Skip to content
2000
Volume 31, Issue 6
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Aspirin, an analgesic, antipyretic and non-steroidal anti-inflammatory drug, was a fascinating discovery that became the precursor to one of the oldest pharmaceutical success stories. It was discovered in 1899 by Felix Hoffman and patented in 1900. In 2024, Aspirin turns 125 years old and is still one of the best-selling medicines today. This review aims to celebrate 125 years of Aspirin and show the status of analytical methods available in the literature to evaluate pharmaceutical products based on Acetylsalicylic Acid (ASA). In addition, it contextualizes them with the current needs of green and clean analytical chemistry. ASA, despite being consolidated in the consumer market, embraces continuous improvement as it is a fundamental part of studies for other new purposes and studies with associations with other active ingredients. In the manuscripts available in the literature, ASA is predominantly evaluated by HPLC (41%) and UV-vis (41%) methods, which use methanol (21.82%) and acetonitrile (18.18%), followed by buffer (16.36%). The most evaluated pharmaceutical matrix is ASA tablets (40%), followed by ASA tablets in combination with other drugs (26%). While ASA continues to innovate in the market through new forms of delivery and combinations, as well as intended purposes, the analytical methods for evaluating its pharmaceutical products do not. They continue with non-eco-efficient analytical options, which can significantly improve and meet the current demand for green and sustainable analytical chemistry.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128333651240918064132
2024-10-08
2025-01-18
Loading full text...

Full text loading...

References

  1. MontinariM.R. MinelliS. De CaterinaR. The first 3500 years of aspirin history from its roots - A concise summary.Vascul. Pharmacol.20191131810.1016/j.vph.2018.10.008 30391545
    [Google Scholar]
  2. WerzO. StettlerH. TheurerC. SeibelJ. The 125th anniversary of aspirin - The story continues.Pharmaceuticals (Basel)202417443745610.3390/ph17040437 38675399
    [Google Scholar]
  3. KowalskaM. WozniakM. KijekM. MitroszP. SzakielJ. TurekP. Management of validation HPLC method determination HPLC method for determination of acetylsalicylic acid impurities in a new pharmaceutical product.Sci. Rep.2022121910.1038/s41598‑021‑99269‑x 34992227
    [Google Scholar]
  4. Pereira SousaJ.C. KogawaA.C. Overview of analytical methods for evaluating tinidazole.J. AOAC Int.2023106230931510.1093/jaoacint/qsac142 36355444
    [Google Scholar]
  5. MahdiJ.G. Medicinal potential of willow: A chemical perspective of aspirin discovery.J. Saudi Chem. Soc.201014331732210.1016/j.jscs.2010.04.010
    [Google Scholar]
  6. Committee on Herbal Medicinal Products, European Medicines Agency, Amsterdam201711155
    [Google Scholar]
  7. Oketch-RabahH.A. MarlesR.J. JordanS.A. Low DogT. United States Pharmacopeia Safety Review of Willow Bark.Planta Med.201985161192120210.1055/a‑1007‑5206 31604354
    [Google Scholar]
  8. FusterV. SweenyJ.M. Aspirin.Circulation2011123776877810.1161/CIRCULATIONAHA.110.963843 21343593
    [Google Scholar]
  9. JackD.B. One hundred years of aspirin.Lancet1997350907543743910.1016/S0140‑6736(97)07087‑6 9259670
    [Google Scholar]
  10. JenneweinK. DurandT. GerybadzeA. When brands complement patents in securing the returns from technological innovation: The case of bayer aspirin.Manage Int2010143738610.7202/044294ar
    [Google Scholar]
  11. Brazilian Pharmacopeia.6th edBrasíliaANVISA2019
    [Google Scholar]
  12. SilvaM.V.F. DusseL.M.S. VieiraL.M. CarvalhoM.G. Antiagregantes Plaquetários na Prevenção Primária e Secundária de Eventos Aterotrombóticos.ABC Cardiol20131007884
    [Google Scholar]
