resistance.Gynecol. Oncol.2017147369570410.1016/j.ygyno.2017.10.00329037806
    [Google Scholar]
  25. HaddadG. SaadéM.C. EidR. HaddadF.G. KourieH.R. PARP inhibitors: A tsunami of indications in different malignancies.Pharmacogenomics202021322123010.2217/pgs‑2019‑011331967513
    [Google Scholar]
  26. Prakash P, Gayathiri E, Rahaman M, et al. Exploring the potential of targeting insulin-like growth factor-1 through network pharmacology, molecular docking, molecular dynamics, and experimental validation of antioxidant and anti-inflammatory activities. South Afr J Bot 2023; 162: 707-18.
  27. FaraoniI. GrazianiG. Role of BRCA mutations in cancer treatment with poly (ADP-ribose) polymerase (PARP) inhibitors.Cancers (Basel)2018101248710.3390/cancers1012048730518089
    [Google Scholar]
  28. MartinA.M. WeberB.L. Genetic and hormonal risk factors in breast cancer.J. Natl. Cancer Inst.200092141126113510.1093/jnci/92.14.112610904085
    [Google Scholar]
  29. VoT.H. EL-Sherbieny AbdelaalE. JordanE. O’DonovanO. McNeelaE.A. MehtaJ.P. RaniS. miRNAs as biomarkers of therapeutic response to HER2-targeted treatment in breast cancer: A systematic review.Biochem. Biophys. Rep.202437101588.10.1016/j.bbrep.2023.10158838088952
    [Google Scholar]
  30. QuanteA.S. WhittemoreA.S. ShriverT. StrauchK. TerryM.B. Breast cancer risk assessment across the risk continuum: Genetic and nongenetic risk factors contributing to differential model performance.Breast Cancer Res.2012146R14410.1186/bcr335223127309
    [Google Scholar]
  31. LakshmiS.K. SinghS. ShahK. DewanganH.K. Dual Vinorelbine bitartrate and Resveratrol loaded polymeric aqueous core nanocapsules for synergistic efficacy in breast cancer.J. Microencapsul.202239429931310.1080/02652048.2022.207067935470755
    [Google Scholar]
  32. ThomsonA.K. HeyworthJ.S. GirschikJ. SlevinT. SaundersC. FritschiL. Beliefs and perceptions about the causes of breast cancer: a case-control study.BMC Res. Notes20147155810.1186/1756‑0500‑7‑55825146725
    [Google Scholar]
  33. SharmaG. DaveR. SanadyaJ. SharmaP. SharmaK.K. Various types and management of breast cancer: An overview.J. Adv. Pharm. Technol. Res.20101210912610.4103/2231‑4040.7225122247839
    [Google Scholar]
  34. Smith-BindmanR. Environmental causes of breast cancer and radiation from medical imaging: Findings from the Institute of Medicine report.Arch. Intern. Med.2012172131023102710.1001/archinternmed.2012.232922688684
    [Google Scholar]
  35. FerlaR. CalòV. CascioS. RinaldiG. BadalamentiG. CarrecaI. SurmaczE. ColucciG. BazanV. RussoA. Founder mutations in BRCA1 and BRCA2 genes.Ann. Oncol.200718Suppl. 6vi93vi9810.1093/annonc/mdm23417591843
    [Google Scholar]
  36. PetrucelliN. DalyM.B. FeldmanG.L. Hereditary breast and ovarian cancer due to mutations in BRCA1 and BRCA2.Genet. Med.201012524525910.1097/GIM.0b013e3181d38f2f20216074
    [Google Scholar]
  37. MehrgouA. AkouchekianM. The importance of BRCA1 and BRCA2 genes mutations in breast cancer development. Med J Islamic Republic Iran 2016; 30: 369.
