Skip to content
2000
image of 125 Years of Aspirin: Status of Analytical Methods

Abstract

Aspirin, an analgesic, antipyretic and non-steroidal anti-inflammatory drug, was a fascinating discovery that became the precursor to one of the oldest pharmaceutical success stories. It was discovered in 1899 by Felix Hoffman and patented in 1900. In 2024, Aspirin turns 125 years old and is still one of the best-selling medicines today. This review aims to celebrate 125 years of Aspirin and show the status of analytical methods available in the literature to evaluate pharmaceutical products based on Acetylsalicylic Acid (ASA). In addition, it contextualizes them with the current needs of green and clean analytical chemistry. ASA, despite being consolidated in the consumer market, embraces continuous improvement as it is a fundamental part of studies for other new purposes and studies with associations with other active ingredients. In the manuscripts available in the literature, ASA is predominantly evaluated by HPLC (41%) and UV-Vis (41%) methods, which use methanol (21.82%) and acetonitrile (18.18%), followed by buffer (16.36%). The most evaluated pharmaceutical matrix is ASA tablets (40%), followed by ASA tablets in combination with other drugs (26%). While ASA continues to innovate in the market through new forms of delivery and combinations, as well as intended purposes, the analytical methods for evaluating its pharmaceutical products do not. They continue with non-eco-efficient analytical options, which can significantly improve and meet the current demand for green and sustainable analytical chemistry.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128333651240918064132
2024-10-11
2024-12-03
Loading full text...

Full text loading...

References

  1. Montinari M.R. Minelli S. De Caterina R. The first 3500 years of aspirin history from its roots - A concise summary. Vascul. Pharmacol. 2019 113 1 8 10.1016/j.vph.2018.10.008 30391545
    [Google Scholar]
  2. Werz O. Stettler H. Theurer C. Seibel J. The 125th anniver-sary of aspirin- The story continues. Pharmaceuticals (Basel) 2024 17 4 437 456 10.3390/ph17040437 38675399
    [Google Scholar]
  3. Kowalska M. Wozniak M. Kijek M. Mitrosz P. Szakiel J. Turek P. Management of validation HPLC method determina-tion HPLC method for determination of acetylsalicylic acid impurities in a new Pharmaceutical product. Sci. Rep. 2022 12 1 9 10.1038/s41598‑021‑99269‑x 34992227
    [Google Scholar]
  4. Pereira Sousa J.C. Kogawa A.C. Overview of analytical meth-ods for evaluating tinidazole. J. AOAC Int. 2023 106 2 309 315 10.1093/jaoacint/qsac142 36355444
    [Google Scholar]
  5. Mahdi J.G. Medicinal potential of willow: A chemical per-spective of aspirin discovery. J. Saudi Chem. Soc. 2010 14 3 317 322 10.1016/j.jscs.2010.04.010
    [Google Scholar]
  6. Committee on Herbal Medicinal Products, European Medicines Agency, Amsterdam. 2017 11 1 55
  7. Oketch-Rabah H.A. Marles R.J. Jordan S.A. Low Dog T. Unit-ed States Pharmacopeia Safety Review of Willow Bark. Planta Med. 2019 85 16 1192 1202 10.1055/a‑1007‑5206 31604354
    [Google Scholar]
  8. Fuster V. Sweeny J.M. Aspirin. Circulation 2011 123 7 768 778 10.1161/CIRCULATIONAHA.110.963843 21343593
    [Google Scholar]
  9. Jack D.B. One hundred years of aspirin. Lancet 1997 350 9075 437 439 10.1016/S0140‑6736(97)07087‑6 9259670
    [Google Scholar]
  10. Jennewein K Durand T Gerybadze A. 2010
  11. Brazilian Pharmacopeia. 6th ed Brasília ANVISA 2019
    [Google Scholar]
  12. Silva M.V.F. Dusse L.M.S. Vieira L.M. Carvalho M.G. Antiagre-gantesPlaquetários na Prevenção Primária e Secundária de Eventos Aterotrombóticos. ABC Cardiol 2013 100 78 84
    [Google Scholar]
  13. Sepúlveda R.A. Ortega M. Donoso N. Jara A. Intoxicación por ácido acetilsalicílico, fisiopatología y manejo. Rev. Med. Chil. 2018 146 11 1309 1316 10.4067/S0034‑98872018001101309 30725045
    [Google Scholar]