  13. SepúlvedaR.A. OrtegaM. DonosoN. JaraA. Intoxicación por ácido acetilsalicílico, fisiopatología y manejo.Rev. Med. Chil.2018146111309131610.4067/S0034‑98872018001101309 30725045
    [Google Scholar]
  14. CortelliniG. CarusoC. RomanoA. Aspirin challenge and desensitization: How, when and why.Curr. Opin. Allergy Clin. Immunol.201717424725410.1097/ACI.0000000000000374 28590311
    [Google Scholar]
  15. BruntonL.L. ChabnerB.A. KnollmannB.C. Goodman & Gilman Pharmacological Therapeutics.McGraw-Hill2012
    [Google Scholar]
  16. RangH.P. RitterJ.M. FlowerR.J. HendersonG. Farmacologia.8th EdBrasilElsevier2016322323
    [Google Scholar]
  17. GolanD.E. TashjianA.H. ArmstrongE.J. ArmstrongA.W. Principles of Pharmacology.In: The Pathophysiological Basis of Pharmacotherapy.Guanabara Koogan2009
    [Google Scholar]
  18. United States Pharmacopeia.Rockville, MDUnited States Convention Inc.2020
    [Google Scholar]
  19. British PharmacopeiaThe Stationery Office on Behalf of MHRA.United Kingdom2021
    [Google Scholar]
  20. ChaudhariS.S. PhalakS.D. Development and validation of UV spectrophotometric method for simultaneous equation of aspirin and omeprazole in tablet dosage form.Pharm. Anal. Acta201911618622
    [Google Scholar]
  21. DacićM. UzunovićA. KunićA. PilipovićS. ŠapcaninA. UV-Vis determination of acetylsalicylic acid in aspirin tablets using different solvents and conditions.CMBEBIH2020201973563567
    [Google Scholar]
  22. PatelM. TrivediD. ShahU. Development and validation of UV- visible spectrophotometric method for simultaneous estimation of aspirin and 5-fluorouracil in bulk and dosage form.NUJPS202074962
    [Google Scholar]
  23. ElmasryM.S. SeragA. HassanW.S. El-MammliM.Y. BadrawyM. Spectrophotometric determination of aspirin and omeprazole in the presence of salicylic acid as a degradation product: A comparative evaluation of different univariate/multivariate post processing algorithms.J. AOAC Int.2022105130931610.1093/jaoacint/qsab105 34387326
    [Google Scholar]
  24. MarzoukH.M. IbrahimE.A. HegazyM.A. SaadS.S. Eco-friendly resolution of spectrally overlapping signals of a combined triple-action over-the-counter Pharmaceutical formulation for symptomatic management of COVID-19 pandemic: Application to contect uniformity testing.BMC Chem.2022167310.1186/s13065‑022‑00868‑0 36192758
    [Google Scholar]
  25. Alhaj SakurA. KayaliZ. Development of four UV-spectrometric techniques for concurrent estimation of aspirin and sildenafil citrate in their binary mixture and pharmaceutical formulations.Bull. Pharm. Sci.202245276177310.21608/bfsa.2022.271600
    [Google Scholar]
  26. ElmasryM.S. HassanW.S. El MammliM.Y. BadrawyM. Earth friendly spectrophotometric methods based on different manipulation approaches for simultaneous determination dosage for simultaneous determination of aspirin and omeprazole in binary mixture and pharmaceutical dosage form: Comparative statistical study.Spectrochim. Acta A Mol. Biomol. Spectrosc.202226611210.1016/j.saa.2021.120436 34619509
    [Google Scholar]
  27. AbdelazimA.H. Abdel-FattahA. OsmanA.O. Abdel-KareemR.F. RamzyS. Application of different quantitative analytical techniques for estimation of aspirin and omeprazole in Pharmaceutical preparation.J. AOAC Int.202310649049510.1093/jaoacint/qsac128 36264114
    [Google Scholar]
  28. KayaliZ. ObaydoR.H. Alhaj SakurA. Spider diagram and sustainability evaluation of UV-methods strategy for quantification of aspirin and sildenafil citrate in the presence of salicylic acid in their bulk and formulation.Heliyon202394e1526010.1016/j.heliyon.2023.e15260
    [Google Scholar]
  29. DekaM.K. AnsaryA. DasT.K. DasA.K. SahariahB.J. MajumderM. Development of three UV-spectroscopic methods for simultaneous estimation of raloxifene and aspirin in pharmaceutical dosage form: Whiteness and greenness assessment with application of ComplexGAPI, AGREE, and RGB.Green Anal Chem2024810008810.1016/j.greeac.2023.100088