    [Google Scholar]
  38. MerschJ. JacksonM.A. ParkM. NebgenD. PetersonS.K. SingletaryC. ArunB.K. LittonJ.K. Cancers associated with BRCA1 and BRCA2 mutations other than breast and ovarian.Cancer2015121226927510.1002/cncr.2904125224030
    [Google Scholar]
  39. NarodS.A. SalmenaL. BRCA1 and BRCA2 mutations and breast cancer.Discov. Med.2011126644545322127115
    [Google Scholar]
  40. LakhaniS.R. JacquemierJ. SloaneJ.P. GustersonB.A. AndersonT.J. van de VijverM.J. FaridL.M. VenterD. AntoniouA. Storfer-IsserA. SmythE. SteelC.M. HaitesN. ScottR.J. GoldgarD. NeuhausenS. DalyP.A. OrmistonW. McManusR. ScherneckS. PonderB.A.J. FordD. PetoJ. Stoppa-LyonnetD. BignonY.J. StruewingJ.P. SpurrN.K. BishopD.T. KlijnJ.G.M. DevileeP. CornelisseC.J. LassetC. LenoirG. BarkardottirR.B. EgilssonV. HamannU. Chang-ClaudeJ. SobolH. WeberB. StrattonM.R. EastonD.F. Multifactorial analysis of differences between sporadic breast cancers and cancers involving BRCA1 and BRCA2 mutations.J. Natl. Cancer Inst.199890151138114510.1093/jnci/90.15.11389701363
    [Google Scholar]
  41. HaS.M. ChaeE.Y. ChaJ.H. KimH.H. ShinH.J. ChoiW.J. Association of BRCA mutation types, imaging features, and pathologic findings in patients with breast cancer with BRCA1 and BRCA2 mutations.AJR Am. J. Roentgenol.2017209492092810.2214/AJR.16.1695728796549
    [Google Scholar]
  42. BoltonK.L. Chenevix-TrenchG. GohC. SadetzkiS. RamusS.J. KarlanB.Y. LambrechtsD. DespierreE. BarrowdaleD. McGuffogL. HealeyS. EastonD.F. SinilnikovaO. BenítezJ. GarcíaM.J. NeuhausenS. GailM.H. HartgeP. PeockS. FrostD. EvansD.G. EelesR. GodwinA.K. DalyM.B. KwongA. MaE.S. LázaroC. BlancoI. MontagnaM. D’AndreaE. NicolettoM.O. JohnattyS.E. KjærS.K. JensenA. HøgdallE. GoodeE.L. FridleyB.L. LoudJ.T. GreeneM.H. MaiP.L. ChetritA. LubinF. Hirsh-YechezkelG. GlendonG. AndrulisI.L. TolandA.E. SenterL. GoreM.E. GourleyC. MichieC.O. SongH. TyrerJ. WhittemoreA.S. McGuireV. SiehW. KristofferssonU. OlssonH. BorgÅ. LevineD.A. SteeleL. BeattieM.S. ChanS. NussbaumR.L. MoysichK.B. GrossJ. CassI. WalshC. LiA.J. LeuchterR. GordonO. Garcia-ClosasM. GaytherS.A. ChanockS.J. AntoniouA.C. PharoahP.D. EMBRACEkConFab Investigators Cancer Genome Atlas Research Network Association between BRCA1 and BRCA2 mutations and survival in women with invasive epithelial ovarian cancer.JAMA2012307438239010.1001/jama.2012.2022274685
    [Google Scholar]
  43. SharmaA.N. UpadhyayP.K. DewanganH.K. Development, evaluation, pharmacokinetic and biodistribution estimation of resveratrol-loaded solid lipid nanoparticles for prostate cancer targeting.J. Microencapsul.202239656357410.1080/02652048.2022.213578536222429
    [Google Scholar]
  44. WelcshP.L. KingM.C. BRCA1 and BRCA2 and the genetics of breast and ovarian cancer.Hum. Mol. Genet.200110770571310.1093/hmg/10.7.70511257103
    [Google Scholar]
  45. KrammerJ. Pinker-DomenigK. RobsonM.E. GönenM. Bernard-DavilaB. MorrisE.A. ManginoD.A. JochelsonM.S. Breast cancer detection and tumor characteristics in BRCA1 and BRCA2 mutation carriers.Breast Cancer Res. Treat.2017163356557110.1007/s10549‑017‑4198‑428343309