  14. Cortellini G. Caruso C. Romano A. Aspirin challenge and desensitization: how, when and why. Curr. Opin. Allergy Clin. Immunol. 2017 17 4 247 254 10.1097/ACI.0000000000000374 28590311
    [Google Scholar]
  15. Brunton L.L. Chabner B.A. Knollmann B.C. Goodman & Gil-man Pharmacological Therapeutics. McGraw-Hill 2012
    [Google Scholar]
  16. Rang H.P. Ritter J.M. Flower R.J. Henderson G. Farmacologia. 8th ed Brasil Elsevier 2016 322 323
    [Google Scholar]
  17. Golan D.E. Tashjian A.H. Armstrong E.J. Armstrong A.W. Principles of Pharmacology. The Pathophysiological Ba-sis of Pharmacotherapy. Guanabara Koogan 2009
    [Google Scholar]
  18. United States Pharmacopeia. Rockville, MD United States Convention Inc. 2020
    [Google Scholar]
  19. British Pharmacopeia The Stationery Office on Behalf of MHRA. United Kingdom 2021
    [Google Scholar]
  20. Chaudhari S.S. Phalak S.D. Development and validation of UV spectrophotometric method for simultaneous equation of as-pirin and omeprazole in tablet dosage form. Pharm. Anal. Acta 2019 11 618 622
    [Google Scholar]
  21. Dacić M. Uzunović A. Kunić A. Pilipović S. Šapcanin A. UV-VIS determination of acetylsalicylic acid in aspirin tab-lets using different solvents and conditions. CMBEBIH 2020 201973 563 567
    [Google Scholar]
  22. Patel M. Trivedi D. Shah U. Development and validation of UV- visible spectrophotometric method for simultaneous es-timation of aspirin and 5-fluorouracil in bulk and dosage form. NUJPS 2020 7 49 62
    [Google Scholar]
  23. Elmasry M.S. Serag A. Hassan W.S. El-Mammli M.Y. Badrawy M. Spectrophotometric determination of aspirin and omepra-zole in the presence of salicylic acid as a degradation prod-uct: a comparative evaluation of different univari-ate/multivariate post processing algorithms. J. AOAC Int. 2022 105 1 309 316 10.1093/jaoacint/qsab105 34387326
    [Google Scholar]
  24. Marzouk H.M. Ibrahim E.A.E.A. Hegazy M.A. Saad S.S. Eco-friendly resolution of spectrally overlapping signals of a combined triple-action over-the-counter Pharmaceutical for-mulation for symptomatic management of COVID-19 pan-demic: application to contect uniformity testing. BMC Chem. 2022 16 73 10.1186/s13065‑022‑00868‑0 36192758
    [Google Scholar]
  25. Alhaj Sakur A. Kayali Z. Development of four UV-spectrometric techniques for concurrent estimation of aspirin and sildenafil citrate in their binary mixture and pharmaceu-tical formulations. Bull. Pharm. Sci. 2022 45 2 761 773 10.21608/bfsa.2022.271600
    [Google Scholar]
  26. Elmasry M.S. Hassan W.S. El Mammli M.Y. Badrawy M. Earth friendly spectrophotometric methods based on differ-ent manipulation approaches for simultaneous determination dosage for simultaneous determination of aspirin and omeprazole in binary mixture and pharmaceutical dosage form: comparative statistical study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022 266 1 12 10.1016/j.saa.2021.120436 34619509
    [Google Scholar]
  27. Abdelazim A.H. Abdel-Fattah A. Osman A.O. Abdel-Kareem R.F. Ramzy S. Application of different quantitative analytical techniques for estimation of aspirin and omeprazole in Pharmaceutical preparation. J. AOAC Int. 2023 106 490 495 10.1093/jaoacint/qsac128 36264114
    [Google Scholar]
  28. Kayali Z. Obaydo R.H. Alhaj Sakur A. Spider diagram and sustainability evaluation of UV-methods strategy for quanti-fication of aspirin and sildenafil citrate in the presence of sal-icylic acid in their bulk and formulation. Heliyon 2023 9 4 e15260 10.1016/j.heliyon.2023.e15260
    [Google Scholar]
  29. Deka M.K. Ansary A. Das T.K. Das A.K. Sahariah B.J. Majum-der M. Development of three UV-spectroscopic methods for simultaneous estimation of raloxifene and aspirin in pharma-ceutical dosage form: Whiteness and greenness assessment with application of ComplexGAPI, AGREE, and RGB. Green Analytical Chemistry 2024 8 100088 10.1016/j.greeac.2023.100088
    [Google Scholar]