    [Google Scholar]
  30. AlbakaaARM. AhmedMA. MohammedBT. JabbarZA. Development method for determination of aspirin as sodium salicylate by UV-Vis spectroscopy.IOP Conf Ser: Mater Sci Eng2019571101210410.1088/1757‑899X/571/1/012104
    [Google Scholar]
  31. AbdelazimA.H. RamzyS. Application of different quantitative analytical techniques for estimation of aspirin and omeprazole in pharmaceutical preparation.BMC Chem.2022161606710.1186/s13065‑022‑00854‑6 35971129
    [Google Scholar]
  32. El-MaraghyC.M. Sustainable eco-friendly ratio-based spectrophotometric and HPTLC-densitometric methods for simultaneous analysis of co-formulated anti-migraine drugs with overlapped spectra.BMC Chem.202317110011110.1186/s13065‑023‑01020‑2 37592319
    [Google Scholar]
  33. GoesE.J.A. RoederJ.S. OliveiraK.B. FerreiraM.P. SilvaJ.G.D. Validação de método espectrofotométrico de análise para quantificação de ácido acetilsalicílico em formulações farmacêuticas: uma proposta de aula experimental para análise instrumental.Quim. Nova20194299104
    [Google Scholar]
  34. Aguilar-LiraG.Y. López-BarrigueteJ.E. HernandezP. Álvarez-RomeroG.A. GutiérrezJ.M. Simultaneous voltammetric determination of non-steroidal anti-inflammatory drugs (NSAIDs) using a modified carbon paste electrode and chemometrics.Sensors (Basel)202223142143610.3390/s23010421 36617017
    [Google Scholar]
  35. KashidA.M. TatheS.V. SahooS.G. GhatgeA.B. WaniR.M. RP-HPLC method for simultaneous estimation of aspirin and omeprazole in binary combination.Indian Drugs2018558384310.53879/id.55.08.11024
    [Google Scholar]
  36. LoncaN. MaillardF. LeguelinelG. SharkawiT. SoulairolI. Validation of an HPLC assay method for routine qc testing and stability study of compounded low-dose capsules of acetylsalicylic acid.Pharm. Technol. Hosp. Pharm.20183419920610.1515/pthp‑2018‑0022
    [Google Scholar]
  37. DongalaT. KatariN.K. PalakurthiA.K. JonnalagaddaS.B. Development and validation of a generic RP‐HPLC PDA method for the simultaneous separation and quantification of active ingredients in cold and cough medicines.Biomed. Chromatogr.20193311e464110.1002/bmc.4641 31265736
    [Google Scholar]
  38. El-YazbiF.A. AminO.A. El-KimaryE.I. KhamisE.F. YounisS.E. Simultaneous determination of methocarbamol and aspirin in presence of their pharmacopeial-related substances in combined tablets using novel HPLC-DAD method.Drug Dev. Ind. Pharm.201945226527210.1080/03639045.2018.1535603 30307339
    [Google Scholar]
  39. JagnadeS. SoniP. OmrayL.K. Development and validation of green analytical method for the determination of aspirin and domperidone bulk or formulation using UV and HPLC.J. Drug Deliv. Ther.2020106495610.22270/jddt.v10i6.4374
    [Google Scholar]
  40. KamalA.H. MarieA.A. HammadS.F. Stability indicating RP-HPLC method for simultaneous determination of omeprazole and aspirin in the presence of salicylic acid as degradation product.Microchem. J.202015210435010.1016/j.microc.2019.104350
    [Google Scholar]
  41. OsmanN.A. ShantierS.W. AdamM.E. GadkariemE.A. Q-absorbance ratio and chromatographic method for the analysis of aspirin and salicylic acid.Appl Chem20201445458354588
    [Google Scholar]
  42. OsmanovićO.E. Alagić-DžambićL. KrstićM. Pašić-KulenovićM. OdovićJ. VasiljevićD. In vitro dissolution study of acetylsalicylic acid and clopidogrel bisulfate solid dispersions: Validation of the RP-HPLC method for simultaneous analysis.Appl. Sci. (Basel)202010110
    [Google Scholar]
  43. SharmaA. KumarI. RanaK. RP-HPLC method development and validation for the combination of imiquimod and salicylic acid.Int. J. Pharm. Pharm. Sci.202012414810.22159/ijpps.2020v12i9.38382
    [Google Scholar]