    [Google Scholar]
  46. VarolU. KucukzeybekY. AlacaciogluA. SomaliI. AltunZ. AktasS. TarhanM.O. BRCA genes: BRCA1 and BRCA2.Apoptosis.20181319
    [Google Scholar]
  47. ArmesJ.E. TruteL. WhiteD. SoutheyM.C. HammetF. TesorieroA. HutchinsA.M. DiteG.S. McCredieM.R. GilesG.G. HopperJ.L. VenterD.J. Distinct molecular pathogeneses of early-onset breast cancers in BRCA1 and BRCA2 mutation carriers: A population-based study.Cancer Res.19995982011201710213514
    [Google Scholar]
  48. GodetI. GilkesD.M. BRCA1 and BRCA2 mutations and treatment strategies for breast cancer.Integr. Cancer Sci. Ther.20174110.15761/ICST.100022828706734
    [Google Scholar]
  49. VenkitaramanA.R. Functions of BRCA1 and BRCA2 in the biological response to DNA damage.J. Cell Sci.2001114203591359810.1242/jcs.114.20.359111707511
    [Google Scholar]
  50. TungN.M. GarberJ.E. BRCA1/2 testing: Therapeutic implications for breast cancer management.Br. J. Cancer2018119214115210.1038/s41416‑018‑0127‑529867226
    [Google Scholar]
  51. OlivierM. HollsteinM. HainautP. TP53 mutations in human cancers: Origins, consequences, and clinical use.Cold Spring Harb. Perspect. Biol.201021a001008.10.1101/cshperspect.a00100820182602
    [Google Scholar]
  52. FeschenkoM.S. SweadnerK.J. Conformation-dependent phosphorylation of Na,K-ATPase by protein kinase A and protein kinase C.J. Biol. Chem.199426948304363044410.1016/S0021‑9258(18)43832‑X7982958
    [Google Scholar]
  53. SongH. HollsteinM. XuY. p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM.Nat. Cell Biol.20079557358010.1038/ncb157117417627
    [Google Scholar]
  54. RafnarT. GudbjartssonD.F. SulemP. JonasdottirA. SigurdssonA. JonasdottirA. BesenbacherS. LundinP. StaceyS.N. GudmundssonJ. MagnussonO.T. le RouxL. OrlygsdottirG. HelgadottirH.T. JohannsdottirH. GylfasonA. TryggvadottirL. JonassonJ.G. de JuanA. OrtegaE. Ramon-CajalJ.M. García-PratsM.D. MayordomoC. PanaderoA. RiveraF. AbenK.K.H. van AltenaA.M. MassugerL.F.A.G. AavikkoM. KujalaP.M. StaffS. AaltonenL.A. OlafsdottirK. BjornssonJ. KongA. SalvarsdottirA. SaemundssonH. OlafssonK. BenediktsdottirK.R. GulcherJ. MassonG. KiemeneyL.A. MayordomoJ.I. ThorsteinsdottirU. StefanssonK. Mutations in BRIP1 confer high risk of ovarian cancer.Nat. Genet.201143111104110710.1038/ng.95521964575
    [Google Scholar]
  55. Lakshmi, Singh S, Vijayakumar MR, Dewangan HK. Lipid based aqueous core nanocapsules (ACNs) for encapsulating hydrophilic vinorelbine bitartrate: Preparation, optimization, characterization and in vitro safety assessment for intravenous administration.Curr. Drug Deliv.20181591284129310.2174/156720181566618071611245730009708
    [Google Scholar]
  56. MalininN.L. BoldinM.P. KovalenkoA.V. WallachD. MAP3K-related kinase involved in NF-KB induction by TNF, CD95 and IL-1.Nature1997385661654054410.1038/385540a09020361
    [Google Scholar]
  57. XueZ. VisD.J. BrunaA. SusticT. van WageningenS. BatraA.S. RuedaO.M. BosdrieszE. CaldasC. WesselsL.F.A. BernardsR. MAP3K1 and MAP2K4 mutations are associated with sensitivity to MEK inhibitors in multiple cancer models.Cell Res.201828771972910.1038/s41422‑018‑0044‑429795445