  30. Albakaa A.R.M. Ahmed M.A. Mohammed B.T. Jabbar Z.A. Development method for determination of aspirin as sodium salicylate by UV-VIS spectroscopy. IOP Conf Ser: Mater Sci Eng
    [Google Scholar]
  31. Abdelazim A.H. Ramzy S. Application of different quantita-tive analytical techniques for estimation of aspirin and omeprazole in pharmaceutical preparation. BMC Chem. 2022 16 1 60 67 10.1186/s13065‑022‑00854‑6 35971129
    [Google Scholar]
  32. El-Maraghy C.M. Sustainable eco-friendly ratio-based spec-trophotometric and HPTLC-densitometric methods for sim-ultaneous analysis of co-formulated anti-migraine drugs with overlapped spectra. BMC Chem. 2023 17 1 100 111 10.1186/s13065‑023‑01020‑2 37592319
    [Google Scholar]
  33. Goes E.J.A. Roeder J.S. Oliveira K.B. Ferreira M.P. Silva J.G.D. Validação de método espectrofotométrico de análise para quantificação de ácido acetilsalicílico em formulações far-macêuticas: uma proposta de aula experimental para análise instrumental. Quim. Nova 2019 42 99 104
    [Google Scholar]
  34. Aguilar-Lira G.Y. López-Barriguete J.E. Hernandez P. Álva-rez-Romero GA, Gutiérrez JM. Simultaneous Voltammetric Determination of non-steroidal anti-inflammatory drugs (NSAIDs) using a modified carbon paste electrode and chemometrics. Sensors (Basel) 2022 23 1 421 436 10.3390/s23010421 36617017
    [Google Scholar]
  35. Kashid A.M. Tathe S.V. Sahoo S.G. Ghatge A.B. Wani R.M. RP-HPLC method for simultaneous estimation of aspirin and omeprazole in binary combination. INDIAN DRUGS 2018 55 8 38 43 10.53879/id.55.08.11024
    [Google Scholar]
  36. Lonca N. Maillard F. Leguelinel G. Sharkawi T. Soulairol I. Validation of an HPLC assay method for routine qc testing and stability study of compounded low-dose capsules of acetylsalicylic acid. Pharm. Technol. Hosp. Pharm. 2018 3 4 199 206 10.1515/pthp‑2018‑0022
    [Google Scholar]
  37. Dongala T. Katari N.K. Palakurthi A.K. Jonnalagadda S.B. Development and validation of a generic RP‐HPLC PDA method for the simultaneous separation and quantification of active ingredients in cold and cough medicines. Biomed. Chromatogr. 2019 33 11 e4641 10.1002/bmc.4641 31265736
    [Google Scholar]
  38. El-Yazbi F.A. Amin O.A. El-Kimary E.I. Khamis E.F. Younis S.E. Simultaneous determination of methocarbamol and aspi-rin in presence of their pharmacopeial-related substances in combined tablets using novel HPLC-DAD method. Drug Dev. Ind. Pharm. 2019 45 2 265 272 10.1080/03639045.2018.1535603 30307339
    [Google Scholar]
  39. Jagnade S. Soni P. Omray L.K. Development and validation of green analytical method for the determination of aspirin and domperidone bulk or formulation using UV and HPLC. J. Drug Deliv. Ther. 2020 10 6 49 56 10.22270/jddt.v10i6.4374
    [Google Scholar]
  40. Kamal A.H. Marie A.A. Hammad S.F. Stability indicating RP-HPLC method for simultaneous determination of omeprazole and aspirin in the presence of salicylic acid as degradation product. Microchem. J. 2020 152 104350 10.1016/j.microc.2019.104350
    [Google Scholar]
  41. Osman N.A. Shantier S.W. Adam M.E. Gadkariem E.A. Q-absorbance ratio and chromatographic method for the analy-sis of aspirin and salicylic acid. Appl Chem 2020 144 54583 54588
    [Google Scholar]
  42. Osmanović O.E. Alagić-Džambić L. Krstić M. Pašić-Kulenović M. Odović J. Vasiljević D. In vitro dissolution study of acetylsalicylic acid and clopidogrel bisulfate solid dispersions: validation of the RP-HPLC method for simulta-neous analysis. Appl. Sci. (Basel) 2020 10 1 10
    [Google Scholar]
  43. Sharma A. Kumar I. Rana K. RP-HPLC method development and validation for the combination of imiquimod and salicyl-ic acid. Int. J. Pharm. Pharm. Sci. 2020 12 41 48 10.22159/ijpps.2020v12i9.38382
    [Google Scholar]
  44. Younis M.A. Hetta H.F. Abdel-Malek M.A.Y. Ali H.R.H. Atia N.N. Tawfeek H.M. Combining acetyl salicylic acid and rofecoxib into novel oral tablets normalize platelet function with potential higher tolerability in patients with cardiovascu-lar disorders. J. Drug Deliv. Sci. Technol. 2020 59 101851 10.1016/j.jddst.2020.101851