  44. YounisM.A. HettaH.F. Abdel-MalekM.A.Y. AliH.R.H. AtiaN.N. TawfeekH.M. Combining acetyl salicylic acid and rofecoxib into novel oral tablets normalize platelet function with potential higher tolerability in patients with cardiovascular disorders.J. Drug Deliv. Sci. Technol.20205910185110.1016/j.jddst.2020.101851
    [Google Scholar]
  45. ChandaranaC. KapuparaP. PrajapatiP. Forced degradation study for simultaneous quantification of aspirin and omeprazole in pharmaceutical dosage form by RP-HPLC.J. Pharm. Res. Int.20213314315010.9734/jpri/2021/v33i57B34038
    [Google Scholar]
  46. UrichJ.A.A. MarkoV. BoehmK. KarrerJ. KoeberleM. Salar-BehzadiS. Development and validation of a stability indicating hplc method for the simultaneous determination of metformin, hydrochlorothiazide and acetylsalicylic acid in an on-demand fixed-dose combination dosage form.J. Anal. Chem.202378121760176910.1134/S1061934823120195
    [Google Scholar]
  47. AbdallahN.A. El-BrashyA.M. IbrahimF.A. El-AwadyM.I. Micellar eco-friendly HPLC method for simultaneous analysis of ternary combination of aspirin, atorvastatin and ramipril: Application to content uniformity testing.BMC Chem.20231711910.1186/s13065‑023‑00929‑y
    [Google Scholar]
  48. DoctorN. YangY. Separation and analysis of aspirin and metformin HCL using green subcritical water chromatography.Molecules2018239225810.3390/molecules23092258 30189589
    [Google Scholar]
  49. KogawaA.C. PiresA.E.D.T. SalgadoH.R.N. Atorvastatin: A review of analytical methods for pharmaceutical quality control and monitoring.J. AOAC Int.2019102380180910.5740/jaoacint.18‑0200 30563586
    [Google Scholar]
  50. KogawaA.C. LustosaI.A. de Souza GilE. Analytical aspects for evaluation of pharmaceutical product: A mini-review.Curr. Pharm. Anal.2022181090991810.2174/1573412918666220928120332
    [Google Scholar]
  51. BhardwajS.K. DwivediaK. AgarwalaD.D. A review: HPLC method development and validation.Int J Anal Bioanal Chem201557681
    [Google Scholar]
  52. AnastasP.T. Green Chemistry and the role of analytical methodology development.Crit. Rev. Anal. Chem.199929316717510.1080/10408349891199356
    [Google Scholar]
  53. MohamedD. FouadM.M. Application of NEMI, Analytical Eco-Scale and GAPI tools for greenness assessment of three developed chromatographic methods for quantification of sulfadiazine and trimethoprim in bovine meat and chicken muscles: Comparison to greenness profile of reported HPLC methods.Microchem. J.202015710487310488610.1016/j.microc.2020.104873
    [Google Scholar]
  54. da TrindadeM.T. KogawaA.C. SalgadoH.R.N. A clean, sustainable and stability-indicating method for the quantification of ceftriaxone sodium in pharmaceutical product by HPLC.J. Chromatogr. Sci.202260326026610.1093/chromsci/bmab078 34131704
    [Google Scholar]
  55. GuptaN. SonambekarA.A. DakshS.K. TomarL. A rare presentation of methanol toxicity.Ann. Indian Acad. Neurol.201316250251
    [Google Scholar]
  56. de MarcoB.A. RecheloB.S. TótoliE.G. KogawaA.C. SalgadoH.R.N. Evolution of green chemistry and its multidimensional impacts: A review.Saudi Pharm. J.20192711810.1016/j.jsps.2018.07.011 30627046
    [Google Scholar]
  57. EvansC.D. MonteithD.T. FowlerD. CapeJ.N. BrayshawS. Hydrochloric acid: An overlooked driver of environmental change.Environ. Sci. Technol.20114551887189410.1021/es103574u 21288016
    [Google Scholar]
  58. KogawaA.C. SalgadoH.R.N. Golden age of green chemistry.EC Microbiol.2017125254
    [Google Scholar]
  59. KogawaA.C. SalgadoH.R.N. Analytical methods: Where do we stand in the current environmental scenario?EC Microbiol.201713102104
    [Google Scholar]
  60. ShaabanH. New insights into liquid chromatography for more eco-friendly analysis of pharmaceuticals.Anal. Bioanal. Chem.2016408256929694410.1007/s00216‑016‑9726‑2 27349918