    [Google Scholar]
  58. DizdarO. ArslanC. AltundagK. Advances in PARP inhibitors for the treatment of breast cancer.Expert Opin. Pharmacother.201516182751275810.1517/14656566.2015.110016826485111
    [Google Scholar]
  59. LivraghiL. GarberJ.E. PARP inhibitors in the management of breast cancer: Current data and future prospects.BMC Med.201513118810.1186/s12916‑015‑0425‑126268938
    [Google Scholar]
  60. GeenenJ.J.J. LinnS.C. BeijnenJ.H. SchellensJ.H.M. PARP inhibitors in the treatment of triple-negative breast cancer.Clin. Pharmacokinet.201857442743710.1007/s40262‑017‑0587‑429063517
    [Google Scholar]
  61. TurkA.A. WisinskiK.B. PARP inhibitors in breast cancer: Bringing synthetic lethality to the bedside.Cancer2018124122498250610.1002/cncr.3130729660759
    [Google Scholar]
  62. McCannK.E. HurvitzS.A. Advances in the use of PARP inhibitor therapy for breast cancer.Drugs Context2018713010.7573/dic.21254030116283
    [Google Scholar]
  63. WeilM.K. ChenA.P. PARP inhibitor treatment in ovarian and breast cancer.Curr. Probl. Cancer201135175010.1016/j.currproblcancer.2010.12.00221300207
    [Google Scholar]
  64. LyonsT.G. RobsonM.E. Resurrection of PARP inhibitors in breast cancer.J. Natl. Compr. Canc. Netw.20181691150115610.6004/jnccn.2018.703130181424
    [Google Scholar]
  65. SonnenblickA. de AzambujaE. AzimH.A.Jr PiccartM. An update on PARP inhibitors-moving to the adjuvant setting.Nat. Rev. Clin. Oncol.2015121274110.1038/nrclinonc.2014.16325286972
    [Google Scholar]
  66. AzimH.A. KassemL. AzimH.Jr Integrating PARP inhibitors into the management of breast cancer: Where are we?Chin. Clin. Oncol.20211055010.21037/cco‑19‑23033440946
    [Google Scholar]
  67. KummarS. ChenA. ParchmentR.E. KindersR.J. JiJ. TomaszewskiJ.E. DoroshowJ.H. Advances in using PARP inhibitors to treat cancer.BMC Med.20121012510.1186/1741‑7015‑10‑2522401667
    [Google Scholar]
  68. JuvekarA. BurgaL.N. HuH. LunsfordE.P. IbrahimY.H. BalmañàJ. RajendranA. PapaA. SpencerK. LyssiotisC.A. NardellaC. PandolfiP.P. BaselgaJ. ScullyR. AsaraJ.M. CantleyL.C. WulfG.M. Combining a PI3K inhibitor with a PARP inhibitor provides an effective therapy for BRCA1-related breast cancer.Cancer Discov.20122111048106310.1158/2159‑8290.CD‑11‑033622915751
    [Google Scholar]
  69. CongregadoB. RiveroI. OsmánI. SáezC. Medina LópezR. PARP inhibitors: A new horizon for patients with prostate cancer.Biomedicines2022106141610.3390/biomedicines1006141635740437
    [Google Scholar]
  70. TeschM.E. PartridgeA.H. Treatment of breast cancer in young adults.Am. Soc. Clin. Oncol. Educ. Book2022424279580610.1200/EDBK_36097035580291
    [Google Scholar]
  71. YanJ. LiuZ. DuS. LiJ. MaL. LiL. Diagnosis and treatment of breast cancer in the precision medicine era.Methods Mol. Biol.20202204536110.1007/978‑1‑0716‑0904‑0_532710314
    [Google Scholar]
  72. Leon-FerreR.A. GoetzM.P. Advances in systemic therapies for triple negative breast cancer.BMJ2023381e071674.10.1136/bmj‑2022‑07167437253507
    [Google Scholar]