    [Google Scholar]
  45. Chandarana C. Kapupara P. Prajapati P. Forced degradation study for simultaneous quantification of aspirin and omepra-zole in pharmaceutical dosage form by RP-HPLC. J. Pharm. Res. Int. 2021 33 143 150 10.9734/jpri/2021/v33i57B34038
    [Google Scholar]
  46. Urich J.A.A. Marko V. Boehm K. Karrer J. Koeberle M. Salar-Behzadi S. Development and validation of a stability indicat-ing hplc method for the simultaneous determination of met-formin, hydrochlorothiazide and acetylsalicylic acid in an on-demand fixed-dose combination dosage form. J. Anal. Chem. 2023 78 12 1760 1769 10.1134/S1061934823120195
    [Google Scholar]
  47. Abdallah N.A. El-Brashy A.M. Ibrahim F.A. El-Awady M.I. Micellar eco-friendly HPLC method for simultaneous analy-sis of ternary combination of aspirin, atorvastatin and rami-pril: application to content uniformity testing. BMC Chem. 2023 17 1 19 10.1186/s13065‑023‑00929‑y
    [Google Scholar]
  48. Doctor N. Yang Y. Separation and analysis of aspirin and metformin HCL using green subcritical water chromatog-raphy. Molecules 2018 23 9 2258 10.3390/molecules23092258 30189589
    [Google Scholar]
  49. Kogawa A.C. Pires A.E.D.T. Salgado H.R.N. Atorvastatin: a re-view of analytical methods for pharmaceutical quality control and monitoring. J. AOAC Int. 2019 102 3 801 809 10.5740/jaoacint.18‑0200 30563586
    [Google Scholar]
  50. Kogawa A.C. Lustosa I.A. de Souza Gil E. Analytical aspects for evaluation of pharmaceutical product: a mini-review. Curr. Pharm. Anal. 2022 18 10 909 918 10.2174/1573412918666220928120332
    [Google Scholar]
  51. Bhardwaj S.K. Dwivedia K. Agarwala D.D. A review: HPLC method development and validation. Int J Anal Bioanal Chem 2015 5 76 81
    [Google Scholar]
  52. Anastas P.T. Green Chemistry and the role of analytical methodology development. Crit. Rev. Anal. Chem. 1999 29 3 167 175 10.1080/10408349891199356
    [Google Scholar]
  53. Mohamed D. Fouad M.M. Application of NEMI, Analytical Eco-Scale and GAPI tools for greenness assessment of three developed chromatographic methods for quantification of sulfadiazine and trimethoprim in bovine meat and chicken muscles: Comparison to greenness profile of reported HPLC methods. Microchem. J. 2020 157 104873 104886 10.1016/j.microc.2020.104873
    [Google Scholar]
  54. da Trindade M.T. Kogawa A.C. Salgado H.R.N. A clean, sus-tainable and stability-indicating method for the quantification of ceftriaxone sodium in pharmaceutical product by HPLC. J. Chromatogr. Sci. 2022 60 3 260 266 10.1093/chromsci/bmab078 34131704
    [Google Scholar]
  55. Gupta N. Sonambekar A.A. Daksh S.K. Tomar L. A rare presentation of methanol toxicity. Ann. Indian Acad. Neurol. 2013 16 250 251
    [Google Scholar]
  56. de Marco B.A. Rechelo B.S. Tótoli E.G. Kogawa A.C. Salgado H.R.N. Evolution of green chemistry and its multidimensional impacts: A review. Saudi Pharm. J. 2019 27 1 1 8 10.1016/j.jsps.2018.07.011 30627046
    [Google Scholar]
  57. Evans C.D. Monteith D.T. Fowler D. Cape J.N. Brayshaw S. Hydrochloric acid: an overlooked driver of environmental change. Environ. Sci. Technol. 2011 45 5 1887 1894 10.1021/es103574u 21288016
    [Google Scholar]
  58. Kogawa A.C. Salgado H.R.N. Golden Age of Green Chemistry. EC Microbiol. 2017 12 52 54
    [Google Scholar]
  59. Kogawa A.C. Salgado H.R.N. Analytical Methods: Where do we stand in the current environmental scenario? EC Microbiol. 2017 13 102 104
    [Google Scholar]
  60. Shaaban H. New insights into liquid chromatography for more eco-friendly analysis of pharmaceuticals. Anal. Bioanal. Chem. 2016 408 25 6929 6944 10.1007/s00216‑016‑9726‑2 27349918
    [Google Scholar]
  61. Kogawa A.C. Salgado H.R.N. Ethanol on HPLC: Epiphany or Nonsense? Acta Sci Pharm Sci 2018 2 14 15