    [Google Scholar]
  61. KogawaA.C. SalgadoH.R.N. Ethanol on HPLC: Epiphany or nonsense?Acta Sci Pharm Sci201821415
    [Google Scholar]
  62. Pacheco-FernándezI. PinoV. Green solvents in analytical chemistry.Curr. Opin. Green Sustain. Chem.201918425010.1016/j.cogsc.2018.12.010
    [Google Scholar]
  63. FogelJ. EpsteinP. ChenP. Simultaneous high-performance liquid chromatography assay of acetylsalicylic acid and salicylic acid in film-coated aspirin tablets.J. Chromatogr. A198431750751110.1016/S0021‑9673(01)91690‑5 6530452
    [Google Scholar]
  64. KokotZ. BurdaK. Simultaneous determination of salicylic acid and acetylsalicylic acid in aspirin delayed-release tablet formulations by second-derivative UV spectrophotometry.J. Pharm. Biomed. Anal.1998184-587187510.1016/S0731‑7085(98)00225‑8 9919990
    [Google Scholar]
  65. de OliveiraA.S. de OliveiraN.R.L. de Oliveira NetoJ.R. TavaresL.L. KogawaA.C. Green method for evaluation of marbofloxacin tablets by HPLC and evaluation of interchangeability with UV and turbidimetric methods.J. AOAC Int.202310661432143710.1093/jaoacint/qsad102 37676818
    [Google Scholar]
  66. da SilvaT.A.C. da Silva JúniorJ.R. KogawaA.C. A new, ecological and stability-indicating method by HPLC for the quantification of moxifloxacin in tablets.Curr. Green Chem.202310216517310.2174/2213346110666230331085433
    [Google Scholar]
  67. GhidiniL. KogawaA. SalgadoH.R.N. Eco-friendly green liquid chromatographic for determination of doxycycline in tablets and in the presence of its degradation products.Drug Anal Res201822495510.22456/2527‑2616.89412
    [Google Scholar]
  68. LimaJ. KogawaA. SalgadoH.R.N. Green analytical method for quantification of secnidazole in tablets by HPLC-UV.Drug Anal Res201822202610.22456/2527‑2616.89411
    [Google Scholar]
  69. NascimentoP.A. AcK. HrnS. Development and validation of an innovative and ecological analytical method using high performance liquid chromatography for quantification of cephalothin sodium in pharmaceutical dosage.J. Chromatogr. Sep. Tech.20189139440110.4172/2157‑7064.1000394
    [Google Scholar]
  70. Aleixa do NascimentoP. KogawaA.C. SalgadoH.R.N. A new ecological HPLC method for determination of vancomycin dosage form.Curr. Chromatogr.202072829010.2174/2213240607666200324140907
    [Google Scholar]
  71. MottaC. KogawaA. ChorilliM. SalgadoH. Eco-friendly and miniaturized analytical method for quantification of Rifaximin in tablets.Drug Anal Res201932232910.22456/2527‑2616.98376
    [Google Scholar]
  72. MarcoB. KogawaA. SalgadoH. New, green and miniaturized analytical method for determination of cefadroxil monohydrate in capsules.Drug Anal Res201931232810.22456/2527‑2616.91086
    [Google Scholar]
  73. de SouzaM.J.M. KogawaA.C. SalgadoH.R.N. New and miniaturized method for analysis of enrofloxacin in palatable tablets.Spectrochim. Acta A Mol. Biomol. Spectrosc.20192091710.1016/j.saa.2018.10.014 30343104
    [Google Scholar]
  74. NascimentoP. KogawaA. SalgadoH.R.N. A new and ecological miniaturized method by spectrophotometry for quantification of vancomycin in dosage form.Drug Anal Res202151394510.22456/2527‑2616.112226
    [Google Scholar]
  75. RecheloB.S. FernandesF.H.A. KogawaA.C. SalgadoH.R.N. New environmentally friendly method for quantification of cefazolin sodium.Eur. Chem. Bull.20176623824510.17628/ecb.2017.6.238‑245
    [Google Scholar]
  76. de AléssioP.V. KogawaA.C. SalgadoH.R.N. Quality of ceftriaxone sodium in lyophilized powder for injection evaluated by clean, fast, and efficient spectrophotometric method.J. Anal. Methods Chem.201720171410.1155/2017/7530242 29057140
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128333651240918064132
Loading
/content/journals/cpd/10.2174/0113816128333651240918064132
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test