  73. YeF. DewanjeeS. LiY. JhaN.K. ChenZ.S. KumarA. Vishakha BehlT. JhaS.K. TangH. Advancements in clinical aspects of targeted therapy and immunotherapy in breast cancer.Mol. Cancer202322110510.1186/s12943‑023‑01805‑y37415164
    [Google Scholar]
  74. JacobsA.T. Martinez Castaneda-CruzD. RoseM.M. ConnellyL. Targeted therapy for breast cancer: An overview of drug classes and outcomes.Biochem. Pharmacol.2022204115209.10.1016/j.bcp.2022.11520935973582
    [Google Scholar]
  75. WolffA.C. LazarA.A. BondarenkoI. GarinA.M. BrincatS. ChowL. SunY. Neskovic-KonstantinovicZ. GuimaraesR.C. FumoleauP. ChanA. HachemiS. StrahsA. CincottaM. BerkenblitA. KrygowskiM. KangL.L. MooreL. HayesD.F. Randomized phase III placebo-controlled trial of letrozole plus oral temsirolimus as first- line endocrine therapy in postmenopausal women with locally advanced or metastatic breast cancer.J. Clin. Oncol.201331219520210.1200/JCO.2011.38.333123233719
    [Google Scholar]
  76. FlemingG.F. MaC.X. HuoD. SattarH. TretiakovaM. LinL. HahnO.M. OlopadeF.O. NandaR. HoffmanP.C. NaughtonM.J. PluardT. ConzenS.D. EllisM.J. Phase II trial of temsirolimus in patients with metastatic breast cancer.Breast Cancer Res. Treat.2012136235536310.1007/s10549‑011‑1910‑722245973
    [Google Scholar]
  77. Di LeoA. Seok LeeK. CiruelosE. LønningP. JanniW. O’ReganR. Mouret ReynierM-A. KalevD. EgleD. CsosziT. BordonaroR. DeckerT. Tjan-HeijnenV.C. BlauS. SchironeA. WeberD. El-HashimyM. DharanB. SellamiD. BachelotT. Abstract S4-07: BELLE-3: A phase III study of buparlisib + fulvestrant in postmenopausal women with HR+, HER2–, aromatase inhibitor-treated, locally advanced or metastatic breast cancer, who progressed on or after mTOR inhibitor-based treatment.Cancer Res.2017774_SupplementSuppl.S4-0710.1158/1538‑7445.SABCS16‑S4‑07
    [Google Scholar]
  78. KropI.E. MayerI.A. GanjuV. DicklerM. JohnstonS. MoralesS. YardleyD.A. MelicharB. Forero-TorresA. LeeS.C. de BoerR. PetrakovaK. VallentinS. PerezE.A. PiccartM. EllisM. WinerE. GendreauS. DerynckM. LacknerM. LevyG. QiuJ. HeJ. SchmidP. Pictilisib for oestrogen receptor-positive, aromatase inhibitor-resistant, advanced or metastatic breast cancer (FERGI): A randomised, double-blind, placebo-controlled, phase 2 trial.Lancet Oncol.201617681182110.1016/S1470‑2045(16)00106‑627155741
    [Google Scholar]
  79. BlackwellK. BurrisH. GomezP. Lynn HenryN. IsakoffS. CampanaF. GaoL. JiangJ. MacéS. TolaneyS.M. Phase I/II dose-escalation study of PI3K inhibitors pilaralisib or voxtalisib in combination with letrozole in patients with hormone-receptor-positive and HER2-negative metastatic breast cancer refractory to a non-steroidal aromatase inhibitor.Breast Cancer Res. Treat.2015154228729710.1007/s10549‑015‑3615‑926497877
    [Google Scholar]
  80. ShahA.N. CristofanilliM. The growing role of CDK4/6 inhibitors in treating hormone receptor-positive advanced breast cancer.Curr. Treat. Options Oncol.2017181610.1007/s11864‑017‑0443‑728197838
    [Google Scholar]
  81. XuH. YuS. LiuQ. YuanX. ManiS. PestellR.G. WuK. Recent advances of highly selective CDK4/6 inhibitors in breast cancer.J. Hematol. Oncol.20171019710.1186/s13045‑017‑0467‑228438180