    [Google Scholar]
  62. Pacheco-Fernández I. Pino V. Green solvents in analytical chemistry. Curr. Opin. Green Sustain. Chem. 2019 18 42 50 10.1016/j.cogsc.2018.12.010
    [Google Scholar]
  63. Fogel J. Epstein P. Chen P. Simultaneous high-performance liquid chromatography assay of acetylsalicylic acid and sali-cylic acid in film-coated aspirin tablets. J. Chromatogr. A 1984 317 507 511 10.1016/S0021‑9673(01)91690‑5 6530452
    [Google Scholar]
  64. Kokot Z. Burda K. Simultaneous determination of salicylic acid and acetylsalicylic acid in aspirin delayed-release tablet formulations by second-derivative UV spectrophotometry. J. Pharm. Biomed. Anal. 1998 18 4-5 871 875 10.1016/S0731‑7085(98)00225‑8 9919990
    [Google Scholar]
  65. de Oliveira A.S. de Oliveira N.R.L. de Oliveira Neto J.R. Tavares L.L. Kogawa A.C. Green method for evaluation of marbofloxacin tablets by HPLC and evaluation of inter-changeability with UV and turbidimetric methods. J. AOAC Int. 2023 106 6 1432 1437 10.1093/jaoacint/qsad102 37676818
    [Google Scholar]
  66. da Silva T.A.C. da Silva Júnior J.R. Kogawa A.C. A new, eco-logical and stability-indicating method by HPLC for the quantification of moxifloxacin in tablets. Curr. Green Chem. 2023 10 2 165 173 10.2174/2213346110666230331085433
    [Google Scholar]
  67. Ghidini L. Kogawa A. Salgado H.R.N. Eco-friendly green liquid chromatographic for determination of doxycycline in tablets and in the presence of its degradation products. Drug Analytical Research 2018 2 2 49 55 10.22456/2527‑2616.89412
    [Google Scholar]
  68. Lima J. Kogawa A. Salgado H.R.N. Green analytical method for quantification of secnidazole in tablets by HPLC-UV. Drug Analytical Research 2018 2 2 20 26 10.22456/2527‑2616.89411
    [Google Scholar]
  69. Nascimento P.A. Ac K. Hrn S. Development and validation of an innovative and ecological analytical method using high performance liquid chromatography for quantification of cephalothin sodium in pharmaceutical dosage. J. Chromatogr. Sep. Tech. 2018 9 1 394 401 10.4172/2157‑7064.1000394
    [Google Scholar]
  70. Aleixa do Nascimento P. Kogawa A.C. Salgado H.R.N. A new ecological HPLC method for determination of vancomycin dosage form. Curr. Chromatogr. 2020 7 2 82 90 10.2174/2213240607666200324140907
    [Google Scholar]
  71. Motta C. Kogawa A. Chorilli M. Salgado H. Eco-friendly and miniaturized analytical method for quantification of Rifaxi-min in tablets. Drug Analytical Research 2019 3 2 23 29 10.22456/2527‑2616.98376
    [Google Scholar]
  72. Marco B. Kogawa A. Salgado H. New, green and miniaturized analytical method for determination of cefadroxil monohy-drate in capsules. Drug Analytical Research 2019 3 1 23 28 10.22456/2527‑2616.91086
    [Google Scholar]
  73. de Souza M.J.M. Kogawa A.C. Salgado H.R.N. New and minia-turized method for analysis of enrofloxacin in palatable tab-lets. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019 209 1 7 10.1016/j.saa.2018.10.014 30343104
    [Google Scholar]
  74. Nascimento P. Kogawa A. Salgado H.R.N. A new and ecologi-cal miniaturized method by spectrophotometry for quantifi-cation of vancomycin in dosage form. Drug Analytical Re-search 2021 5 1 39 45 10.22456/2527‑2616.112226
    [Google Scholar]
  75. Rechelo B.S. Fernandes F.H.A. Kogawa A.C. Salgado H.R.N. New environmentally friendly method for quantification of cefazolin sodium. Eur. Chem. Bull. 2017 6 6 238 245 10.17628/ecb.2017.6.238‑245
    [Google Scholar]
  76. de Aléssio P.V. Kogawa A.C. Salgado H.R.N. Quality of ceftri-axone sodium in lyophilized powder for injection evaluated by clean, fast, and efficient spectrophotometric method. J. Anal. Methods Chem. 2017 2017 1 4 10.1155/2017/7530242 29057140
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128333651240918064132
Loading
/content/journals/cpd/10.2174/0113816128333651240918064132
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test