    [Google Scholar]
  82. Barroso-SousaR. ShapiroG.I. TolaneyS.M. Clinical development of the CDK4/6 inhibitors ribociclib and abemaciclib in breast cancer.Breast Care (Basel)201611316717310.1159/00044728427493615
    [Google Scholar]
  83. WuerstleinR. HarbeckN. Neoadjuvant therapy for HER2-positive breast cancer.Rev. Recent Clin. Trials2017122819210.2174/157488711266617020216504928164759
    [Google Scholar]
  84. SlamonD.J. Leyland-JonesB. ShakS. FuchsH. PatonV. BajamondeA. FlemingT. EiermannW. WolterJ. PegramM. BaselgaJ. NortonL. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2.N. Engl. J. Med.20013441178379210.1056/NEJM20010315344110111248153
    [Google Scholar]
  85. BaselgaJ. CortésJ. KimS.B. ImS.A. HeggR. ImY.H. RomanL. PedriniJ.L. PienkowskiT. KnottA. ClarkE. BenyunesM.C. RossG. SwainS.M. CLEOPATRA Study Group Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer.N. Engl. J. Med.2012366210911910.1056/NEJMoa111321622149875
    [Google Scholar]
  86. BaselgaJ. GómezP. GreilR. BragaS. ClimentM.A. WardleyA.M. KaufmanB. StemmerS.M. PêgoA. ChanA. GoeminneJ.C. GraasM.P. KennedyM.J. Ciruelos GilE.M. SchneeweissA. ZubelA. GroosJ. MelezínkováH. AwadaA. Randomized phase II study of the anti-epidermal growth factor receptor monoclonal antibody cetuximab with cisplatin versus cisplatin alone in patients with metastatic triple-negative breast cancer.J. Clin. Oncol.201331202586259210.1200/JCO.2012.46.240823733761
    [Google Scholar]
  87. CareyL.A. RugoH.S. MarcomP.K. MayerE.L. EstevaF.J. MaC.X. LiuM.C. StornioloA.M. RimawiM.F. Forero-TorresA. WolffA.C. HobdayT.J. IvanovaA. ChiuW.K. FerraroM. BurrowsE. BernardP.S. HoadleyK.A. PerouC.M. WinerE.P. TBCRC 001: Randomized phase II study of cetuximab in combination with carboplatin in stage IV triple-negative breast cancer.J. Clin. Oncol.201230212615262310.1200/JCO.2010.34.557922665533
    [Google Scholar]
  88. RoseA.A.N. BiondiniM. CurielR. SiegelP.M. Targeting GPNMB with glembatumumab vedotin: Current developments and future opportunities for the treatment of cancer.Pharmacol. Ther.201717912714110.1016/j.pharmthera.2017.05.01028546082
    [Google Scholar]
  89. SharmaA.N. UpadhyayP.K. DewanganH.K. Dual combination of resveratrol and pterostilbene aqueous core nanocapsules for integrated prostate cancer targeting.Ther. Deliv.202415968569810.1080/20415990.2024.238023939129676
    [Google Scholar]
  90. YardleyD.A. WeaverR. MeliskoM.E. SalehM.N. ArenaF.P. ForeroA. CiglerT. StopeckA. CitrinD. OliffI. BechholdR. LoutfiR. GarciaA.A. CruickshankS. CrowleyE. GreenJ. HawthorneT. YellinM.J. DavisT.A. VahdatL.T. EMERGE: A randomized phase II study of the antibody-drug conjugate glembatumumab vedotin in advanced glycoprotein NMB-expressing breast cancer.J. Clin. Oncol.201533141609161910.1200/JCO.2014.56.295925847941
    [Google Scholar]
  91. GaoJ.J. SwainS.M. LuminalA. Luminal a breast cancer and molecular assays: A review.Oncologist201823555656510.1634/theoncologist.2017‑053529472313
    [Google Scholar]
  92. IgnatiadisM. SotiriouC. Luminal breast cancer: From biology to treatment.Nat. Rev. Clin. Oncol.201310949450610.1038/nrclinonc.2013.12423881035
    [Google Scholar]
  93. OhD.Y. BangY.J. HER2-targeted therapies - a role beyond breast cancer.Nat. Rev. Clin. Oncol.2020171334810.1038/s41571‑019‑0268‑331548601
    [Google Scholar]
  94. BianchiniG. BalkoJ.M. MayerI.A. SandersM.E. GianniL. Triple-negative breast cancer: Challenges and opportunities of a heterogeneous disease.Nat. Rev. Clin. Oncol.2016131167469010.1038/nrclinonc.2016.6627184417
    [Google Scholar]
  95. SharmaA.N. DewanganH.K. UpadhyayP.K. Comprehensive review on herbal medicine: Emphasis on current therapy and role of phytoconstituents for cancer treatment.Chem. Biodivers.2024213e202301468.10.1002/cbdv.20230146838206170
    [Google Scholar]
  96. TaoZ. ShiA. LuC. SongT. ZhangZ. ZhaoJ. Breast cancer: Epidemiology and etiology.Cell Biochem. Biophys.201572233333810.1007/s12013‑014‑0459‑625543329
    [Google Scholar]
  97. DewanganH.K. SharmaB. SinghS. Review: Application of precision and personalized medicine for treatment of cancer.Curr. Cancer Ther. Rev.20211710.2174/1573394717666210805114529
    [Google Scholar]
  98. YangX. LippmanM.E. BRCA1 and BRCA2 in breast can-cer.Breast Cancer Res. Treat.199954110
    [Google Scholar]
  99. WangH. ZengZ.C. BuiT.A. DiBiaseS.J. QinW. XiaF. PowellS.N. IliakisG. Nonhomologous end-joining of ionizing radiation-induced DNA double-stranded breaks in human tumor cells deficient in BRCA1 or BRCA2.Cancer Res.200161127027711196174
    [Google Scholar]
  100. HuangC-S. ShenC-Y. ChangK-J. HsuS-M. ChernH-D. Cytochrome P4501A1 polymorphism as a susceptibility factor for breast cancer in postmenopausal Chinese women in Taiwan.Br. J. Cancer199980111838184310.1038/sj.bjc.669060810468307
    [Google Scholar]
  101. BuellP. Changing incidence of breast cancer in Japanese-American women.J. Natl. Cancer Inst.19735114791483
    [Google Scholar]
  102. TominagaS. KuroishiT. Epidemiology of breast cancer in Japan.Cancer Lett.1995901757910.1016/0304‑3835(94)03680‑H7720045
    [Google Scholar]
  103. BlotW.J. FraumeniJ.F.Jr Cancers of the lung and pleura.Cancer Epidemiology and Prevention. SchottenfeldD. FraumeniJ.Jr New YorkOxford University Press1996637665
    [Google Scholar]
  104. RohanT.E. JainM. HoweG.R. MillerA.B. Alcohol con-sumption and risk of breast cancer: A cohort study.Cancer Caus. Cont.200011239247
    [Google Scholar]
  105. MarwahH. PantJ. YadavJ. ShahK. DewanganH.K. Biosensor detection of COVID-19 in lung cancer: Hedgehog and mucin signaling insights.Curr. Pharm. Des.202329433442345710.2174/011381612827694823120411153138270161
    [Google Scholar]
  106. YuH. BerkelJ. Do insulin-like growth factors mediate the effect of alcohol on breast cancer risk?Med. Hypotheses199952649149610.1054/mehy.1998.082810459827
    [Google Scholar]
  107. WillettW. Dietary fat and breast cancer.Toxicol. Sci.1999522Suppl.12714610.1093/toxsci/52.2.12710630601
    [Google Scholar]
  108. ZahmS.H. PotternL.M. LewisD.R. WardM.H. WhiteD.W. Inclusion of women and minorities in occupational cancer epidemiologic research.J. Occup. Med.19943688428477807263
    [Google Scholar]
  109. BlairA. ZahmS.H. SilvermanD.T. Occupational cancer among women: Research status and methodologic considerations.Am. J. Ind. Med.199936161710.1002/(SICI)1097‑0274(199907)36:1<6::AID‑AJIM2>3.0.CO;2‑F10361581
    [Google Scholar]
  110. WardE.M. SabbioniG. DeBordD.G. TeassA.W. BrownK.K. TalaskaG.G. RobertsD.R. RuderA.M. StreicherR.P. Monitoring of aromatic amine exposures in workers at a chemical plant with a known bladder cancer excess.J. Natl. Cancer Inst.199688151046105310.1093/jnci/88.15.10468683635
    [Google Scholar]
  111. PoppW. SchmiedingW. SpeckM. VahrenholzC. NorpothK. Incidence of bladder cancer in a cohort of workers exposed to 4-chloro-o-toluidine while synthesising chlordimeform.Occup. Environ. Med.199249852953110.1136/oem.49.8.5291515344
    [Google Scholar]
  112. GoldL.S. SloneT.H. ManleyN.B. GarfiinkelG.B. Hudes ES Rohrbach L, Ames BN. The Carcinogenic Potency Database: Analyses of 4000 chronic animal cancer experiments published in the general literature and bythe U.S. National Cancer Institute/National Toxicology Program.Environ. Health Perspect.199196111510.1289/ehp.9196111820251
    [Google Scholar]
  113. YuanS. AlmagroJ. FuchsE. Beyond genetics: Driving cancer with the tumour microenvironment behind the wheel.Nat. Rev. Cancer202424427428610.1038/s41568‑023‑00660‑938347101
    [Google Scholar]
  114. YadavD. SemwalB.C. DewanganH.K. Grafting, characterization and enhancement of therapeutic activity of berberine loaded PEGylated PAMAM dendrimer for cancerous cell.J. Biomater. Sci. Polym. Ed.20221411436469754
    [Google Scholar]
  115. Pasquier E, Rosendahl J, Solberg A, Ståhlberg A, Håkansson J, Chinga-Carrasco G. Polysaccharides and structural proteins as components in three-dimensional scaffolds for breast cancer tissue models: A review.Bioengineering2023106682
    [Google Scholar]
  116. BhatF.A. MirS.A. GhazwaniM. WahabS. HaiderN. Therapeutic delivery of tumor suppressor miRNAs for breast cancer treatment.Biology2023123467
    [Google Scholar]
  117. LinC. MiaoJ. HeJ. FengW. ChenX. JiangX. LiuJ. LiB. HuangQ. LiaoS. LiuY. The regulatory mechanism of LncRNA- mediated ceRNA network in osteosarcoma.Sci. Rep.2022121875610.1038/s41598‑022‑11371‑w35610231
    [Google Scholar]
  118. JambrovicsK. Transglutaminase 2 associated with PI3K and PTEN in a membrane-bound signalosome platform blunts cell death.Cell Death Dis.202314321710.1038/s41419‑023‑05748‑6
    [Google Scholar]
  119. HawkinsM.J. Soon-ShiongP. DesaiN. Protein nanoparticles as drug carriers in clinical medicine.Adv. Drug Deliv. Rev.2008608876e88510.1016/j.addr.2007.08.044
    [Google Scholar]
  120. DewanganH.K. GargA. AgrawalR. GargH. Cancer and brain tumor: Treatment and management.Acta. Pharm. Sci.20212021112
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128322894241004051814
Loading
/content/journals/cpd/10.2174/0113816128322894241004051814
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): BRCA1; BRCA2; Breast cancer; DNA; mammary gland; PARP inhibitors
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test